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The proposed PID tuning method has similar approach to the recently published paper
of Shamsuzzoha and Skogestad (2010). It is one step procedure to obtain the PID setting
which gives the better performance and robustness. The method requires one closed-
loop step setpoint response experiment using a proportional only controller with gain
K. Based on simulations for a range of first-order with delay processes, simple
correlations have been derived to give PID controller settings. The controller gain
(K/K¢o) is only a function of the overshoot observed in the setpoint experiment. The
controller integral and derivative time (t; and tp) is mainly a function of the time to
reach the first peak (t,). The proposed tuning method shows better performance than
Shamsuzzoha and Skogestad (2010) for broad range of processes.

1. Introduction

The proportional, integral, and derivative (PID) controller is widely used in the process
industries due to its simplicity, robustness and wide ranges of applicability in the
regulatory control layer. One survey of Desborough and Miller (2002) indicates that
more than 97% of regulatory controllers utilise the PID algorithm.

There are two approaches for the controller tuning and one may use open-loop or
closed-loop plant tests. Most tuning approaches are based on open-loop plant
information; typically the plant’s gain (k), time constant (1) and time delay (0). One
popular approach is direct synthesis (Seborg et al., 2004) and other is the IMC-PID
tuning method of Rivera et al. (1986). Both the methods give very good performance for
setpoint changes but sluggish responses to input (load) disturbances for lag-dominant
(including integrating) processes with t/0 larger than about 10. To improve load
disturbance rejection, Skogestad (2003) proposed the modified SIMC method where the
integral time is reduced for processes with a large value of the time constant t.

The other alternative is to use closed-loop experiments. One approach is the classical
method of Ziegler-Nichols (1942) which requires very little information about the
process. However, there are several disadvantages. First, the system needs to be brought
its limit of instability and a number of trials may be needed to bring the system to this
point. Another disadvantage is that the Ziegler-Nichols (1942) tunings do not work well
on all processes. It is well known that the recommended settings are quite aggressive for
lag-dominant (integrating) processes and quite slow for delay-dominant process
(Skogestad, 2003). A third disadvantage of the Ziegler-Nichols (1942) method is that it
can only be used on processes for which the phase lag exceeds -180 degrees at high
frequencies. For example, it does not work on a simple second-order process. Recently,
Shamsuzzoha and Skogestad (2010) have developed new procedure for PI/PID tuning
method in closed-loop mode which satisfy both the performance and robustness criteria.
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They require only one closed-loop step test to obtain PI controller setting. For the PID
tuning setting they need to repeat the experiment with PD controller on the basis of the
prior information obtain from P controller test. They recommended adding the
derivative action for dominant second-order process only.

Therefore, it is important to have alternative tuning method based on the closed-loop
experiment which gives better performance and robustness. In this method it is simple
to obtain the PID tuning parameters in one step for improved performance while
satisfying the other criteria during the closed-loop experiment like reduces the number
of trails, and works for a wide range of processes.

2. IMC-PID Controller Tuning Rule

In process control, a first-order process with time delay is a common representation of
the process dynamics:
-Os
g(s) =2 (N
rs+1
Here k is the process gain, T lag time constant and 0 the time delay. Most processes in
the chemical industries can be satisfactorily controlled using a PID controller:

o(s)= K, [IL] @

The IMC-PID tuning rule for the first order process with time delay is given as (Seborg
et al. 2004).

240 (3a) ez, +2 (3b) =2 (o
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To improve the load disturbance response we recommended to reduce the integral time,
for this Skogestad (2003) suggested to modifying the integral timet;=d(z,+0). The

recommended value of t.= 6 which gives Ms=1.7 and after simplification tuning rule is

K. = % “a) i {[ng, 86’} (“45) o= 2; f& o

3. Closed-Loop Experiment
This section is devoted for the development of the PID controller based on the closed-
loop data which resembles Eq.(4). The proposed procedure is as follows (Shamsuzzoha
and Skogestad, 2010):
1. Switch the controller to P-only mode (for example, increase the integral time 1; to its
maximum value or set the integral gain K| to zero).
2. Make a setpoint change that gives an overshoot between 0.10 (10%) and 0.60 (60%);
about 0.30 (30%) is a good value. Record the controller gain K., used in the experiment.
3. From the closed-loop setpoint response experiment, obtain the following values (see
Fig. 1):

e Fractional overshoot, (Ay, - Ay.,) /Ay.,

¢ Time from setpoint change to reach first peak output (overshoot), t,

e Relative steady state output change, b = Ay, /Ays..
Here the output variable changes are Ay,: Setpoint change, Ay,: Peak output change (at
time t,), Ay,.: Steady-state output change after setpoint step test.
To find Ay,, one needs to wait for the response to settle, which may take some time if
the overshoot is relatively large (typically, 0.3 or larger). In such cases, one may stop
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the experiment when the setpoint response reaches its first minimum (Ay,) and record

the corresponding output,
Ay, = 0.45(Ay, + Ayy).

6]

The detail for obtaining Ay, is given in Shamsuzzoha and Skogestad (2010).

4. Correlation between Setpoint Response and the PID-Settings

The objective of this paper is to provide a one step procedure in closed-loop for
controller tuning similar to the Shamsuzzoha and Skogestad (2010) and Ziegler-Nichols
(1942) method. Thus, the goal is to derive a correlation between the setpoint response
data (Fig. 1) and the proposed PID settings in Eq. (4). For this purpose, we considered
15 first-order with delay models g(s)=ke™*/(ts+1) that cover a wide range of processes;

from delay-dominant to lag-dominant (integrating):

1/6=0.1,0.2,0.4,0.8,1.0,1.5,2.0,2.5,3.0,7.5,10.0,20.0,50.0,100

Since we can always scale time with respect to the time delay (0) and the closed-loop
response depends on the product of the process and controller gains (kK;) we have
without loss of generality used in all simulations k=1 and 6=1.

\t=0

Fig. 1. Closed-loop step setpoint response
with P-only control.
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Fig. 2. Relationship between P-controller gain kK
used in setpoint experiment and corresponding

proposed controller gain (Eq. 4a) kK.

120

For each of the 15 process models
(values of 1/0), we obtained the PID-
settings using Eq. (4) with the
choice 1.=0. Furthermore, for each
of the 15 processes we generated 6
closed-loop step setpoint responses
using  P-controllers that give
different fractional overshoots.

Overshoot= 0.10, 0.20, 0.30, 0.40,
0.50 and 0.60

In total, we then have 90 setpoint
responses, and for each of these we
record four data: the P-controller
gain K used in the experiment, the
fractional overshoot, the time to
reach the overshoot (t,), and the
relative steady-state change, b =
Ay, /Ays.
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Controller gain (K.). We first seek a relationship between the above four data and the
corresponding proposed controller gain K.. Indeed, as illustrated in Fig. 2, where we
plot kK. as a function of kK., for the 90 setpoint experiments, the ratio K./K, is
approximately constant for a fixed value of the overshoot, independent of the value of
1/0. Thus, we can write

Ke o Q)
KcO

where the ratio A is a function of the overshoot only. In Fig. 3 we plot the value of A,
which is obtained as the best fit of the slopes of the lines in Fig. 2, as a function of the
overshoot. The following equation (solid line in Fig. 3) fits the data in Fig. 2 well and
given as:

A=[1.55(overshoot)” -2.159 (overshoot)+1.35] @)

Integral time (t)). The
proposed method in Eq. (4b)
uses the minimum of two
values, it seems reasonable to
look for a similar relationship,
that is, to find one value (1
=t) for processes with a
relatively large delay, and
another value (1, =86) for
processes with a relatively
small delay including
integrating processes.

y=1 .55*(overshoot)z -2.159*(overshoot) + 1.35

. . I I
0.1 02 03 04 05 06
overshoot (fractional)

Fig. 3. Variation of A with overshoot using data (slopes) from Fig. 2.

(1) Process with relatively large delay: This case arise when processes have a
relatively large delay i.e., ©/6<8. From the rearrangement of Eq.(4a) is obtained
v =(3kK,0-0)/2- Adding both the side 6/2 and substitute (t+ 6/2)=t;, we get

7, =1.5kK 0 (8
In Eq. (8), we also need the value of the process gain k, and to this effect write
kK= kKo.Ko/ Keo ©

Here, the value of the loop gain kK, for the P-control setpoint experiment is given from
the value of b:

kK o= L (]O)
(1-b)

Substituting kK, from Eq. (10) and K./ K=A into Eq. (9) and given as

=150 (1)

(1-b)

To prove this, the closed-loop setpoint response is Ay/Ay = gc/(1+gc) and with a P-
controller with gain K, the steady-state value is Ay, Ay, = kK o/(1+kK)=b and we
derive Eq.(11). The absolute value is included to avoid problems if b>1, as may occur
for an unstable process or because of inaccurate data.
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For processes with a relatively large time delay (1/6<8), the ratio 0/t, varies between

0.27, (for /6= 8 with overshoot=0.1) and 0.5 (for ©/6=0.1 with all overshoots). For the

intermediate overshoot of 0.3, the ratio 0/t, varies between 0.32 and 0.50. A

conservative choice would be to use 6=0.5t, because a large value increases the integral

time. However, to improve performance for processes with smaller time delays, we

propose to use 6=0.43t, which is only 14% lower than 0.50 (the worst case).

In summary, we have for process with a relatively large time delay:

,,20.645A\L],p (12)
(1-b)

(2) Process with relatively small delay. Both the proposed and Shamsuzzoha and

Skogestad (2010) method have same integral action for the lag-dominant process(t/6>8)

and given as:

T12:2.44tp (13)

Conclusion. Therefore, the integral time 1; is the minimum of the above two values:

ol 2.44tp] (14)

Derivative action (tp). The derivative action is recommended in the proposed study for
the process having 7/6>1 to obtain the closed-loop performance improvement. Substitute
the value of t=(1-0.50) into 1/6>1 and after rearrangement (7;-0.50)/6>1. After
simplification it is 17/6>1.5, and resulting criteria is kK >1.0. The corresponding closed-
loop requisite for the derivative action is given as:

T,=min [0.645/1

AL [5 (15
(1-b)
Case I: For approximately integrating process (t>> 0), where the closed-loop time delay

0= 0.305t,. The derivative time tp; in Eq. (4c) can be approximated as
0 0305, (16)
2r 2 2 P

Case II: The processes with a relatively large delay the derivative action is
recommended only if 7/6 > 6. Assuming when =8, 1p, is given from Eq. (4c) as

N 9? 3 9* 0 0.43t,
%050 30 3 3
Summary: Since 1p; and 1p, are approximately same and the conservative choice for the
selection of 1 is

= 0.1433t, a7

>1

(1-6)

o= 0141, if A

5. Simulation

The proposed closed-loop tuning method has been tested on broad class of the
processes. It provides the acceptable controller setting for all cases with respect to both
the performance and robustness. To show the effectiveness of the proposed method one
typical case has been discussed as a representative example i.e., high order process with
time delay. The simulation has been conducted for three different overshoot (around 0.1,
0.3 and 0.6) and are compared with the recently reported method of Shamsuzzoha and
Skogestad (2010).

Example 1:  (=s+1)¢”

(6s+1)(25+1)°
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Figure 4 has obtained by introducing a unit step change in the set-point at # = 0 and an
unit step change of load disturbance at # = 100 at plant input. It is clear from the figure
that the proposed method gives better closed-loop response. There are significant
performance improvements in both the case for the disturbance rejection while
maintaining setpoint performance. The overshoot around 0.1 typically gives slower and
more robust PID-settings, whereas a large overshoot around 0.6 gives fast PID-settings
with less robustness. It is good because a more careful step response results in more
careful tunings settings.

6. Conclusion

A simple approach has been
developed for PID controller
tuning from the closed-loop
setpoint step test using a P-

e controller with gain K. The

E tuning method is given as:

° oe Overshoot= (Ay, - Ay,) /Ay,

——Shamsuzzoha and Skogestad methodwithF=1(overshoot=0.119) Tlme tO reaCh 'OVerShOOt (ﬁrSt

----- Proposed method with F=1 (overshoot=0.344) OUtpm Change’ b Ayw/Ays' If

Proposed method with F=1 (overshoot=0.608) one does not want to wait for the

0 50 t;rgg 160 20 gystem to reach steady state, use

. the estimate Ay, = 0.45(Ay, +
Fig. 4. Responses for Example 1. Ay).

K,=K A, where A=[1.55(overshoot) -2.159 (overshoot)+1.35]

b

T;=min| 0.6454|——
I [ ‘ 1-5) >1

(1-0)
The proposed method works well for a wide variety of the processes including the
integrating, high-order, inverse response, unstable and oscillating process.

tp,2.44tp] *r,= 0141, if 4
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