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The well-known aBB method solves very general smooth nonconvex optimization
problems. The algorithm works by replacing nonconvex functions with convex
underestimators. The approximations are improved by branching and bounding until
global optimality is achieved. Applications are abundant in engineering and science. We
present a convex formulation in which the underestimators are improved without
directly splitting the domain in a branch-and-bound tree. We show two illustrative
examples and discuss some possible gains and drawbacks with the algorithm.

1. Introduction

Twice-differentiable constraints are in general not convex. Therefore, most optimization
algorithms cannot guarantee that the global optimum will be found. Many global
optimization algorithms are based on convexifying the constraints and objective
function. The solution to the modified problem minimizes an underestimate of the
objective function (if it is nonconvex) on an overestimation of the feasible set.

The aBB algorithm described in Adjiman et al. (1998a,b) is a general-purpose algorithm
for problems with twice continuously differentiable (C?) constraints and objective
function. Any nonconvex part is convexified by adding parabolas a(x-x;)(x-xy) in each
variable. Sufficiently large o values are readily computed. One of the methods proposed
in Adjiman et al. (1998a) uses interval arithmetic and Gershgorin’s circle theorem.
Finding the best possible (smallest) a values is in general hard.

We have studied the question whether the same type of underestimators can be used in a
framework without branching over the domain. We have found constraint formulations
to achieve this, and the basic variety is presented in this paper. The algorithm described
here was designed with the possibility of solving mixed-integer problems in mind.

2. The Algorithm

The algorithm utilizes (continuous) piecewise linear functions (PLF) in a manner
similar to the SGO algorithm in Lundell (2009). A future project would be to integrate
this new approach with the SGO algorithm. PLFs are sometimes possible to model with
continuous variables, especially if the PLF is convex and a natural part of the
minimization trade-off (cf. inventory costs and marginal prices in Skjil et al., 2009).
This is not the case here and we have to introduce binary variables to describe the PLFs.
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2.1 Constraints

The formulation is presented here in one dimension for simplicity. The extension to
multiple dimensions is intuitive and addressed at the end of the subsection.
Minimization of a nonconvex objective function f{x) can be modeled as minimization of
4 subject to the constraint flx) - 4 < 0. The only difference to other nonconvex
constraints is the need for slightly different termination criteria. Therefore we focus the
description on constraints.

With given breakpoints x,, x;, ..., xx (xg = X1, xx = xy) the nonconvex constraint g(x) <0
will give rise to the following constraints in our model:
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The constants 4y, Ay, ..., Ax are the values of a(x-c¢;)(x-cy) in xy, xj,..., xg respectively.
The integer relaxation of this model is convex. In (1) the two first terms are similar to
the classical aBB convex underestimator and convex by the same argument. We are free
to choose the constants ¢; and ¢,, one obvious choice would be ¢; = ¢, = 0. The third
term in (1) and the rest of the constraints are linear.

For every interval [x;; x;] the formulation tries to reproduce the classical aBB
underestimator in that interval by removing a linearization of a(x-c;)(x-c;). The new
underestimator when (2)-(5) holds will achieve this except for one detail; o is the same
for every interval. A branch-and-bound algorithm studies the intervals separately and
can use a smaller a in some intervals where the function g is “less nonconvex”. In our
formulation we must choose the largest calculated a or we lose convexity in some
intervals. A comparison is shown in Fig.1.

It should be noted that the constraints (3)-(5) need only be included once, even if there
are many convexified constraints. This “sharing” of the PLFs could plausibly be further
exploited by integrating the method with the SGO algorithm for signomial constraints.
In a real situation, the problem would be multi-dimensional. The constraints above are
modified by adding a dimension index to (x, o, s, b, A) and summing over this index
where appropriate. ¥ does not need to be split; all linearizations can be added in one
constraint.
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Figure 1: The difference between the classical aBB (short dashes, o = 1; 0.6; 0) and the
underestimator described here (long dashes, a. = 1). Note that the classical oBB is used
in a branch-and-bound algorithm, one interval at a time.

Other formulations of the same idea are possible. The PLFs can be described as SOS2
(special ordered sets with at most two adjacent variables # 0) or equality in (2) can be
replaced by inequality (<).

2.2 Iterations

After each iteration, the following tests are done:

e Ifno solution was found, terminate. The original problem is infeasible.

e If the solution is infeasible (for the original problem), add breakpoints according to
some rule and continue with the next iteration.

o If the solution is e-feasible and the objective function has not been underestimated,
terminate. The point is an e-global solution point.

o If the solution is e-feasible but the objective function is underestimated, calculate the
underestimation gap. If it is less than the specified tolerance, terminate. Otherwise
add more breakpoints and continue with the next iteration.

There are many ways to choose the new breakpoints. Lundell (2009) discusses the
effects of adding a solution point coordinate, an interval midpoint or the point with the
largest underestimation error in the SGO algorithm. The two latter points coincide for
our underestimator. Branch-and-bound algorithms usually split domains in two in every
step. The algorithm described here solves subproblems of increasing complexity. It
seems likely that adding several breakpoints is more effective in this situation. The
default strategy employed is to add the midpoint of the solution interval in each
dimension. For discrete variables the breakpoints are chosen as integers.
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Figure 2: The underestimator of 2 sin(x) + x/2, 1 <x <5 when one new breakpoint is
added in each step, in the middle of the interval where the minimum is found.

3. Two Examples

The underestimation of 2 sin(x) + x/2, 1 < x < 5 at different levels of refinement is
shown in Fig. 2. The new breakpoints are added in the interval where the minimum of
the function is found. This corresponds to the behavior when the function is used as the
objective. If the function is part of a constraint, say 2 sin(x) + x/2 > 5/2, the choice of
breakpoints may be different. If the solution from the second iteration is 2.8 the
constraint is not satisfied and the next new breakpoint will be 2, i.e. the midpoint of the
interval [1,3].

Consider the following problem in two variables:

minimize (y+3)*+e' +y—x 6)

subjectto (x> +y- 112+ (x +y*-7)* <100 (7
4<x<4, 4<y<4 ®)
X integer

The iteration steps for solving this problem are shown in Fig. 3. As x is an integer
variable, the x components of the solutions and the new breakpoints in the x direction
are all integer. The optimal solution (-2, -3) is found in four iterations. In mixed-integer
problems it sometimes happens that the solution “jumps” into the feasible set after a
finite number of steps. Another common situation is a solution sequence converging to
a feasible point. The process terminates when a found solution is e-feasible.



377

Iteration 1 Iteration 2

Figure 3: The iteration steps taken when the second example is solved; the level curves
of the objective function are visible; the dark areas are the feasible set of the integer-
relaxed problem; the lighter area is the overestimated feasible set in the current
iteration. The current solution is indicated with the large black point.

4. Discussion and Further Research

Note that branching cannot be avoided altogether, even in the continuous case. The
algorithm in this paper merely embeds it in the convex MINLP subproblems and passes
it on to the subsolver. A major difference between a branch-and-bound algorithm like
aBB and our “non-branching” algorithm is the information acquired during the solution
process.

The aBB algorithm knows a lower bound for each studied node. When a feasible
solution is found it provides an upper bound on the global minimum. Any branch with a
lower bound higher than the upper bound is fathomed and cut from the tree. Nodes with
a lower bound below the best found upper bound could contain a better solution and
must be branched further. In contrast, the non-branching algorithm obtains lower
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bounds only for the whole domain. Once a feasible solution is found it is also globally
optimal and the algorithm terminates.

Meyer and Floudas (2005) constructed an underestimator by fitting classical aBB
underestimators together to form a continuously differentiable spline. The basic variety
of this underestimator is applicable also in our framework and lets us relax the
requirement of a uniform a in a given dimension. The effect in one dimension would be
an underestimator coinciding with the classical aBB on each interval. In multiple
dimensions we can choose a based on an interval “slice” along the other dimensions.
The extra calculations needed are almost negligible, the improvement is problem-
specific.

Akrotirianakis and Floudas (2004a,b) studied an underestimator created with
expressions of exponential functions instead of parabolas. This underestimator could
also be tried out in our framework. In general, any convex underestimator created by
adding univariate convex negative functions could be used.
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