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In industry counter-current flow processes are common. Although these processes have
been widely studied in literature, relatively little has been published on their dynamic
behaviour. Two very common counter-current flow processes are heat exchangers and
distillation columns. Ma's study based on dynamic models of heat exchanger's dynamic
behaviour [1] reports an internal resonance effect, also earlier reported by Profos in
1943 [4] and Friedly in 1972 [3]. Here the study is extended to lumped models, first for
heat exchangers and thereafter for an extremely simplified distillation column. Not
unexpectedly, the dynamic properties change gradually as the number of lumps
increases towards the distributed systems and for high frequencies similar internal
resonance effects evolve with the envelopes showing a very low-order behaviour, which
though somewhat surprisingly is independent of the number of lumps. Finally we show
that the eigenvalues of the normed system matrix lie on a circle in the complex plane.
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1. Introduction

Many industrial processes are based on two phases exchanging material and heat. The
two phases are passing each other either in co-current or counter-current fashion often
arranged in stages in each of which one drives the system towards equilibrium. The
counter-current scheme is more commonly used, so we focus on this pattern.

Although counter-current flow processes have been widely studied in literature, little of
it reports on their fundamental dynamic behaviour. Commonly used dynamic models
for heat exchangers are simple empirical first-order-plus-dead-time models. Exceptions
are Profos (1943) [4] reporting the internal resonance effects, Friedly (1972) [3] who
derived reduced-order models and X H Ma [1] who derived a new set of high-fidelity
low-order models also confirming the internal resonance effect, which years later has
been show to exist in an experimental study by Grimm [2].

In Ma's a distributed model for heat exchangers the temperatures on the inner and the
outer tube are considered as continuous functions of time and spatial coordinates
yielding a set of partial differential equations. This model shows the presence of the
internal resonance effect in the high frequencies domain. She splits the transfer function
into a resonance and a non resonance part assuming a linear underlaying behaviour.
This procedure yields high-fidelity analytical low-order models being the envelopes of
the oscillating transfer function. For distillation columns however, no such behaviour
has been reported. Since standard tray columns are better described as counter-current
staged processes, Here we repeat Ma's study with lumped models aiming at a
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comparison with distillation models. The model is ¥ B
constructed as a network of communicating capacities for
each of which a mass and an energy balance is
constructed. The energy balances are being transformed
into the alternative state space of the intensive quantity
temperature all of which forms a set of ordinary
differential equations. It is expected that, as the number of
lumps approaches infinity, the solution approximates the
solution of the distributed model hoping that the resonance
effect shows also for low-order models. In a second step
this is applied to a kind of a mass transport network
representing a crude model of a distillation column.

—— mass transfer
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Figure 1: Model of the
counter current double pipe
heat exchanger with n equal
three stages

2. Lumped Model of the Heat Exchanger

Ma’s double pipe heat exchanger is analyzed approximating it as series of heat-ex-

changing, paired lumps, on one side representing the hot stream and on the other the

cold one. Since the result shall be compared with distillation models only the counter-

current flow pattern is being considered. Ma’s work discusses different cases, which are

based on different sets of assumptions. Here we focus on Ma's case I. We start with a 3-

stage process as shown in Figure 1. The assumptions are:

e The total volume of stream A (consisting of all equal-sized lumps a;) is the same as
the total volume of stream B and both are constant: =18 = = consr

e The volume of each lump has the same size: V' ==V =V, ==V, =Vin

e The heat transfer area O; with i=12,--,n between two lumps with the same

index i is constant and equal: O,=O /n : Vi with O as the overall heat
transfer area between stream A and stream B.

e Heat is only transferred between two lumps with the same index. No axial heat
transfer.

2.1 State Space Model Equations for n Stages

The energy balances is drawn up for each lump and solved for the temperature T
resulting in the state space representation: %=4x+Bu  with the two matrices 4 and
B being
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me|A, B} . The quantities are: k., :: heat transfer coefficient of stream m, O; :: heat
transfer area between two lumps, pm :: density of the stream m, c,m :: specific heat of
stream m, V/n :: individual lump volume.
i = T . .
The state is ¥=|T, T T Tbn) , the input is u=(T
)T

m~ V/ln

And the y=Cx with the matrix C=( ) with ¢

c
m- pm

Tﬂ )T and the

a
output is y=(Ty s
2.2 Bode Plots

The dynamic behaviour of the models is depicted in Bode Plots of the model's transfer
functions. The transfer functions are derived by transforming the state space model into
the frequency domain solving for the output y = x in dependence of u. The transfer
function matrix is then simply:

G=C(sI-4)"'B “

The transfer functions of input a to the output y shows similar behavior as the one from
the input B to the output 5. Only one of the two down stream responses, namely G,
from the input a to the output y is shown in Figure 2. The same applies to the cross
stream transfer functions, where only the transfer function G, from the input o to the
output & is plotted. The behavior of all transfer functions approaches Ma’s distributed
model as the number of stages » approaches infinity which is also shown in Figure 2 as
a reference.

Down Stream Response: The behavior of the transfer functions varies with the number
of stages ». In the amplitude plot with an increasing number of stages # the slope of the
amplitude decreases. As the number of stages approaches infinity the slope approaches
zero. The latter implies that there exists only one gain. In the phase plot an increasing
number of lumps increase the negative phase shift. For an infinite number of stages the
phase lags go to minus infinity, which indicates the existence of a dead time. But there
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Figure 2: Bode plots of the down stream transfer function G | (left) and of the cross
stream transfer function G | (right) with different numbers of stages n. The parameters

are chosen tobe d =d =0.01; t =1; t =I1.
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is not a resonance effect in the amplitude or the !

phase. o8- .
Cross Stream Response: The Bode plot shows TS ,
the resonance effect in amplitude and phase. G

Furthermore one observes that the curves show 0 {

a first corner at the frequency of w=1Hz for the o

chosen set of parameters. Above this corner 02

frequency the slope in the amplitude plot of the PR

resonance part is in average minus one. And in 08
the phase plot the resonance part average is -90 o8- e
degree. The transfer functions with the number 4

of stages being small than infinite show a
decaying resonance part with increasing

frequency, which finally disappears. The Figure 3: The normed eigenvalues of the
apparent length of the resonance part depends system matrix A in the complex plane
on the number of stages: With an increasing with n=100.

number of stages, the resonance part grows

longer until the infinite case, where the resonance part does not decay anymore. Also
the models with the number of stages being less than infinity, the final slope in the
amplitude plot is -2 and the final phase lag is -180 degree. Hence this transfer functions
show a second corner frequency under which the resonance part decays. Both corner
frequencies depend on the number of stages.

2.3 Detailed Analysis of the Cross Stream Response

To get more information about the second-order behavior of the cross stream response,
one needs the pole excess of the transfer function. Due to the structure of the matrices B
and C only four entries of the matrix (Is-A)" are relevant for the transfer functions
matrix and only two of these entries for the cross-stream transfer functions. The zeros of
the transfer functions are the zeros of the adjoint matrix adj(Is-A). For the number of
stages n = 3 or 4 it is easy to show that the respective adjoint matrices have 2n-2 zeros.
Since the poles are the eigenvalues of A, their number is 27 So the pole excess is 2n-
(2n-2)=2, which explains the observed second-order behavior. In addition, by closer
examination of the poles, one finds that the normed eigenvalues of the matrix A form a
circle with radius one and the center at (-1,0) as shown in Figure 3.

3. Lumped Model of a Distillation Column

Figure 4 depicts a distillation column o

and an abstraction there off which T - e

underlays the construction of the \ ST T ) Condenser
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lumps yields again a linear state space Figure 4: Process of the distillation column (left)

model (A,B,C,D), with the state X ,  and model of the distillation column (right)
input # and the output y being
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These sparse system matrices for the distillation column show a similar structure as the
system matrices of the heat exchanger.

3.2 Bode Plots

The transfer functions in the following Bode plots are obtained in the same way as this
was done in the analysis of the heat exchanger.

The curves in the magnitude plot of the transfer function from the input a to the output
B in the Bode plots of Figure 5 shows a resonance effect. This resonance part decays
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Figure 5: Bode plots of the transfer function GaB (left) from the input a to the output B and of the

transfer function GmY (right) from the input o to the output y with different numbers of stages n.
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before the curves reach a multiple corner frequency, which depends on the number of
stages n. With a larger number of lumps the length of the resonance part is longer. If the
number of stages go to infinity one could assume, that there is only a steady state gain
with resonance, whereas in the phase shift plot the resonance part does not appear. The
general behavior of the curves with the number of stages » going to infinity suggests the
existence of a dead time.

The magnitude plot of the transfer function from the input o to the output y (see Figure
5) shows a comparable response behavior as the transfer function from the input o to the
output B. The differences are in the amplitude of the resonance part and the corner
frequency. But the phase plot of the of the transfer function from the input o to the
output vy is a resonance part.

By closer examination of the poles in the complex plane, one finds again that the
standardized eigenvalues of 4 form a circle with radius one and the center at (-1,0) as
Figure 3 shows.

4. Conclusion

The dynamic characteristics of two counter-current processes are compared: a single
tube heat exchanger and a staged distillation column. For both simple linear transfer
models are assumed yielding linear systems that are of very similar structure. If normed,
both show the same behaviour with respect to the system eigenvalues: they lay on a
shifted unit circle in the complex domain. Both systems show resonance effects for
some parts. Heat exchangers show it for cross-stream transfer functions, but not for
down-stream transfer functions, whilst in distillation one finds the resonance also in the
down stream transfer function, at least in the amplitude. In both cases, the magnitude of
the resonance effect is a function of the number of lumps or stages.

In case of the heat exchanger the pole excess is 2, but the second corner frequency
approaches infinity as the number of lumps approaches infinity. Thus for the distributed
system the pole excess is only 1. This behaviour is also detected in the phase plot with a
max phase shift of -180 degrees for finite number of lumps and -90 degrees for the
distributed system.

The cross transfer functions for the distillation column behaves like a dead time for high
frequencies, though the position of the multiple zeros shifts to higher and higher
frequencies as the number of stages increases.
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