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The one-stage optimization problem with chance constraints is considered. This
problem is aroused by chemical processes design under uncertainties. We develop
methods of solving the one-stage optimization problem with chance constraints based
on transformation of a problem with chance constraints into a problem with
deterministic constraints.

1. Introduction

We consider a problem of a chemical process (CP) design in the case of the presence of
uncertainty in the process models. During chemical process design some design
specifications (constraints) must be satisfied. Some of these are as follows:

i) The specifications connected with safety of the CP.

ii) Ecological specifications are the second type of specifications. The CP must be
environmentally benign. One way to achieve this is to impose constraints on the
maximum effluent flowrates of hazardous chemicals.

iii) Performance targets in the CP (such as conversion in a catalytic reactor) are design
specifications.

CP performance is estimated by some measure which includes the capital and operating
costs. It can be a cost, revenue, product yield. Our goal is to minimize the cost of CP,
which consists of the capital and operating costs (that include energy expenditures).
The satisfaction of the design specifications is complicated by the presence of an
uncertainty in the process models. Therefore, in process design we are forced to use
inexact process models. Thus during CP design we must solve the following problem: it
is necessary to find such values of the design and control variables under which some
measure of the CP performance takes the minimal or maximal value and the design
specifications are met with some probability. The mathematical formulation of this
problem is of the form

Prig,(d,z,0) <0<, j=1,....m, Q)
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where d is a vector of the design variables, z is a vector of the control variables, & is
p -vector of uncertain parameters, f(d,z,6) is a goal function

Prig,(d,z,0) <0} = L p(6)d6
Q,=1{0:2,(d,2,6)<0,0cT}. 3)

Pr{g,(x,0) <0} is the probability measure of the region Q, and «;, is a probability

level. Problem (1) is the problem of finding a trade-off between the problems of
minimization of CP cost and minimization of environment pollution. Indeed, if we
increase the values «; (the probability of satisfaction of the constraints) we diminish

possible effluent flowrates of hazardous chemicals. However, one can prove that an
increase of the values ¢, worsens the optimal value of the objective function

(particularly, energy expenditures) i.e. increases the price of CP and vice versa. Problem
(1) is the one-stage optimization problem (OSOP) with chance constraints.

The main issue in solving the one-stage optimization problems is the calculation of
multiple integrals that give expected value of the objective function and probability of
constraints satisfaction. The use of the standard Gaussian quadrature for the calculation
of multiple integrals is very intensive computationally even for small dimensionality of
vector & of the uncertain parameters. In connection with this the problem of
simplification of a multidimensional integrals calculation is very important. One can
note three groups of methods in which this problem is considered. The methods which
improve the Gauss quadrature belong to the first group (Bernardo et al, 1999, Pintaric
and Kravanja, 2004, Wey and Realff, 2004). The methods in which the sampling
techniques (Monte-Carlo, Latin Hypercube or Hammersley Sequence Sampling - HSS)
(Bernardo and Saraiva, 1998, Diwekar and Kalagnanam, 1997) are used belong to the
second group. Diwekar and Kalagnanam (1997) have shown that the HSS technique is
more efficient than other sampling techniques. Unfortunately, even the HSS technique
requires several hundred approximation points to obtain a reasonable accuracy.

Methods permitting to transform chance constraints into deterministic ones belong to
the third group. Li et al. (2008) developed method permitting to transform chance
constraints into deterministic ones. It is based on the use of a monotone relationship
between a constrained output and one of the uncertain parameters. Unfortunately, it is
very difficult to prove that this property holds in process models of real processes.
Besides, some process models do not have this property. We will develop a new method
based on the approximate transformation of the chance constraints into deterministic
ones. This permits to diminish significantly computational time of solving OSOP with
chance constraints.

2. Approximate method of solving the TSOP with chance constraints

Transform problem (1). Consider some region 7, , which has the following property

Pr{feT,}>a, @)
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Condition (4) means that the probability measure of the region T, is equal to o, . It

should be noted that, generally speaking, condition (4) determines not single region but

some infinite set of regions. Designate this set by T, . Consider the following

%

constraint

<
lgel%z(gj(dazae)—oa (5)

where 7, is one of the regions from the set T, . If constraint (5) is met then the
constraint g,(d,z,6)<0 is met at each point of the region 7, . Since a probability
measure of the region T, is at least ¢, then the probability of satisfaction of the

constraint g,(d,z,6) <0 is at least «;. Consequently, constraint (2) can be substituted

with the constraints (4), (5). Hence, problem (1) can be rewritten in the following form

f= min E[f(d,z,6)] (6)
gelegjcgj(d,z,ﬁ)so , j=L...,m

PrifeT, }2a,, @)
Unfortunately it is very difficult to look for the optimal form and location of the region
T, . Therefore, we will restrict the class of possible regions 7, and look for the

optimal region in the form of a multidimensional rectangle. In connection with this we
will consider two cases in which form of regions 7,, will be given.

Case 1: The uncertain parameters 6,, i=1,..., p, are independent, random variables
having the normal distribution N,[E[6,],0,] where E[6,] is the expected value of the

parameters 6,. In this case we will suppose that the regions T, have a form of a

multidimensional rectangle

T, =16,:6" <68 i=1,..p}, ®)

where 6"/,8" are upper and lower bounds of sides of the multidimensional rectangles

T, . In this case the uncertainty region has the form (8), where the values 6r.0",
i=1,...,p, have the following form: 8" = E[6]-k.0,, 6 =E[6]+ko, and k, are
some large enough coefficients. In this case the search of the optimal forms and
locations of the regions T, is reduced to the search of the optimal upper and lower

bounds 6°/,8" of the sides of the multidimensional rectangles T, . Since all the

parameters 6, are independent and have the normal distribution then the probability
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measure of the multidimensional rectangle T, is equal to multiplication of the
probability measures of the intervals 1/ ={6"/ <6, <"} . Thus, we have
Pr{fe T, } =[] @@ )-®@E"] . ©)

where ®(77) is the standard normal distribution function and é.L’f s é.U’j have the
following form
6! =6 -El6)o,", "/ =6’ -El6]a," .

Replace Pr{fe Ta, } in condition (7) by its expression from (9). Then problem (6) takes

the form
f= min E[f(d,z6)], (10)
d.2,6 ,,)HIUA/
< =
1361%3]4&((1,2,9)_0,] 1,...,m, (11)

[@(G") -~ @@ ][, )~ @@, Nz a,, j=1...m),

where the regions T, are defined by the formulae (8). Problem (10) is the semi-infinite

programming problems. For its solving one can use the outer approximation algorithm
(Hettich and Kortanek, 1993).
For approximate calculation of the expected value of the function f(d,z,68) we will

use the iteration procedure based on partition of the region 7' . Let at the £ -th iteration
the region 7 consist of Q, subregions Tq(k) , g=1,.,0,. For an approximate
calculation of the expected value of the function f(d,z,6) we will use piecewise linear
approximation of the function f(d,z,6). For this at each subregion Y;k) we will

replace the function f(d,z,8) by its linear approximation
f(d.2.6,6°) = f(d.z.6")+ Y} (3 (d.z.6")[06)(6,—-6!) . (12)

where 67 e T\ . Then one can show that some approximation E, [ f(d,z,6);T] of the

expected value of the function f(d,z,8) can be represented in the following form

E, Lf(d.z.6):T1= Y% (a,f(d.2.6")+ Y/ (O (d.2.6") /06 X EI6: T 1-a,6/) (13)
where

a,= [, POYIO=[D@) - D@L [D@B! )~ D@L )]+ (B ) - D(BL")],
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EWG:T01= [, 0,00)d6 =17 ([}, 6,60)d6)I,
where
17 =08 )~ DG [DE ) -],

1?7 = [(I)(éUJ' )— (I)(ékr )] [q)(é;)/.r )— (D(épL.r ).

i+l i+1 i+l

On the basis of above considerations we developed the iteration procedure of solving
the OSOP with chance constraints. At each iteration we solve optimization problem (10)
in which the value E[f(d,z,0)] is replaced by the E [f(d,z,0)] (see (13)). For

solving problem (10) we can use the outer approximations method (Hettich and
Kortanek, 1993). Thus, it is seen that the considered method does not require the
calculation of multiple integrals.

Case 2: The uncertain parameters 6,, i=1,..., p, are dependent random variables

having multivariate normal distribution N [E[6,],A], where A is a covariance matrix.

It is known that the random variable y where
y=0-w)' A (O-p)

(where u is p-vector with components y, = E[6,], i=1,..., p) has distribution

with p degrees of freedom. Take the regions T, in the following forms
T, =1{6: O-)' AN (O-w<C(ex)y, j=1...,m, (14)

where 7*(C(@)) = « . In this case, the probability measure of the region T, is equal to
;. Consequently, only one region T, satisfies constraint (7). Therefore, problem (6)

is reduced to the following problem

[T =minE[/(d,z0)], (15)

r;g%;(g/(d,z,e) <0, j=1....m.

Problem (15) is the semi-infinite programming problems. For its solving one can use the
outer approximation algorithm (Hettich and Kortanek, 1993).

3. Computational experiment

As an illustration we consider a problem of a design of a chemical process (CP)
consisting from a continuous stirred tank reactor and a heat exchanger. There is the
detailed description of this CP in (Halemane and Grossmann, 1983). This CP has two
design variables — a reactor volume V' and a heat exchanger area A, two control

variables — the reaction temperature 7, and the temperature 7, of a cold water on the
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output of the heat exchanger and five uncertain parameters. The objective function f

takes into account the capital and operating (energetic) expenditures. We solved the
nominal optimization problem (NOP) and the OSOP for ¢, =0.5, j=1,...,m. The

values of V', 4 and f obtained by solving NOP and OSOP are equal to 5.42, 5.21,

9003 and 7.40, 5.48, 9971. It is seen that in order to guarantee of satisfying the
constraints with the given probability 0.5 we must increase the reactor volume and the
heat exchanger area from 5.42, 5.21 up to 7.40, 5.48, respectively. This increases a cost
of CP by 11%. It is interesting that if we use the straightforward way of solving problem
(1) then the total CPU-time required only for the computation of multiple integrals used
to determine the values of objective function (1) and constraints (2) is equal to
approximately 40 minutes (using the Monte —Carlo method from the software package
“Mathematica”). At the same time, the total CPU-time required to solve problem (10)
with help of our approach is equal to 3.9 s.

4. Conclusion

We have developed the new approach to solving the chance constrained one-stage
optimization problem for the case of normally distributed uncertain parameters. This
approach is based on approximate transformation of chance constraints into
deterministic ones and a piece-wise linear approximation of the original objective
function. Partition of the uncertainty region into subregions is used to improve these
approximate transformations.

The developed approach permits to solve one-stage optimization problems with chance
constraints in the case when the uncertain parameters are normally distributed random
variables without computationally intensive calculation of multivariate integrals.
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