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Fluid Catalytic Cracking (FCC) process is a complex process in petroleum refining industry; it cracks 
long chain molecules from gas oil and residues to produce high value products like diesel and gasoline.  
FCC process is composed by two reactors: the riser where cracking reactions take place and the 
regenerator where combustion reactions eliminate coke deposition from catalyst surface; the last 
reactors are connected by two transport lines where catalyst circulates. Regenerator flue gas 
emissions are composed by carbon oxides (CO and CO2), sulfur oxides (SO2 and SO3), nitrogen 
oxides (NO, N2O, N2), and particulates. This work focuses on the minimization of carbon monoxide 
(CO) in flue gases while maintaining high process conversion. A multi-objective optimization problem 
was established to maximize conversion and minimize emissions of CO. The problem was solved 
using genetic algorithms coupled with factorial design used to identify key process variables and to 
formulate objective optimization functions. Results showed a reduction in CO emissions in the order of 
12.8 % with a conversion of 73 %, indicating genetic algorithms as an useful tool to comply 
environmental regulations and process demands with low computational burden and time. 

1. Introduction 
According to the Environmental Protection Agency (EPA), in 1999, 54 % of refineries in United States 
have committed persistent and serious violations of Clean Air Act (Cheng et al. 1998) due to huge 
volumes of air, water and solid waste. Currently, different technologies have been developed to reduce 
pollutant emission considering environmental legislation and process requirements. In this sense, the 
development of refining process simulators are key tools in petroleum industry to address process 
operation according to operational objectives and variables constraints subject to environmental 
regulations.  
Refining processes are classified into separation and conversion processes, the first one splits a feed 
into light fractions and the second one generates new molecules having properties adapted to the 
products end use. Conversion processes are classified into thermal and catalytic processes. Fluid 
catalytic cracking is a key conversion refining process that operates at high pressures in the gas 
phase; it uses catalyst as a solid heat transfer medium. Products of conversion from catalytic cracking 
are largely olefinic for light fractions and strongly aromatic for heavy fractions. FCC by-products are: a) 
Refinery gases, b) Residue (slurry) or clarified oil (CO) used as refinery fuel, and c) Coke deposited on 
the catalyst which is burned in the regenerator producing the necessary heat for the reaction. Gases 
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produced also called flue gases are composed by CO, CO2, SO2, SO3, NO, N2O, N2 and particulates 
that are cleansed when necessary (Wauquier, 1994). 
Environmental regulations are affecting the design and operation of FCC process to reduce flue gases 
emissions. They are directed at criteria pollutants and air toxic compounds. Criteria pollutants include 
carbon monoxide, ozone, nitrogen oxides, sulphur oxides, and particulates. Carbon monoxide is the 
product of incomplete combustion of the coke-burning reactions in the FCC regenerator and is a 
criteria pollutant and a pollution problem. Air pollution authorities establish a limit of CO-emissions to 
the atmosphere of 500 ppm for new and existing sources (EPA, 2008). This work focuses on the 
operating analysis for the minimization of CO emissions from a Brazilian FCC unit, maintaining high 
levels of activity and selectivity from a regenerator reactor based on a Kellog Orthoflow F process 
deterministic model presented in Moro and Odloak (1995). A multi-objective optimization was applied in 
FCC process modeling based on genetic algorithm techniques obtaining a considerable reduction in 
CO emissions with high process conversion. 

2. Fluid catalytic cracking process 
FCC is a refining process that cracks heavy petroleum fractions like gas oil and residue from vacuum 
distillation tower into light fractions. It is composed by: riser, reactor vessel, regenerator and catalyst 
transport lines operating in a circulating fluid phase at high pressures, with endothermic cracking 
reactions taking place in riser device. Converter considered in this work is a stacked type reactor 
composed by two regeneration stages. They are hot, dense fluidized beds in which the coke on 
catalyst is burnt off producing flues gases and coke free regenerated catalyst. The required energy for 
cracking reactions is generated in regenerator device through combustion reactions. Catalyst from 
regenerator is sent to the riser and contacts the feed stream providing the heat required for the 
endothermic cracking reactions. FCC process emissions are mainly associated with regenerator 
exhaust. In Figure 1 a representation of FCC process considered is shown. 
 

 

Figure 1. Fluid catalytic cracking converter. Modified from Patan and Korbicz (2007) 

Regenerator reactor: According to the Kellog Orthoflow F converter deterministic model presented by 
Moro and Odloak (1995), regenerator equations represents a dense and diluted phase of two 
regeneration stages with partial CO burning considered as a system of lumped parameters. 
Regenerator bed is assumed to be perfectly mixed with homogeneous temperature and 
concentrations. Combustion reactions taking place in dense phase of regenerator first and second 
stage are: 

2 2
1 / 2 2

C O CO

C O CO
    (1)
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In the diluted phase it is assumed that there is only CO combustion: 

2 22 2CO O CO    (2) 

In this work, presence of nitrogen and sulfur in coke are neglected. This simplification may not be 
acceptable for the design of the regenerator, but for the purpose of the work cited, it is no relevant. 

3.  Process Optimization Methodology 
Genetic algorithms (GA) are search algorithms based on the mechanism of natural selection and 
natural genetics of optimization evolutionary theory. They select the best fit among individuals of a 
population through generations using mutation and recombination operations for information 
interchange. Some features associated to GA optimization are related to improve performance towards 
some optimal point or points. The optimization problem can be focused on to maximize or to minimize 
a response variable for an objective function with the values of independent variables subject to 
various constraints. The multi-objective optimization problem to attains three conflicting goals is defined 
as follows in Equation (3): 

Maximize SEVERI
Minimize CO1
Minimize CO2

Subject to Deterministic Model Equations Moro et al.2005

and Operational Restrictions
0.42 CTCV 0.92
488.15 TFP 518.15
0.091 RTF 0.116

   (3) 

Where SEVERI represents process conversion objective function data published in Moro and Odloack 
(1995), CO1 represents dense phase first stage molar flow of carbon monoxide objective function and 
CO2 represents dense phase second stage molar flow objective function. CO1 and CO2 are simplified 
models obtained through factorial design methodology and problem constraints are represented by: 
opening porcentage of regenerate catalyst slide valve (CTCV), feed flow rate (RTF) and feed 
temperature (TFP). The classical approach to solve a multi-objective optimization problem is to assign 
a weight wi to each normalized objective function so that the problem is converted into a single 
objective problem with a scalar objective function represented by: 

' ' 'max z = w z x + w z x + ...+ w z x1 1 2 2 i i    (4) 

Where z’i(x) is the normalized objective function zi(x) and  wi =1. Penalty function approach was the 
constraint handling strategy to solve each single genetic algorithm optimization problem. Once the 
penalized function is formed, multi objective optimization method established in Equation (3) was used. 
Since all penalized functions are to be maximized, CO1 and CO2 were transformed using (1/(1+ f)) in a 
maximization problem. In the work of Deb (2000), the penalty function method is defined for 
applications of GA’s to constrained optimization problems. In this method for handling inequality 
constraints in minimization problems the fitness function F(x) is defined as the sum of the objective 
function f(x) and a penalty term that depends on the constraint violation gj(x) as shown in Equation (5): 

1

nJ
F x f x R g xj jj

    (5) 

Absolute value of the operand gj(x) have to be considered when exponent “n” is the unity, if the 
operand is negative and a zero value if not for minimization problems. Also, quadratic exponent of the 
operand could be considered when a strong effect of restriction violation on objective function is 
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preferred .The parameter Rj is the penalty parameter of the jth inequality constraint. The purpose of the 
penalty parameter Rj is to make the constraint violation gi(x) of the same order of magnitude as the 
objective function value f(x). For the case of study z’I is the normalized function value of F(x). 

3.1 Statistical design 
The process of selecting relevant variables by screening and correlating them using statistical 
techniques to obtain linear or quadratic models is named statistical design. Factorial design is a 
technique based on statistical considerations that brings the most meaningful information about the 
influences of factors on a specific problem, including the effects of interactions among variables. It 
evaluates at the same time all process variables in order to determine which ones really exert 
significant influence on the final response, giving a better analysis of it. In order to obtain objective 
functions to CO1 and CO2 factorial design was applied in the deterministic model proposed by Moro 
and Odloak (1995) to obtain a reduced model to be used for optimization purposes. Initially, it was 
applied a factorial design 2k being k the number of factors to be analyzed. The influence of four factors: 
feed flow rate (RTF), feed temperature (TFP), regenerator air (RAI) and opening percentage of 
regenerate catalyst slide valve (CTCV) were evaluated on process variables dense phase first stage 
mass flow of carbon monoxide (CO1) and dense phase second stage mass flow of carbon monoxide 
(CO2). Equation (6) presents reduced statistical model for CO1 with a correlation coefficient (R2) of 
0.98752. It was considered up to two ways of interaction terms with a significance level of 95 %.  

1 12.81 0.0501 * 28.075 * 0.0007 * 0.0732 *
0.1850 * ( * ) 5.91E-6*(RAI*RTF)- 0.0002*(RAI*TFP)
0.0015 * ( * ) 0.0190 * ( * ) 2.576E-6*(RTF*TFP)

CO RAI CTCV RTF TFP
RAI CTCV
CTCV RTF CTCV TFP  

(6) 

A central composite design was applied to obtain a reduced model for CO2 with a correlation 
coefficient (R2) of 0.9398 as presented in Equation (7). It was considered up to two ways of interaction 
terms with a significance level of 95%.  

2 2

2 2 7 2

2

2 52.2062 0.2708 * 0.0008 * 1.1230 * 4.1550 *
0.0033 * 1.537E-07*RTF 0.0857 * 0.0002 * 1.53 *10 *
0.0857 * 0.0002 * 0.0535 * * 2.310E-06*RAI*RTF

+2.777E-06*RAI*TFP

CO RAI RAI CTCV CTCV
RTF TFP TFP RTF
TFP TFP RAI CTCV

0.0008 * * 0.0272 * * 1.856 6 * *CTCV RTF CTCV TFP E RTF TFP

 

(7) 

It is important to note that because factor values are in real form, all factors and their interactions have 
to be taken into account. In Figures 2 and 3 a comparison between reduced statistical and 
deterministic model responses is presented showing the very good accuracy of model predictions 
represented by Equations (6) and (7). 
Once the optimization problem was established, a genetic algorithm parametric study was performed to 
identify the parameter combination that gives as result high conversion with low rates of CO1 and CO2. 
GA initiates with a population of represented random solutions in some series of structures. After this 
first stage, a series of operators was applied repeatedly until convergence was achieved. The GA used 
was Genetic Algorithm Driver by David Carroll, Version 1.7. 0 (Carroll, 1999). 

3.2 Optimization results 
Genetic algorithm parameters used in this work to analyze their influence on reactor conversion are: 
population size, uniform and single point crossover, jump and creep mutation, generations and niche 
search. The initial estimates of genetic algorithm parameters used in the optimization are presented in 
Table 1 taken from Carroll (1999). Parameters to be optimized were codified in real form. 

Table 1. Initial values of genetic algorithms parameters from (Carrol, 1999) 

Genetic 
Parameters 

Population 
size 

Single point 
and uniform 
crossover 

Jump mutation Creep mutation Generations 

Values 20-100 50-70 % 1 % 2 % 26 
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Figure 2. Prediction of CO1 for deterministic 
(observed values) and reduced statistical models. 

Figure 3. Prediction of CO2 for deterministic 
(observed values) and reduced statistical models. 

The optimization results for conversion considering the population size and uniform crossover 
variations are presented in Figure 4. The highest conversion was obtained for a population size of 60 
with 60 % of uniform crossover. Conversion results for variations on single-point crossover showed 
lower values. Results for carbon monoxide mass flow in first and second regenerator stage for 
variations in population size and uniform crossover are in the range of 4.3-4.7 kg/s for CO1 and 1.2-1.3 
kg/s for CO2. In order to reduce carbon monoxide emissions, variations in weights of multi- objective 
optimization function of Equation (2) are presented in Table 2.   
 
The values of  weights considered in multi- objective function to be optimized with genetic algorithms 
were 0.1 for WSEVERI, 0.8 for WCO1 and 0.1 for WCO2 because of this combination represent low 
values of CO1 and CO2  with high values of SEVERI. 

Table 2. Model responses for multi-objective function parameters combinations 

WSEVERI WCO1 WCO2 SEVERI (%) CO1 Flow 
(kg/s) 

CO2 Flow 
(kg/s) 

0.33 0.33 0.33 78.3 4.67 1.31 
0.1 0.1 0.8 54.4 5.13 0.51 
0.1 0.8 0.1 73.0 4.06 1.17 
0.8 0.1 0.1 81.2 5.09 1.40 
 
Once the multi-objective function parameters have been defined, variations in mutation rates with 
ranges between 0.1-20 % and niche search operator applied in GA to maintain diversity among 
feasible solutions were studied. Values of uniform crossover and single point crossover were 
established in 50 and 60 % respectively with a Population size of 60. Creep mutation rate was 
established in 2 %. As can be seen in Figures 4 and 5 with a population size of 60, 60 % of uniform 
crossover rate, creep mutation of 10 % and jump mutation 20 % produce the highest conversion with 
low flows of carbon monoxide. Other analyses considering variations in creep mutation and niche 
search operator do not show better results. 

4. Conclusions 
In this work a reduction of 12.8 % of carbon monoxide represented by CO1 and CO2 with a process 
conversion of 73.3 % was achieved. In industrial FCC units process conversion range between 70 % to 
85 % (Abadie, 2002), showing the good results obtained . A computational time of 10s on an Intel Core 
2Quad, 2.66 GHz PC showed that genetic algorithms (GA) coupled with factorial design are powerful 
tools in multi-objective applications based on static penalty function approach with low computational 
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burden and time, maintaining high levels of activity and selectivity while reducing carbon monoxide 
emissions from regenerator reactor.  A genetic algorithm parameters combination of 60 for population 
size, a rate of 60 % for uniform crossover, 10 % for creep mutation, 20 % for jump mutation, 26 
generations with niche search genetic algorithm operator and elitism produce the lowest CO emission 
with high conversions. Also it is important to highlight the good performance of heuristic optimization 
techniques as genetic algorithms for pollutant emissions reduction in the petroleum refining process. 
 

 

Figure 4.  Effect of uniform crossover and population 
size variations on conversion process

 

Figure 5. Conversion profiles considering 
Uniform crossover , single point crossover and 
Jump mutation rates variations
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