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In this work the possibility to develop reliable optimization procedures, particularly suitable for full plant 
exothermic semibatch processes operated in the isoperibolic temperature control mode, has been 
investigated. It has been found that a general optimization procedure could be developed by using a 
particular curve, called topological curve, resulting from the numerical solution of the ordinary 
differential equation system describing the process dynamics. Such a curve exhibits a series of 
inversion points that represent, physically, transitions between different system thermal behaviour 
regions. 
The optimization procedure based on the analysis of the topological curve uses the QFS inversion as a 
boundary beyond which the optimum operating conditions can be searched accounting for reacting 
mixture thermal stability and desired productivity constraints.  
Experimental temperature vs. time data spring from laboratory studies of two different potentially 
runaway systems (the nitric acid oxidation of 2-octanol to 2-octanone and the free radical emulsion 
homopolymerization of vinyl acetate) have been modelled to demonstrate that the topological criterion 
for the QFS detection is independent of all the thermodynamic and process variables control equations 
used to describe the system. Such a result suggests that this approach could be safely used to 
optimize even processes operated at the full plant scale. 

1. Introduction 
In pharmaceutical and fine chemical industries, fast and exothermic reactions are often carried out in 
semibatch reactors (SBRs) in order to better control the heat evolution during the synthesis. In fact, for 
such processes, a phenomenon known as “thermal runaway” may be triggered whenever the rate of 
heat removal becomes lower than the rate of heat production. 
During the last 25 years, a considerable number of studies on the detection of the runaway boundaries 
has been performed by both theoretical and experimental tools (Jiang et al., 2011; Maschio et al., 
2010; Rudniak et al., 2011). However, from a practical viewpoint, the desired goal is to define a set of 
operating parameters (e.g. initial reactor temperature and dosing time) for which the maximum reactor 
productivity is attained, maintaining safe conditions. Recently, a criterion able to search for the 
optimum operating conditions of a generic exothermic semibatch reactor, operated in the isoperibolic 
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temperature control mode and accounting for thermal stability and productivity constraints, has been 
developed: the topological criterion (Copelli et al., 2010, 2011a).  
In this work the topological criterion theory is extended by introducing jacket temperature and dosing 
stream control equations, mixing rules, cooling system energy balance and global material balance into 
the system of ordinary differential equations describing the process dynamics. Such an extension of 
the theory allows for the topological criterion use to optimize processes carried out at the full-plant 
scale (where complex feeding strategies and temperature control systems make other runaway 
boundary detection and optimization criteria practically unreliable). The extended topological criterion 
has been validated through literature experimental data and laboratory tests. 

2. Extended topological criterion theory 
The topological criterion theory states that, for a semibatch process carried out under isoperibolic 
temperature control mode, the boundary between runaway and QFS conditions with respect to a 
desired product X is identified by an inversion of the topological curve showing a concavity towards 
right. Particularly, this curve shows all the possible thermal behaviour regions of an isoperibolic SBR 
obtainable by varying one system constitutive parameter (e.g dosing time) or initial condition (e.g. 
coolant temperature) in a suitable range. The topological curve can be drawn by solving the material 
and reactor energy balance equations describing the analyzed system for each investigated value of 
the generating parameter and, then, reporting onto a bidimensional diagram the obtained reactor 
temperature maxima divided by the coolant temperature, ΨMAX=TMAX/Tcool, and the conversion with 
respect to the desired product in correspondence of such maxima, ζ(ΨMAX).  
Moreover, it has been demonstrated that whenever the topological curve exhibits an inversion whose 
concavity is towards left one of the following three system thermal behaviour boundaries is 
encountered: transition (the system thermal loss of control shifts its occurrence from times lower/larger 
than the dosing period to times larger/lower), runaway (the overall system thermal loss of control starts) 
or starving (the system state shifts from QFS conditions to low productivity operating conditions 
characterized by a squared pseudo-stationary reactor temperature profile and a forced linear 
conversion during the dosing period). 
The optimization procedure based on the analysis of the topological curve uses the QFS inversion as a 
boundary beyond which the optimum operating conditions (that is, dosing time and coolant 
temperature) can be searched for accounting reacting mixture thermal stability (that is, MAT) and 
desired productivity constraints. 
In this work it has been demonstrated that the topological criterion theory for the QFS detection does 
not depend on the particular system of ordinary differential equations used to describe the process 
dynamics because only two dependent variables contribute effectively to characterize the system 
thermal behaviour: temperature and conversion with respect to the desired product X. Such variables 
appear in all possible systems of equations writable to describe a generic complex controlled process: 
they can be referred to as “core constants”. Accounting for this feature, dosing stream and jacket 
temperature control equations, mixing rules for volumes determination, global material and jacket 
energy balance equations have been inserted into the system of ordinary differential equations (ODEs) 
describing the analysed process. An example of such a system of ODEs is reported on the following, 
(1). In this equation a single reacting phase is considered, where t is time (s), m is the total reacting 
mass (kg), φdos is the dosing stream function, Tin,cool is the inlet coolant temperature (K), Tcool is the 
actual coolant temperature (K), Tcool,set is the set-point temperature of the jacket (K), T is the reactor 
temperature (K), Tdos is the dosing stream temperature (K), Tamb is the ambient temperature (K), Trif is 
the reference temperature (= 300 K), KpT is the proportional gain (-), KiT is the reset time (s), KdT is the 
derivative time (s), ni are the moles of the i-th compound (kmoli), V is the total volume (m3), V0 is the 
initial mixture volume (m3), φV is a function accounting for mixing rules, h is the molar enthalpy of the 
reacting mixture (J/kmol), UA is the global heat transfer coefficient for the cooling system (W/K), UAext 
is the global heat transfer coefficient for the ambient (W/K), rj is the j-th reaction rate (kmol/(m3 s)), 

jrxnH ,
~�  is the j-th reaction enthalpy (J/kmol), νi,j is the i-th stoichiometric coefficient in the j-th reaction 
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(-), n�  is the molar flow rate (kmol/s), V�  is the volumetric flow rate (m3/s), �̂  is the density (kg/m3) 

and pĉ  is the specific heat capacity (J/(kg K)). Subscript cool is referred to the coolant fluid, IN and 

OUT are referred to inlet and outlet streams.  
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dt
dm

dt
hmd

numbercompound,1irnn
dt
dn

TTUATTVĉˆ
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3. Optimization Procedure 
From the extended topological criterion for QFS detection, a procedure aimed to optimize dosing time 
(tdos) and mean coolant temperature (Tcool) arises straightforward along the same lines previously 
proposed by Copelli et al. (2011a). In the following, the desired product will be considered the generic 
species X: such a species may be an intermediate or a final product. In particular, for any isoperibolic 
SB process involving whatever complex kinetic scheme, tdos should be minimum to obtain the 
maximum productivity of species X fulfilling the safety constraints.  
The general optimization procedure can be summarized as follows: 
1- Search for microkinetic and thermochemical system parameters, reactor and cooling equipment 
characteristics and definition of a suitable coolant temperatures [Tcool,MIN; Tcool,MAX] and dosing times 
[tdos,MIN; tdos,MAX] range; 
2- Identification of the QFSX coolant temperature (Tcool,QFSX) in the X-space for tdos=tdos,n, and Tcool 
� [Tcool,MIN; Tcool,MAX] (analogously, we can identify QFSX dosing time (tdos,QFSX) in the X-space for 
Tcool=Tcool,n and tdos� [tdos,MIN; tdos,MAX]); 
3- At the QFSX conditions, maximum reactor temperature TMAX has to be checked with respect to the 
experimentally determined MAT. If TMAX>MAT, the dosing time should be increased (or the coolant 
temperature should be decreased) and step 2 repeated with this new value; 
4- As a final check, the conversion of species X at the end of the dosing time ζX,dos is required to be 
larger than a given threshold value ζX,MIN. If this is not true, the dosing time should be increased (or the 
coolant temperature should be decreased) and step 2 repeated with this new value until convergence 
is reached. If convergence is not reached the process can not be carried out in the isoperibolic 
temperature control mode. 

4. Experimental Validation 
Experimental temperature vs. time data spring from laboratory studies of two different potentially 
runaway systems (the nitric acid oxidation of 2-octanol to 2-octanone (van Woezik and Westerterp, 
2000, 2001) and the free radical emulsion homopolymerization of vinyl acetate (Copelli et al., 2011b)) 
have been modelled to validate this topological approach. 
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4.1 Case study n° 1: 2-octanol oxidation 
As a first case study, it has been considered the oxidation of 2-octanol to 2-octanone by means of nitric 
acid (60 % w/w). The kinetic scheme of the process may be represented as follows:  

DCB
CBBA

��
���

)2
2)1

   (2) 

where A is 2-octanol, B is nitrosonium ion (NO+, the species responsible for the oxidation of species A 
and C and also for the autocatalytic behavior of reaction 1), C is desired product 2-octanone and D is a 
mixture of unwanted carboxylic acids. This is a heterogeneous liquid–liquid system and all reactions 
occur into the continuous aqueous phase (which is formed by the nitric acid). As several oxidations of 
organic compounds carried out in nitric acid, these reactions are fast, exothermic and they exhibit a 
strong selectivity problem with respect to the intermediate species (2-octanone).  
Since the most relevant system constitutive parameter and initial condition is the initial reactor 
temperature, it is possible to generate the desired topological curve (ΨMAX vs. ζC(ΨMAX)) for each 
dosing time to be investigated and perform the optimization procedure previously presented.  
The first step in the optimization procedure is the search for system microkinetics and thermodynamic 
parameters. Since this reacting system has been extensively investigated elsewhere (van Woezik and 
Westerterp, 2000, 2001), microkinetic reaction rate equations and all the thermodynamic parameters 
necessary to generate the C-space by compiling (1) are already known. For this process the MAT 
parameter has been assumed to be 373 K (20 K below the boiling point of diluted nitric acid, b.p~393 
K) for safety reasons, while the desired minimum dimensionless C concentration at the end of the 
dosing period, ζC,MIN, has been set equal to 0.60 to avoid an excessive degree of co-reactant 
accumulation. Finally, according to physical constraints (no solidification of the reacting mixture must 
occur) and MAT value (no boiling or decomposition of the reacting mixture must occur), the following 
ranges of variation can be defined: Tcool� [260, 325] K and tdos� [300, 5400] s. A temperature step 
equal to 0.5 K and a dosing time step equal to 60 s have been used into the iterating part of the 
optimization procedure. After these preliminary steps, starting from tdos,MIN=300 s, the optimum coolant 
temperature and dosing time can be searched for by performing the optimization procedure previously 
described. The optimum Tcool and tdos couple has been found to be equal to 277 K and 3600 s, 
respectively. Such a result agrees with the experimental results of van Woezik and Westerterp (2001). 
In order to demonstrate that the obtained C-space describes correctly the system thermal behaviour in 
the range of process parameters experimentally investigated by van Woezik and Westerterp (2000, 
2001), the set of experimental isoperibolic RC1 runs reported in Table 1 has been used. Since no 
information about the dimensionless concentrations of products C and D has been reported in the 
literature, the experimental thermal classification provided by van Woezik and Westerterp (2001) has 
been directly compared with the theoretical one arising from the topological curves generated into the 
C and D-spaces. Such a comparison has also been reported in Table 1. 

Table 1: Experimental classification of the experimental runs (van Woezik and Westerterp, 2001) and 
the theoretical predictions arising from the topological criterion. 

RUN Tcool,exp [K] Experimental 
Classification 

Topological 
Criterion 

1 272 QFSC QFSC 
2 281 RW RW 
3 290 RW RW 
4 304 QFSD QFSD 
5 333 QFSD QFSD 
 
A graphical comparison between experimental results and theoretical classification arising from the 
topological curves of the C and D-spaces, where no-ignition, runaway and QFS regions are marked, 
respectively, with a dashed-dotted, a continuous and a dashed line, is shown in Figure 1a and 1b. As it 
can be seen, a good agreement between theoretical predictions and experimental results has been 
achieved, because each experimental run is located into the correct thermal behavior region. 
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Figure 1: Graphical comparison between experimental runs and theoretical predictions for the nitric 
acid oxidation of 2-octanol to 2-octanone. (○) experimental runaway runs, (●) experimental QFS runs, 
(-.-) no ignition region, (-) runaway region, (--) QFS region. a) C-space, b) D-space. 

4.2 Case study n° 2: vinyl acetate emulsion polymerization 
As a second case-study the emulsion polymerization of vinyl acetate has been investigated 
experimentally to assess the practical feasibility of the proposed topological procedure. 
For what concern the MAT determination, a set of three isoperibolic 50 mL scale tests at different 
monomer feeding rate has been carried out: particularly, the minimum temperature at which the 
reacting mixture starts to boil vigorously is 356 K. Such a temperature can be considered, as a first 
approximation, as the MAT parameter. In order to fit constitutive model parameters to be inserted into 
(1), an isoperibolic RC1 experiment with a dosing time equal to 600 s has been carried out. In Figure 2, 
experimental and simulated temperature vs. time profiles are compared, showing a good agreement 
among RC1 experimental data and numerical predictions. Using model parameters calculated from the 
fitting procedure, it is possible to draw the theoretical topological curve for the desired product (the 
polymer) by solving equations (1) for different dosing times (starting from tdos,MIN=450 s to tdos,MAX= 1800 
s, tdos step being equal to 30 s). Figure 3 shows the obtained topological curve. Then, the optimum 
dosing time is iteratively searched for by checking optimization procedure constraints from the dosing 
time at which the QFS inversion occurs to that one at which the starving inversion occurs.  
For the analyzed system, the theoretical QFS boundary is detected for a dosing time equal to 750 s. 
The minimum dosing time able to satisfy thermal stability and productivity constraints is equal to 900 s 
(RUN 4). This dosing time can be considered optimized from both safety (TMAX=355.2 K is lower than 
the MAT=356 K) and productivity point of view (ζdos= 0.9195 – is larger than the minimum desired 
conversion at the end of the dosing period, ζMIN=0.90). Both the theoretical topological curve and the 
optimum dosing time must be validated through a set of isoperibolic RC1 runs, whose dosing times 
have to cover the whole range used to generate the theoretical topological curve. In this work, five 
isoperibolic experiments, summarized in Table 2, have been carried out. 

Table 2: Experimental classification of the experimental runs and the theoretical predictions arising 
from the topological criterion for the emulsion polymerization of vinyl acetate. 

RUN 
[-] 

tdos 
[s] 

TMAX,exp 
[K] 

ζMAX,cal 

[-] 
ζdos,exp 

[-] 
Experimental 
classification 

Topological 
Criterion 

1  450 365.28 0.956 0.905 RW RW 
2  600 358.32 0.960 0.907 RW RW 
3  750 357.13 0.955 0.915 QFS RW/QFS 
4  900 355.20 0.960 0.920 QFS QFS 
5  1800 350.54 0.963 0.934 STV STV 

a) b) 
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Figure 2. Experimental and simulated 
temperature profiles for the isoperibolic 
RC1 test used to fit the model parameters. 

Figure 3. Topological curve for vinyl acetate 
homopolymerization. Tcool=345.5 K, tdos� [300 - 
1800] s. (▬) runaway, (--) QFS, (-.-) starving. 

Moreover, the same table also compares theoretical and experimental classifications of each run in 
terms of thermal behaviour (RW, QFS or STV). Each (TMAX,exp, ζMAX,cal) couple has been located onto 
the diagram reported in Figure 3. From both Figure 3 and Table 2, it is possible to highlight that the 
boundary between RW and QFS thermal behaviour is the same from both model and experimental 
analysis. This cross-validation strongly supports the reliability of the obtained results. 

5. Conclusions 
In this work the topological criterion theory has been extended by introducing jacket temperature and 
dosing stream control equations, mixing rules, cooling system energy balance and global material 
balance into the system of ODEs describing the process dynamics. This criterion has been used for the 
QFS detection in exothermic semibatch reactors (operated under the isoperibolic temperature control 
mode) using literature experimental data. Its good predictive capability suggests the potential 
applicability of such a criterion to the safe optimization of full plant processes, where complex loading 
procedures and temperature control modes make simple optimization criteria practically unuseful. 
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