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The paper attempts to show that using the robust model-based predictive control (RMPC) strategy for 

control of thermal processes can lead to energy savings in comparison with classical control 

approaches. RMPC is applied for control of a tubular heat exchanger that is used for pre-heating 

petroleum by hot water. The heat exchanger is a nonlinear system with time delay and uncertainty. The 

control objective is to keep the output temperature of the heated stream at a reference value and 

minimize the energy consumption needed for petroleum heating. The advantage of RMPC is that it is 

the optimisation based strategy, the control input and controlled outputs constraints are directly 

included into the synthesis and uncertainty of the process model is taken into account. RMPC of the 

heat exchanger is compared with the classical optimal linear quadratic (LQ) control by simulations 

experiments. In the presence of uncertainty and boundaries on control inputs, using the RMPC 

approach increases the quality of the control performance and decreases energy supplied to the 

heating medium.  

1. Introduction 

Heat exchangers belong to key process units in industry and they are characterised by high energy 

demands (Chen et al., 2010). Optimal processing of heat exchangers can lead to significant energy 

savings, especially in heat exchanger networks (Varbanov et al., 2011). Modelling heat exchangers is a 

difficult task because of their complex dynamics characterized by distributed parameters, non-linearity, 

asymmetric dynamics, transport delays and varying parameters. Most of control strategies that are able 

to assure optimal regime are model-based strategies and the control system does not work optimally if 

the dynamics of the process model differs from the dynamics of the real plant. Application of advanced 

control approaches is a way to solve them.  

One of recently intensively developed robust control strategies is robust model-based predictive control 

(RMPC). Model-based predictive control (MPC) (Darby and Nikolaou, 2012) refers to a class of 

algorithms that optimize future behaviour of a plant and the process model is used for prediction of 

future process outputs. MPC technology can now be found in a wide variety of application areas. The 

main reasons for such popularity of the predictive control strategies are intuitiveness and explicit 

constraints handling (Keshavarz et al., 2010, Pannocchia et al., 2011). 

Robust model-based predictive control (RMPC) represents adaptation of MPC focused on the model-

plant mismatch problem (Ramirez et al., 2004), (Wang and Rawlings, 2004) and is studied in this 

paper. The controlled process is a tubular heat exchanger controlled by the mass flow rate of heating 

medium and not by the inlet temperatures (Arbaoui et al., 2007). The parameters of the state-feedback 

controller are generated in each sampling period and these parameters are obtained as a solution of a 

constrained optimization problem that is solved on infinite prediction horizon. The symmetric 

boundaries on control inputs are formulated in the form of LMIs and so the problem of robust stabilizing 
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controller design is transformed to the solution of a convex optimization problem (Kothare et al. 1996). 

The RMPC of the heat exchanger is compared with the discrete-time optimal LQ controller (Diaz, 

2007). The possibility to use above mentioned strategies for control of the described heat exchanger 

has been studied by simulation experiments. 

2. Controlled heat exchanger 

Controlled process is a copper co-current tubular heat exchanger, in which petroleum is heated by hot 

water. The heat exchanger is depicted in Figure 1. Petroleum flows in the inner tube and water flows in 

the outer tube. The controlled variable is the temperature of the outlet stream and the control input is 

the mass flow rate of hot water. The heat exchanger represents a non-linear system with transport 

delay. The disturbance is represented by changes of the temperature of the inlet stream of petroleum. 

There are also several uncertain parameters in the heat exchanger. The heat-transfer coefficient 

changes as the flow rate of heating media changes and there are temperature depended parameters in 

the heat exchanger as densities and specific heat capacities. The objective is to heat the outlet 

temperature of the petroleum to the reference value 46 
o
C and to minimise energy consumption that is 

necessary for heating water to the 85 
o
C. 

 

 

Figure 1: Tubular heat exchanger 

Table 1: Parameters and steady-state inputs of the heat exchanger 

Variable Value Unit Variable Value Unit 

L 2.000 m ρ1 kg m
-3

 810 

d3 0.050 m ρ2 kg m
-3

 8930 

d2 0.028 m ρ3 kg m
-3

 1000 

d1 0.025 m cP1 kJ kg
-1

 K
-1

 2.1 

32 750 W m
-2

 K
-1

 cP2 kJ kg
-1

 K
-1

 0.385 

21 1480 W m
-2

 K
-1

 cP3 kJ kg
-1

 K
-1

 4.186 

m1
s
 0.0556 kg s

-1
 T1,0

s
 °C 20 

m3
s
 0.0417 kg s

-1
 T3,0

s
 °C 85 

 

Parameters and steady-state inputs for the tubular heat exchanger are enumerated in Table 1, where 

the L is the length of the tube, d is the diameter. Parameter α is the heat transfer coefficient, m
s
 is the 

steady state value of the mass flow, parameter ρ is the density, cP is the specific heat capacity, T0
s
 is 

the inlet steady-state temperature of both streams, 1 is petroleum, 2 is copper, 3 is water. 

The mathematical model of the heat exchanger is represented by three nonlinear partial differential 

equations with delayed inputs and varying coefficients. For control system design the mathematical 

model of the heat exchanger was identified from input-output data in the form of a discrete-time linear 

state-space system in the form 

       
   kCxky

xx,kBukAxkx



 001
 (1) 

L 

d3 d2 d1 
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where the    xN
kx   represents the real vector of states,   uN

ku   is the real vector of system 

inputs,   yN
ky   is the real vector of system outputs, and matrices A, B, C have appropriate 

dimensions. The sampling period 10 s was used. As the input-output data used for identification were 

obtained in various initial conditions and operating points, the system (1) is an uncertain system with 

parametric polytopic uncertainty. Then matrices A, B represent the convex hulls of matrices Av, Bv, 

v = 1,…,8, which describe the vertex systems of the uncertain system (1). The matrices of the discrete-

time nominal system have following form 








 


9767091697

0043060680
0

..

..
A ,   










00150

00030
0

.

.
B ,   










10

01
C . (2) 

3. Robust model-based predictive control 

The robust static state-feedback control problem in the discrete-time form can be formulated as follows: 

find the state-feedback control law  

   kxFku k  (3) 

for the system (1), where the matrix Fk represents the static state-feedback robust controller for the k-th 

control step. 

The quality of the control performance can be described using the quadratic cost function J 

        



N

k

TT
kukukxkxJ

0

RQ      (4) 

where N is the number of control steps and xx NN
SQ


 , uu NN

SR


  are the real symmetric positive-

definite weight matrices of states x(k) and system inputs u(k), respectively. The matrix Q is 22  

matrix in the form Q = diag(q), where diag(q) means the diagonal matrix with the same elements q on 

the main diagonal. The matrix R is in fact 11  matrix in the form R = r. The aim is to design such a 

controller Fk that ensures robust stability of all considered vertex systems and minimizes the quadratic 

cost function J (4). 

The robust quadratic stability condition has the form 

0v,CLkk
T

v,CL APPA     vN,,v 1  (5) 

where xx NN
k SP


  is the Lyapunov matrix and Nv is the number of vertices of uncertain system. The 

condition (5) can be transformed using the model of the uncertain system (1) and considering the cost 

function (4) into following form (Kothare et al., 1996) 

    0QRFFPFBAPPFBA k
T
kkkvvkk

T
kvv     vN,,v 1  (6) 

The other demand on control performance can be to take into account the symmetric constraints on the 

system outputs y(k) and inputs u(k) in the form  

  maxyky 
2

,     maxuku 
2

,     max,jj uku  ,   uN,,,j 21  (7) 

For the Lyapunov matrix Pk and the feedback controller Fk following conditions hold 

1 kkk XP ,   kkk XFY   (8) 
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where λk is the auxiliary parameter, 
SXk  and kY represent auxiliary matrices enabling the 

evaluation of the robust feedback controller matrix Fk in the form (Kothare et al., 1996) 

1 kkk XYF  (9) 

Using substitutions and Schur complement formula the robust stabilization problem can be transformed 

as the RMPC convex optimization problem based on the LMIs as follows (Kothare et al., 1996) 

kY,X, kkk
min   (10) 

0
1














k

T
k

X*

x
 (11) 

0
0

00




























I***

I**

X*

RYQXBYAXX

k

k

k

T
kk

T
v

T
k

T
vkk

, vN,,v 1  (12) 

The symmetric Euclidean norm and symmetric peak constraints on control inputs in the form (11) can 

be added to the optimization problem (10)-(12) in the following LMI form 

0
2














k

kmax

X*

YIu
,   0









k

kk

X*

YU
,     2

max,, jjj ukU  ,   uN,,j 1  (13) 

Similarly, the symmetric Euclidean norm constraints on controlled outputs in the form (7), can be added 

into optimization problem in the following LMI form  

 
0

2












 

Iy*

CYBXAX

max

TT
kvkvk    vNv ,,1  (14) 

The speed of closed-loop control can be modified via setting the parameter ω used in the following LMI 

(Kothare et al., 1996) 

 
0











 

k

T
kvkvk

X*

YBXAX
   vNv ,,1  (15) 

The algorithm for robust MPC can be formulated as follows (Kothare et al., 1996). 

1. Set parameter k = 0. 

2. Set number of control steps N, initial conditions of states x(0), values of the symmetric constraints on 

control input umax and output ymax and the value of the closed-loop speed parameter ω. 

3. Set parameter k = k + 1. 

4. Set the values of states x(k). 

5. Solve optimization problem described by (10) – (15) to evaluate the matrices Xk and Yk. 

6. Using (9) design the matrix Fk of the feedback controller. 

7. Calculate the control input u(k) using the control law (3). 

8. If the parameter k < N then go to the Step 3 else Stop. 
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4. Results and discussion 

The robust model predictive control of the heat exchanger was studied using simulation of control of 

the heat exchanger in MATLAB-Simulink. The obtained results were compared with the control 

performance ensured by the designed discrete-time LQ optimal controller FLQ (Diaz, 2007) 

 67172163359 ..FLQ      (16) 

where the gain matrix of the controller FLQ has been obtained using the weight matrices Q, R of the 

cost function (4). Both strategies were compared by evaluating of the energy E that was supplied for 

heating water from the source temperature 15  C to the temperature 85  . The energy E was calculated 

from the total mass of water consumed during control running 150 s. The simulation results are 

summarised in the Table 2, where T1,0 is the temperature of the inlet stream of the petroleum, q, r are 

the coefficients in the matrices Q, R, ERMPC is the energy consumed using RMPC control strategy, ELQ 

is the energy consumed using optimal LQ control strategy, JRMPC is the value of the const function (4) 

assured using RMPC control strategy and JLQ is the value of the const function (4) assured using 

optimal LQ control strategy. The control performance of the Case 3 (Table 2) is presented in Figure 2 

and associated control inputs are shown in Figure 3 as an illustrative example.  

According to the presented results it is possible to state that in all tested situations the RMPC strategy 

leads to lower energy consumption and higher quality of control.  

Table 2: Results of robust MPC and discrete-time LQ optimal control 

Case T1,0 [
o
C] q r ERMPC [kJ]  ELQ [kJ]  JRMPC JLQ 

1 20 100 1 1831 1857 0.14510
6
 3.51710

6
 

2 20 1000 1 1834 2026 1.44910
6
 4.81710

6
 

3 18 100 1 1856 1889 0.17410
6
 3.54610

6
 

4 18 1000 1 1860 2216 1.74010
6
 5.09410

6
 

5 16 100 1 1862 1924 0.23310
6
 3.60410

6
 

6 16 1000 1 1862 2444 2.32210
6
 5.68410

6
 

 

 

  

Figure 2: Control performance of the output 

temperature of petroleum assured using RMPC 

(solid) and LQ optimal (dashed) controllers 

(Case 3) 

Figure 3: Control inputs generated by RMPC 

(solid) and LQ optimal (dashed) controllers 

(Case 3) 
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5. Conclusion 

Simulation results demonstrate the effectiveness of the proposed RMPC approach because of the 

smaller energy consumption that is needed for production of heating medium. The example was 

chosen so that the investigated tubular heat exchanger can represent one tube in the shell-and-tube 

heat exchanger. The number of tubes in the shell-and-tube exchanger is high and in such case the 

energy savings become interesting. The energy savings are many times higher if such shell-and–tube 

heat exchangers create heat-exchanger network. Therefore it can be stated, that robust MPC strategy 

used in practical implementations can lead to significant energy savings. The results obtained using 

optimal LQ control would be better when the model of the process was perfect. In the presence of 

uncertainty and boundaries on control inputs and controlled outputs, the robust feedback control 

approach increased the quality of the control performance and the energy consumption has been 

reduced.  
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