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It is highly desirable to develop a software for estimating the quality of supply networks and 

synthesizing potential alternative realizations to improve the quality of service or to satisfy service level 

agreements. In the present paper, methodology, algorithm, and software are proposed to improve 

supply networks where the quality is measured by cost and response time. 

The methodology is based on the combinatorial foundations of algorithmic process synthesis. Structure 

generation and evaluation of a supply scenario are the two major steps of the algorithm elaborated for 

synthesizing the optimal network structure. The algorithm, besides generating alternative structures, 

takes into account alternative orders of the activities as well. The structural alternatives are evaluated 

on the basis of the cost and duration of each individual operation. The cost and response time for a 

single operation are expressed as concave functions of its volume. 

 

1. Introduction  

It has been shown that the P-graph approach to process-network synthesis (PNS) originally conceived 

for conceptual design of chemical processes (Friedler et al. 1992, 1993, 1995, 1996, 1998) provides 

appropriate tools for generating and analyzing structural alternatives for supply scenarios (Barany et al. 

2010; Klemeš et al. 2010; Lam et al. 2010). However, extension of the original framework to handle 

constraints specific to supply scenarios may improve the practical applicability of the proposed 

methodology. To satisfy the deadline is a crucial aspect in supply chain design. In the present paper, 

time constraints on the availability of the resources, duration of the activities, and deadlines for the final 

targets are incorporated into the mathematical model as well as into the solution algorithms of PNS.  

 

2. P-graph Framework for Algorithmic Process-Network Synthesis and Optimization 

The approach based on the P-graph framework appears to be the only one being capable of executing 

process-network optimization giving rise to an algorithmically and mathematically proven solution for all 

steps involved, comprising superstructure generation, construction of the mathematical model, 

optimization, and the solution interpretation. In the P-graph framework, algorithm MSG produces the 

maximal structure, i.e. the superstructure, for the PNS problem (Friedler et al. 1992). This maximal 

structure serves as the input to the generation and solution of the mathematical model by algorithm 

ABB (Friedler et al. 1996). 
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3. Parametric PNS Problem with Fix Charged Linear Cost Functions 

The combinatorial components of a PNS problem are given by a triplet (P,R,O) where there exists a set 

M for which PM is the set of final targets to be achieved, RM is the set of resources, and O(M)× 

(M) is the set of candidate activities to form a network and reach each of the final targets by 

deploying any of the available resources. Each activity is defined by its preconditions and outcomes. A 

precondition can be the availability of a resource or an outcome of another activity. It is assumed that 

P∩R=∅. A parametric problem definition with a fixed charged linear cost function for the volume of the 

activities is detailed below (Barany et al. 2011). 

 

The lower bound Lpj on the gross result is greater than zero for each final target mj, and it is equal to 

zero for any other entity: 

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. The upper bound Ucj on gross utilization of resource mj is greater than zero, 

and equal to zero for any other entity: 
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The upper bound ui for the volume of each activity oi and the price cmj for each resource or target are 

also given. The cost of an activity is estimated by a linear function of its volume with a fixed charge. For 

the cost function of each activity the proportionality constant cpi and the fixed charge cfi are defined. 

The lower bound 
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,
 and the upper bound Uj = Upj denote the balance on result vs. 

utilization of the resources and outcomes of the activities. Furthermore, in the optimal structure let 

mM denote the set of entities and oO the set of activities. The relations between the entities and 

activities are given by parameters aji denoting the difference of the volumes of entity mj resulted and 

utilized by activity oi. x* is the vector of the optimal volumes of activities for the problem, and z* is its 

objective value. The aim is to determine the network (m*,o*,x*,z* ), which satisfies the following 

conditions (Eq. 1 – Eq. 6) where z* is minimal as indicated in Eq. 7. 

 

   om   , i.e., let m* be the set of entities resulting from or utilised by at least one activity in o*. (1) 
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4. Time Constrained PNS (TCPNS) 

In the time constrained extension of PNS (TCPNS), each target must be achieved in time while the 

availability of the resources is constrained and the duration of each candidate activity is given as a fix 

charged linear function of its volume. To the parametric PNS problem with fix charged linear cost 

functions four additional parameters are given to define time constraints. tfi is the fixed part; tpi is the 

proportionality constant of the function, which estimates the duration of an activity based on its volume, 

respectively; Utj is the deadline for each result:  
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earliest availability of a resource: 
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. The aim is to determine the network (m*,o*,x*,z*) 

which satisfies the following conditions (Eq. 1 – Eq. 6 and Eq. 8 – Eq. 10) where z* is minimal as given 

in Eq. 7. 
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j
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 
ji moijiii ttmoo  :,,  , i.e., the starting time 

iot  of an activity oi cannot precede the time of 

availability 
jmt  of any of its precondition mj; (9) 

  iiiomijiii tpxtfttmoo
ij

 :,,  , i.e., the time of availability 
jmt  of any outcome of an activity 

oi cannot precede the sum of the starting time 
iot  and the duration (tfi + tpi *xi) of the activity oi.   (10) 

 

5. Structural Examination 

In order to introduce time constraints in process synthesis, the structural model needs to be extended 

to express whether the outcome from an activity and precondition to another activity precede each 

other or not. As a result, artificial activities are included to the maximal structure; see, e.g., activities 

Ot1 and Ot2 in Figure 1. Note that including to or excluding from the solution structure these artificial 

activities clearly represent the decisions on the precedence; see Figure 1. 

For the example in Figure 1, the deadline tb can only be satisfied if the generation of targets m5 and 

m6 are independent. It can be achieved by a solution structure where precondition m4 for activity O4 is 

exclusively provided by activity O2, i.e., O4 does not wait for O1 to generate its results. 
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6. Relaxation of Time Constraints 

In the relaxed model of TCPNS, Eq. 10 is relaxed as Eqs. 11 and 12, where tb denotes the latest 

deadline among those upper bounds defined for the final targets; thus, 

 j
Pm

Uttb
j

max  (11) 

    tbtftbytpxttmoo iiiiomijiii ij
 :,,   (12) 

tbtty
ij omi  0  (13) 

iiiomi tftpxtty
ij

1  (14) 

Note that yi is a binary variable expressing the existence (yi = 1) or the absence (yi = 0) of activity oi in 

the structure. In the solution procedure prior to complete decisions on the existence or absence of the 

activities, the lower bound on the cost and the duration of alternative scenarios are estimated at each 

step. For the estimation, yi is relaxed as a continuous value in range [0, 1], and its relation to the 

volume of the activity is expressed as: 

iii yux   (15) 

The inequality in Eq. 12 is equivalent to Eq. 13 or Eq. 14 depending on whether yi is equal to 0 or 1. 

Note that constraint in Eq. 12 comes into play only if the value of yi is close to 1 in the relaxed model. 

7. Conclusion 

The current work presents a methodology to model formally supply chain networks and to 

algorithmically synthesize optimal supply scenarios by the P-graph framework. Recent extension 

introduces time constraint in the mathematical model and solution method for PNS. Need for extending 

the superstructure and the relaxed mathematical model for solving PNS problems with fix charged 

linear cost function has been satisfied. A method for representing decisions on the precedence of 

activities by structural decisions has been introduced. 
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