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Quantitative Structure Property Relationship models have been developed for the prediction of flash points 
of two families of organic compounds selected in the PREDIMOL French Project: amines and organic 
peroxides. If the model dedicated to amines respected all OECD validation principles with excellent 
performances in predictivity, the one dedicated to organic peroxides was not validated on an external 
validation set, due to the low number of available data, but already presented high performances in fitting 
and robustness. This work highlighted the need of gathering experimental data, as in progress in the 
PREDIMOL project,  to achieve validated reliable models that could be used in a regulatory framework, 
like REACH. Such models are expected to be submitted to the European Joint Research Comity (JRC) 
and to existing tools (like the OECD ECHA QSAR Toolbox) to be available for use by industrials and 
regulatory instances.

1. Introduction 
The new EU regulation REACH requires the evaluation of the physico-chemical properties of a large 
number of existing substances (143 000 pre-registered substances in 2008) before 2018 in order to allow 
their use. Taking into account the number of substances and properties, the timing, the economic costs, 
the feasibility at the R&D level and the risks for the operator, in particular for the characterization of the 
hazardous physico-chemical properties (explosibility, flammability), the experimental measurement of all 
the data reveals not realistic. Thus, the development of alternative predictive methods for the evaluation of 
the properties of substances was recommended in the framework of REACH.  
In this context, the French PREDIMOL (molecular modeling prediction of physico-chemical properties of 
products) project (2012) funded by ANR (National Research Agency) has started in November 2010 for 
3 years. This project is conducted by INERIS in partnership with several public and private partners. Its 
objective is to demonstrate that molecular modeling, notably through use of QSPR (Quantitative Structure-
Property Relationships) models, is a credible alternative approach to experimental characterization to 
access, in a reliable and fast manner, to the whole range of physico-chemical properties of substances 
required by EU-REACH's regulation (annexes VII and IX) as well as for the industry in terms of property-
screening method. QSPR methods allow predicting properties from the molecular structures of chemicals. 
The project is focused on the prediction of physico-chemical properties related to particular families of 
compounds, like amines and organic peroxides. 

In this paper, we describe in a first part existing QSPR models applicable to predict properties relevant to 
these substances, debating onto their performances and limits. An inventory of existing experimental data 
from literature was also established in this part. Furthermore, as predictivity of QSPR models highly 
depends on the database suitability in terms of number of data and uncertainties of measurement, 
experimental databases were also consolidated in a consistent way in this project for these families of 
compounds. In the second part of this paper, new QSPR models developed for the prediction of the flash 
point property of amines and organic peroxides are presented. 
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2. Inventory of existing QSPR models and experimental data 

2.1 Inventory of existing QSPR models 
Even if a large number of QSPR models have been developed for the prediction of physico-chemical 
properties required by REACH, only few references have been dedicated to models specifically developed 
for amines or organic peroxides. Considering amines, Koziol (2001) developed neural networks for the 
prediction of the boiling point of 190 compounds. This model based on 46 constitutional descriptors 
demonstrated a good predictive power with a standard deviation of 6°C (and R²=0.98) on an external 
validation set. 
Two references have been found about QSPR models focused on organic peroxides. Firstly, Romanelli et 
al. (2001) have proposed several models for the prediction of the density based on 14 molecules with a R² 
reaching 0.999 but without any external validation. A more recent QSPR study presented (MLR-multilinear 
regressions and PLS-partial least square) models developed by Lu et al. (2011) based on 16 compounds 
for the onset temperature and the heat of decomposition. Even if PLS models presented interesting 
performances in terms of fitting and robustness (e.g. R2=0.957 and Q2= 0.859 for heat of decomposition), 
once again, they were not validated on an external validation set. 
Other more global models (dedicated to organic compounds) are applicable for amines and organic 
peroxides, but their reliability for these particular families of compounds have not been robustly evidenced 
since they only used few representatives (typically less than 10 in large datasets of thousands of 
molecules). 

2.2 Inventorying experimental data 
In order to develop QSPR models, an inventory of available experimental data was made. Concerning 
amines, different sources of data were investigated like DIPPR, NIST, Handbook of Chemistry and Physics 
(Haynes, 2011). In particular, the CarAtex database (2012), available online, gathers properties related to 
process safety (auto-ignition temperature, lower and upper flammability limits, flash points) for about 80 
amines. 
Considering organic peroxides, a particular attention focused on the Datatop (2005), a database 
developed by TNO collecting until 40 explosive properties for 116 compounds at different concentrations 
and diluents. Indeed, for stability reason, organic peroxides are rarely pure compounds. These data allow 
classifying organic peroxides (represented by a large variety of structures including hydroperoxydes, 
peroxyesters and peroxydicarbonates for example) according to the Transport of Dangerous Goods 
regulation (UN, 2011). In this database, reliability of data is not guaranteed and all data have to be 
regarded as indicative. Moreover, the source is unknown for many data. Nevertheless, it allowed observing 
that some property values vary for the same substance with concentration in organic peroxides.  
In this context, a robust database is under consolidation in the framework of the PREDIMOL project with 
new data obtained in homogenous experimental conditions for 30 organic compounds. The targeted 
properties are heats and temperatures of decomposition, impact sensitivities, densities and flash points 
that will allow developing new QSPR models.  

3. Development of QSPR models for the prediction of flash points 
In this study, QSPR models to predict the flash point (FP) of amines and organic peroxides were 
developed as data were available for these both families. This property is a key measure of the 
flammability hazard of liquids. It is defined as the lowest temperature, corrected to a barometric pressure 
of 101.3 kPa, at which the vapour/air mixture above the liquid can be ignited. Substances with low flash 
points present higher flammability than those with higher flash points. All experimental data were obtained 
in closed cup apparatus. 

3.1 Principle of the QSPR method 
The QSPR method is based on the principle that molecules with similar structures have similar properties. 
The chemical structure is represented at molecular level by a series of descriptors that can be 
mathematically connected to experimental properties by a QSPR model. So, such model will have the 
following form: 

Property =f(descriptors)  (1)

A large number of descriptors (constitutional, topological, geometrical and quantum chemical) can be 
calculated to describe the structure of molecules (Karelson, 2000). Many statistical tools can be also used 
to develop QSPR models (multi-linear regression, neural network, etc...).  
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In this paper, multilinear regressions were developed using the Best Multi Linear Regression (BMLR) 
approach (Karelson, 2000) as implemented in Codessa software (2002). This stepwise approach started 
with constructing two-parameter MLR models based on non-intercorrelated descriptors (with R² between 
descriptors lower than 0.1) and then it built higher rank models by adding new non-intercorrelated 
descriptors (i.e. with R² lower than 0.6 with each of the previous ones). By this way, the method 
guaranteed that two intercorrelated descriptors were not selected in the same model. The algorithm gave, 
at each rank (i.e. for each number of descriptors), the model presenting the highest correlation with the 
studied property. The final model was chosen as the best compromise between correlation refinement and 
number of descriptors. 
Within the context of REACH, the development of QSPR models is encouraged providing that they respect 
the 5 driving principles for the validation of QSPR models drawn up by OECD (2007): 

1. A defined endpoint (including experimental protocol);  
2. An unambiguous algorithm;  
3. A defined domain of applicability;  
4. Appropriate measures of goodness-of-fit, robustness and predictive power;  
5. A mechanistic interpretation, when it’s possible. 

The fourth OECD principle requires suitable measures of performances. To measure the goodness-of-fit of 
a model, the determination coefficient R² is calculated between predicted and experimental values. For 
robustness, leave-one-out (LOO) and leave-many-out (LMO) cross-validation were performed (Gramatica, 
2007). Y-scrambling (Lindgren et al., 1996; Rücker et al., 2007) was processed to prevent from chance 
correlation. Moreover the predictive power was evaluated on an external validation set on a series of 
coefficients: R²ext (characterizing the correlation between predicted and experimental values in the 
validation set) and coefficients Q²F1 (Tropsha et al., 2003), Q²F2 (Schüürman et al., 2008), Q²F3 (Consonni 
et al., 2009) and CCC (Lin, 1989; Lin, 1992). 
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With iŷ  the predicted value of the property, iy  the experimental value of the property, TRy  the mean 
experimental value in the training set and next the number of molecules in the validation set.  

ext

ext

n

i
EXTi

n

i
ii

F

yy

yy
Q

1

12
2

²

²ˆ
1 (3)

With EXTy  the mean experimental value in the validation set. 
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With TRn  the number of molecules in the training set. 
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In this last formula, x and y represent the experimental and predicted values, respectively.  

The applicability domain (Netzeva et al. 2005; Jaworska et al., 2005) required by the third OECD principle 
was determined based on the descriptors included in the model. The Euclidean distance method available 
in Ambit discovery software (Jeliazkova and Jaworska, 2007) was used with a 95% threshold, i.e. the 
domain was calculated to contain 95% of the molecules of the training set. Then, the performances inside 
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the applicability domain were also calculated based on the sole molecules of the validation set that belong 
to this domain using coefficients previously presented. 

3.2 Amines 
A first QSPR model was derived to predict the flash point of a series of 68 amines, including both aromatic 
and aliphatic compounds and also ethanolamines which were extracted from the CarAtex database (2012) 
of INRS. For each of these compounds, 165 descriptors were calculated in Codessa software (2002) 
based on geometric structures optimized at the AM1 level using Gaussian09 (2009).  
To allow an external validation of models, the data set was then divided into a training set, containing two 
thirds of the molecules of the data set and a validation set constituted by the remaining molecules. To 
ensure that the validation set well represented the domain of property of the model (defined by the 
property values in the training set), molecules were classified by increasing order of flash points and one 
molecule out of four was selected (2nd, 6th, etc.) to build up the validation set. Moreover, the chemical 
structures of the molecules in both sets were analyzed and no bias was evidenced. 
Then, the BMLR approach was applied to the 51 molecules of the training set and the three-parameter 
equation 6 was found as the best compromise between the correlation performance and the number of 
descriptors.

FP(°C)= 337.96 – 735.48 nH + 4715.5 HDCA2 + 0.46 PPSA1 (6)

where nH is the relative number of H atoms, HDCA2 is the area-weighted surface charge of hydrogen-
donor atoms and PPSA1 is the partial positive surface area. It is worth noting that HDCA2 is related to the 
hydrogen bonding ability of the molecule which can be related also to its volatility as already highlighted by 
Katritzky (2001).   
This model is well correlated with a coefficient of determination R²=0.956. It is also robust as evaluated by 
LOO and LMO cross validations (Q²LOO=0.947, Q²10CV=0.946 and Q²5CV=0.949). The Y-scrambling 
approach was used to check that it did not issue from chance correlation. Indeed, low R² were exhibited for 
the models obtained from randomized data. 

The model was applied to the 17 molecules of the validation set as shown in Figure 2. It demonstrated 
high predictive power based on the various coefficients dedicated to the external validation of QSPR 
models (R²EXT = 0.905, Q²F1 = 0.897, Q²F2 = 0.897, Q²F3 = 0.966, CCC = 0.949). 

Figure 2: Calculated vs. experimental values of flash point (in °C) for amines  

Finally, the applicability domain (AD) was computed and two molecules of the validation set were 
evidenced as out of the determined AD. So, the external validation of the model was computed again 
taking into account the AD. The external validation coefficients reached higher values (R²EXT = 0.905, 
Q²F1 = 0.907, Q²F2 = 0.902, Q²F3 = 0.971, CCC = 0.946). 
In a future step of the project, other descriptors, methods and level of theory will be investigated to achieve 
potentially more accurate models. 
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3.3 Organic peroxides 
Another QSPR model was developed for 23 organic peroxides including diverse structures like 
hydroperoxides and peroxyesters, based on experimental results obtained in the framework of the 
PREDIMOL project. In this section, the DFT (density functional theory) at PBE0/6-31+G(d,p) level was 
used to optimize the structures of organic peroxides with the Gaussian09 (2009) software from which 
quantum chemical descriptors were calculated. From more than 350 descriptors and using the BMLR 
method, a 5-parameter model was found:  

FP(°C)= -6127.1 + 3.46 nH + 2.51 WNSA2 + 5300.2 FPSA3 – 3.55 PNSA3 + 1534.7 Vavg,C (7) 

Where nH is the number of H atoms, WNSA2 is the surface-weighted negative charged surface area, 
FPSA3 is the fractional atomic charge-weighted positive surface area, PNSA3 is atomic charge-weighted 
negatively charged surface area and Vavg,C is the average valency of a C atom.  
The model was characterized by a good correlation (R²=0.921) as shown in Figure 3 and robustness 
(Q²LOO= 0.866, Q²10CV= 0.868 and Q²5CV=0.888). The Y-scrambling method also validated the model 
because of low values of R² for the models obtained after randomisation. However, due to the small 
number of data available for organic peroxides, no external validation was performed in this study. A data 
acquisition phase is in progress to overcome this point. It must be also pointed out that the concept of flash 
point as to reflect the flammability hazard of organic peroxides is limited due to potential decomposition 
issues, in comparison with conventional flammable liquids. 

Figure 3: Experimental vs. predicted flash point for organic peroxides 

4. Conclusion and perspectives 
Browsing existing models and experimental data performed in the PREDIMOL project highlighted the need 
to consolidate robust databases, notably for organic peroxides, in order to develop accurate QSPR models 
for the prediction of the hazardous physico-chemical properties required by REACH. Two QSPR models 
were developed to predict the flash point of amines and organic peroxides respectively. The first one 
respects all the OECD principles and presents excellent performances in fitting, robustness and 
predictivity. The second one dedicated to organic peroxides was not validated on an external validation 
set, notably due to the low number of available data but it already presents good performance in fitting and 
robustness.  
Further investigation will be done in this project to obtain additional data for hazardous properties of 
physico-chemical nature that will allow the development of new QSPR models. These models are 
expected to be available to industrials and regulatory instances in order that predictive data could be used 
for registration. For this reason, accurate QSPR models will be submitted to the European Joint Research 
Comity (JRC) and to existing tools (like the OECD ECHA QSAR Toolbox). 
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