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A model was developed to execute a cost-efficiency analysis for taking prevention investment decisions. 
Using the knapsack problem solving technique well-known in the field of operational research, the 
approach suggests how to prioritize bundles of prevention measures based on their costs and benefits 
within a predefined prevention budget. This way, an efficient allocation of safety and security measures is 
achieved using the suggested methodology. 

1. Introduction 
It is essential for companies to be able to reduce and control the wide variety of existing occupational risks 
in a cost-efficient way. Such risks are reduced through safety management, risk reduction policies and 
prevention measures. To determine an optimal set of prevention measures, organizations need to take into 
account in a systematic way the measures’ costs as well as their (hypothetical) benefits. Prevention 
benefits can be calculated by determining the difference between hypothetical accident costs before and 
after implementing precaution measures. In other words, the avoided accident costs are calculated, or the 
financial benefits of accidents not happening. The model builds on these insights.  
A concept well-known in organizations throughout the world for ranking risks is the risk matrix, allowing to 
make a classification of risks in a systematic and transparent way (CCPS, 1992; Middleton, 2001; Cook, 
2007; Wilkinson and David, 2008; Cox, 2008 and 2011; Smith et al., 2009). This method can be used to 
measure and categorize risks on an informed judgment basis as to both likelihood and consequence and 
as to a relative level of importance. Different possible ways to use and refine the risk matrix are possible, 
as Garvey (2009) explains. 
Despite the fact that the risk matrix merely allows to roughly assess risks, many decision takers and 
consultants are convinced that the method is very useful to make a qualitative distinction between different 
levels of risks. The qualitative difference between risks which is based on the risk matrix is preferable over 
ad random decision taking (Cox, 2008). A risk matrix which is divided into four consequence grades and 
five likelihood grades, can for example be employed. Consequence grades can be expressed in financial 
terms, while likelihood grades are expressed in the number of times per year that a risk leads to an 
accident in an organization. 
Table 1 illustrates the risk matrix used in the remaining of this article. Every cell of the risk matrix 
corresponds to a risk class. Per cell (thus per risk class), the financial consequence value is multiplied by 
the likelihood value, and the total yearly costs per risk class are determined and shown.  
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Table 1: Risk matrix used in this article 

 

 
Cox (2008) indicates that a certain risk in each of the cells of any risk matrix is not equally large (or small) 
due to the classification into risk classes. Hence, a risk cell may contain different varieties of risks. This 
does not pose a problem in our research, since to decide on bundles of prevention measures, we aim at 
comparing bundles of risks, not individual risks.  
A discretization of the risk matrix into n cells is illustrated in Figure 1. Every risk cell is numbered from 1 to 
n (in our example, n = 20).  
 

 

 

Figure 1: Discretization of the risk matrix  

 

Likelihood [year-1]  Cell assignments (in €/year) 

> 1 7,500 75,000 750,000 2,500,000 

> 10-1 750 7,500 75,000 250,000 

> 10-2 75 750 7,500 25,000 

> 10-3 7.5 75 750 2,500 

> 10-4 0.75 7.5 75 250 
Consequence classes / 
financial impact [€]  < 7,500 75,000 750,000 < 2,500,000 
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The risk matrix can be refined by relating the risk classes to a cost-benefits analysis. This way, a decision 
support instrument can be developed which can be used to determine, taking a certain safety budget into 
account, the risk reducing measures or precaution measures leading to the most optimal and cost-efficient 
result within an organization. 

2. Basic model development 
In industrial practice, companies are confronted with budget limitations. In this paper, we call the available 
yearly budget for safety prevention Butot. Let us assume that; when possible prevention investments 
exceed this budget, they cannot be carried out. Therefore, only the preventative measures having a cost 
within Butot will be considered in the model.  
To employ a model for taking cost-efficient prevention decisions, certain actions should have been carried 
out by the user and certain input information is needed. All risks should have been classified into one of 
the risk cells of the risk matrix. Every cell i corresponds to a potential cell cost Ci, determined by: 
 

iii clC 
           (1)

 

 
with: 

iC  = Costs resulting from an accident related to a risk from risk cell i 

il = likelihood corresponding to risk cell i 

ic = financial impact (consequences) corresponding to risk cell i 

 
Table 1 illustrates the cost figures (expressed in € per year) for this article’s risk matrix. Other risk matrix 
configurations are of course possible in real industrial practice. When precaution investments are made to 
decrease risks situated within cell i towards cell j (remark that j is characterized with lower consequences 
and/or likelihood), the potential cell costs become Cj. Hypothetical benefits in that case can be calculated 
as Ci - Cj.  
The required information for application of the model is shown in Table 2. 

Table 2: Required information for application of the model 

n 

Number of cells where risks do exist for the organization (= Nc; nNc  ) 

Ci 

Butot 

Costs of Prevention for going from risk cell i to risk cell j (CoPij), ji,  whereby Nci  

 
When all these data are known, it is possible to use the suggested approach to determine the most cost-
efficient prevention measures. The first step of the model is the categorization of risks into the risk classes 
of the risk matrix. We assume that Nc risk cells (out of the n risk cells in total) contain one or more risks. 
Prevention costs to go from risk cell i to risk cell j  (remark that j < i) are written as CoPij. If the prevention 
costs are higher than the yearly prevention budget Butot, no investment will be made in these prevention 
measures, hence these prevention costs are excluded at the beginning of model execution. The 
hypothetical benefits corresponding to a decrease in risk cell from i to j are calculated by subtracting Cj 
from Ci.  
Furthermore, a list of prevention measures will have been drawn up. Using this list, the optimal risk 
portfolio can be determined using optimization. In its simplest form, determining the optimal risk portfolio is 
equal to solving a knapsack problem. The knapsack problem derives its name from the fact that a person 
having to fill his fixed size knapsack with the most valuable items faces a similar problem. The knapsack 
problem is one of the most fundamental problems in combinatorial optimization and has many 
applications, e.g., in stock portfolio management, as well as many extensions.  
In the basic version of this problem, a set of decision variables xi  is defined where variable xi  
(corresponding to measure i ) takes on value 1 if this measure i is chosen as part of the portfolio and 0 if it 
is not. A mathematical formulation of the knapsack problem is the following:  
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ii xBmax           (2)
 

totii BuxCts ..          (3)
 

1}{0,xi            (4)
 

 
The first equation (2) expresses the total benefit from the selected portfolio, which should be maximized. 
The second equation (3) expresses the fact that the total cost of the selected measures should not exceed 
the budget. The third constraint (4) implies that a measure is either fully taken or not taken at all.  

A number of assumptions are implicitly taken in this formulation:  
 A measure is either taken or not (it cannot be partially taken); 
 The total benefit of all measures taken is the sum of the individual benefits of the chosen measures; 
 The total cost of all measures taken is the sum of the costs of the individual measures; 
 Measures can be independently implemented, without consequences for the other measures. 

 
Some of these assumptions are not entirely realistic. In the following section, we will suggest some 
possible model refinements.  
Although the knapsack problem is NP hard1, it can be solved efficiently even for very large instances 
(Martello et al., 2000). The advantage of using the knapsack-based formulation is that it can be solved by 
standard off-the-shelf commercial software for mixed-integer programming, such as CPLEX (ES1) or 
Gurobi (ES2) or their open source counterparts such as GLPK (ES3) or lpsolve (ES4). Moreover, even 
spreadsheet software such as Excel or LibreOffice include a solver that can be used to model and 
optimize the safety measures portfolio using the method described in this paper. 
 
In industrial practice, an optimal allocation of safety measures with maximum one prevention measure 
from each of the risk cells which can be assigned, needs to be determined by using the model. As 
explained before, to solve this problem, four conditions have to be met: (i) the total benefit of measures 
taken, needs to be maximized; (ii) the available budget constraint needs to be respected; (iii) maximum 1 
decrease per risk cell is allowed; and (iv) a measure can be taken, or not. These conditions translate into 
the following mathematical expressions: 
 

 ijijji xB,max
         (5)

 

 
ji

totij BuCoP
,          (6)

 

 
j

ijx 1
          (7)

 

 1,0ijx           (8)
 

 
Solving these equations for a certain concrete problem yields the optimal solution for the allocation of 
safety and security measures. 

3. Model refinements 
In general, the portfolio of safety measures chosen by a company is subject to a number of extra 
constraints, that express relationships between these measures. Fortunately, these relationships are 
generally easily added to the knapsack-based model, usually by introducing additional constraints.  
For example binary relationships are possible: if risk cell r is decreased, risk cell t also has to be 
decreased and vice versa. This situation occurs when measures are mutually dependent on each other 
and taking one measure without the other makes no sense. An example is when the use of a new device 
that enhances safety requires training. It does not make sense to install the device without the training, 
and it does not make sense to give the training without installing the device.  

                                                           
1 An optimization problem is NP hard if the running time of the fastest known algorithm to solve it increases 
exponentially in the problem size. 
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This relationship between risk cell decreases from r to s and from t to u can be expressed in the model by 
the extra constraint  
 

utsr xx  
          (9)

 

 
Another situation which might occur is the following: if risk cell r is decreased, risk cell t also has to be 
decreased, but the reverse is not true. As an example, to prevent fire from spreading between 
departments, a company is considering installing a fire-resisting door. The time the door resists fire can be 
increased by adding an extra layer of fireproof coating to it. Clearly, installing the coating and not the door 
makes no sense, but the reverse does.  
The relationship between risk cell decrease rs (installing the door) and risk cell decrease tu (installing 
the fireproof coating) can be expressed as:  
 

utsr xx  
          (10)

 

 
Yet another possible situation is that either risk cell r or risk cell t needs to be decreased, but not both risk 
cells at the same time. This situation can occur if two measures duplicate each others’ effects and the 
company judges it superfluous to invest in both measures simultaneously. E.g., a machine can be 
protected by a concrete casing or a steel casing, but not by both.  
This can be mathematically expressed as follows:  
 

utsr xx  1
         (11)

 

 
Yet other binary relationships are possible, and a mathematical answer for solving the knapsack problem 
can usually easily be found. Actually, in principle, all relationships between measures can be expressed as 
constraints in the knapsack problem.  
However, for some situations, the benefits or costs of measures are not simply additive. Suppose e.g., that 
two fire doors can be installed in series to prevent fire from spreading to the next room. Clearly, the effect 
of installing one door instead of none will be larger than the effect of installing two doors instead of one. In 
other words, there will be a diminishing rate of return on the second door.  
This can be easily handled by identifying such situations and creating “virtual” measures in the cost-benefit 
table to represent the action of taking both measures. To ensure that each measure is only taken once, 
some additional constraints are also necessary.  

4. Conclusions and recommendations 
Preventing occupational accidents in the industry, is an important expenditure on a yearly basis, for any 
organization. Optimizing prevention investments and making investment decisions in a cost-efficient way is 
therefore essential. To this end, we suggest a user-friendly knapsack-based model for taking cost-efficient 
prevention decisions. The model uses some data that can easily be determined by any organization and 
that can be displayed using a risk matrix. The most cost-efficient preventive measures are determined 
following the knapsack algorithm, given a certain prevention budget available. 
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