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Lithium-ion (Li-ion) batteries may fail through thermal runaway caused by increased temperature. It is thus 
important to monitor battery temperature for prevention of the battery failure. Currently, thermal monitoring 
of the battery for electric vehicles (EVs) is being conducted by multiple thermostats. As the size of battery 
system increases and the cells are closely packed to exploit high power density, the number of 
thermostats is also increased to monitor the battery system. However, this increased number of sensors 
enhances the probability of the sensor malfunction, which prevents robust thermal monitoring, and causes 
increased maintenance cost and customer complaints. This paper thus proposes an online applicable 
temperature prediction model for EV battery pack while minimizing the number of sensors and keeping the 
monitoring capability. This was possible with three ideas: (a) devising battery thermal characterization test 
under various operating conditions, (b) development of the online-applicable temperature prediction model 
using artificial neural network (ANN), and (c) validation of the temperature prediction model. The proposed 
temperature prediction model was demonstrated with the EV battery pack that consists of twelve battery 
modules. 

1. Introduction 
Li-ion battery is growing in popularity for many engineering application due to its advantages of high 

energy density, little or no memory effect, and low self-discharge. In spite of many desirable features of Li-
ion battery, it has one rare but severe failure mode of fire/explosion for the electric vehicles (EVs). Thus, 
for further growth of Li-ion battery business, the safety problem should be taken care. 
Most failure modes of Li-ion battery are related to temperature increase. Increased temperature causes 

another side reaction in the battery which again causes further increase in temperature, resulting in 
thermal runaway. It is thus important to keep the temperature below a certain temperature limit for 
prevention of the battery failure due to thermal runaway. Even if not related to battery failure directly, 
temperature increase may degrade battery performance significantly. Such battery issues necessitate 
temperature monitoring as the size of battery system increases. In the auto industry, temperature 
monitoring is accomplished by the thermo sensors on each battery module. Although this monitoring 
method gives a quite good monitoring solution, it also gives rise to some problems: high chance of sensor 
malfunction due to a large number of thermo sensors, extra maintenance cost and customer complaints. 
This paper thus suggests replacing some of thermo sensors with a temperature estimation model while 

maintaining good temperature monitoring performance. Temperature estimation could be conducted in 
various ways. Hossein Maleki et al. model the battery temperature distribution of the labtop computer 
reasonably well by the Ice-Pak simulation. Also Ralph E. White et al. and Chee Burm Shin et al. make the 
theoretical temperature model based on physics of a battery. Although those of a simulation and 
theoretical model gives a good temperature estimation, direct use of the simulation result is almost 
impossible for real-time temperature monitoring and it is difficult to develop theoretical models for different 
battery. Moreover, computer simulation delivers too much information than needed. Thermo sensors at 
some designated points on the battery pack give enough temperature information for the battery 
management system. This paper thus proposes an online applicable temperature prediction model for EV 
battery pack while minimizing the number of sensors and keeping the monitoring capability. This was 
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possible with three ideas: (a) devising battery thermal characterization test under various operating 
conditions, (b) development of the online-applicable temperature prediction model using artificial neural 
network (ANN), and (c) validation of the temperature prediction model. The proposed temperature 
prediction model was demonstrated with the EV battery pack that consists of twelve battery modules 
This paper is composed of three parts. In the first part, battery characteristics tests are executed to 

acquire battery thermal characteristics for the use in the battery simulation. Next, the simulation predicts 
temperature distribution of the battery pack and reads temperature data at designated locations under 
various battery conditions. Finally, ANN trains a temperature prediction model based on the predicted 
temperature database. The proposed idea was validated for the thermally steady-state and semi-transient 
cases of the EV battery pack. 

2. Battery Thermal Characterization Test 
Tests for battery thermal characterization is of great essence for development of the online temperature 

prediction model for EV battery pack. This study employed Li-ion battery cells with 50Ah capacity, 3.7V 
nominal voltage from SK Innovation. With the aim to model a battery heat generation rate, battery tests 
must be carefully designed under various conditions of charging/discharging rate and ambient temperature. 
MACCOR Series 4000 battery cycler and Espec heat chamber is used for the battery thermal 
characterization test. The three-step test was designed as: Step-1) battery heat capacity test, Step-2) a 
design of experiment (DoE) for acquisition of heat generation rate, and Step-3) equivalent heat generation 
rate modeling. 

2.1 Step 1 – Battery Heat Capacity 
Heat generated from the battery (Qgen) is dissipated to the surroundings (Qconv) or stored in the 
specimen (Qstor). This can be expressed by the following governing equation: 

( )gen stor conv a
dTQ Q Q V C h A T T
dt

ρ= + = ⋅ ⋅ ⋅ + ⋅ ⋅ −                                                                   (1) 

where  is density, V is the volume, C is the heat capacity, h is the heat transfer coefficient, A is surface 
area, T and Ta is temperature of the specimen and ambient temperature, respectively. Before we use the 
equation (1), we must obtain the unknown parameters h and C of the battery first. Test conditions are as 
shown in Figure 1. 
For the heat transfer coefficient, aluminum specimen is heated up by the silicon rubber heater until the 

temperature reaches and stabilizes to 40°C. Once the stabilized temperature is obtained, then the heat 
source is removed. In this case, total heat generation is zero owing to no heat source and the heat is only 
dissipated, not stored. Thus, only second term in the equation (1) remains with left-hand side zero. 
Therefore, the only unknown h can be estimated by measuring the temperature T. Through 20 
experiments ensuring the value of h, mean h is 1.1153 (W/m2K) with the standard deviation 0.0085 
(W/m2K). Similar with the first step for h, in next step, a battery instead of aluminum specimen is heated up 
to 40°C, stabilized and relaxed to the ambient temperature. For this case left-hand side is zero and the 
only unknown on the right-hand side is heat capacity of the battery, C. Through 20 experiments ensuring 
the value of C, mean C is 1.715 (J/gK) with standard deviation 0.0113 (J/gK). 
From the two steps of experiments, every unknown parameter is verified. Now we can evaluate the heat 

generation rate of the battery during the charging/discharging by tracking the temperature change. This 
test conditions are shown in Figure 1 (c).  
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Figure 1: Test conditions of (a) heat transfer coefficient, h (b) heat capacity, C and heat generation rate (c) 

956



2.2 Step 2 – DoE for Acquisition of Heat Generation Rate 
It is known that the battery heat generation rate is dependent on many factors which are complicatedly 

related. Here we consider three factors charging/discharging rate which obviously the most significant 
factors of the heat generation rate, SOC and ambient temperature. 
Charging/discharging rate fluctuates during the operation of the EVs. To reflect this fluctuation and 

choose reasonable test point, we consider the frequency of the charging/discharging rate from the 
dynamic current profile during EV driving test shown in Figure 2. The histogram from this profile is built and 
fitted to the beta distribution. By employing Gauss-type quadrature formula the test conditions are 
determined as 6, 46, 103A. For temperature conditions, the auto company informs us that the air coolant 
temperature on average is maintained as room temperature, because the air inside the car is used as 
coolant air, so we assume that the temperature follows Gaussian distribution with mean 22.5°C. Same as 
before, using Gaussian-type quadrature formula, test conditions are chosen as 14, 22.5 and 31°C. Fully 
charged battery is fully discharged under selected discharging rate, it naturally includes SOC variation. 

2.3 Step 3 – Equivalent Heat Generation Rate Modeling  
Unfortunately, time varying (or SOC varying) heat generation rate cannot be applied to the computer 

simulation, ANSYS FLUENT 13 which only supports constant heat generation rate. For this reason we 
have to find the constant value equivalent to the time varying heat generation rate. We choose the 
equivalent heat generation rate to reach the same temperature at the end of the fully discharged state. 
Figure 3 explains this condition. 
In Figure 3, the temperature with equivalent heat generation rate overestimates the true temperature, but 

from an aspect of safety, this over estimation can be admitted. Table 1 shows the equivalent heat 
generation rate under test conditions.  
Base on the data in the Table 1, response surface model is built. Cubic spline interpolation method is 

used. This heat generation response surface model will be used for the battery temperature simulation 
under different conditions with the test in Table 1. Figure 4 shows the result of the response surface model. 
As expected, the current level is the most severe factor to the heat generation rate, while temperature has 
little influence. 
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Figure 2: Driving profile (a) Beta distribution and weights for the Gaussian-quadrature formula (b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16

18

DOD(%)

H
ea

t G
en

er
at

io
n 

R
at

e 
[W

]

Qtrue

Qeq

0 0.2 0.4 0.6 0.8 1 1.2 1.4
22

24

26

28

30

32

34

Time(hrs)

Te
m

pe
ra

tu
re

Ttrue

Teq

(a) (b) 

Figure 3: Equivalent heat generation rate (a), temperature change with equivalent and estimated heat 
generation rate (b) 
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3. Temperature Prediction Model 
In this Section, we develop temperature prediction model with the two methods, one by the computer 

simulation and the other by the ANN. The computer simulation model gives training data to the ANN model. 
By ANN model we have lighter model with designated information for temperature estimation. 

3.1 Artificial Neural Network 
Artificial neural network is a function established to explain the given desired output to the corresponding 

input pattern of training data without knowing complex physics behind it. The relationship between inputs 
and outputs are found by adjusting weight parameters of ANN. One example of structures is as follows. 
Figure 5 is the two layer network structure. p is input and a2 is output. In the first layer, layer input p is 

multiplied by the layer weight W1 and then the result n1 goes to the activation function f1 to give hidden 
layer output a1. Same procedure repeated in the next layer to give target output a2. To sum up, target 
output is written by 

2 2 2 1 1( ( ))a f W f W p=                                                                                                                          (2) 

During training, weight matrix W to give training output is determined. In this research, we choose two 
layer structure with 10 neurons in the hidden layer, and logistic sigmoidal and linear activation functions for 

Table 1:  Experiment settings 

 Current 
Temp. [°C] 6 [A] 46 [A] 103 [A] 

14 0.7025 [W] 4.1370 [W] 14.5123 [W] 
22.5 0.6258 [W] 4.0218 [W] 12.9128 [W] 
31 0.7324 [W] 3.0434 [W] 12.3969 [W] 
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the first and second layer, respectively.  

3.2 Simulation Model and ANN Model 
A battery pack we try to model is for the EV applications. It contains total 12 modules but only 6 modules 

are modeled by the ANSYS FLUENT because the other 6 modules are placed in symmetric. Coolant air 
comes in from the front top and goes out to back top (Figure 6). This model is provided from the auto 
company and the validity is ensured by them. A heat generation rate as one of the inputs is determined 
from the response surface model in the Figure 4. An example of computational fluid dynamics (CFD) 
simulation is shown in the Figure 6. 
As mentioned earlier, this computer model gives accurate temperature result but it is too costly. To have 

a result under very simple condition, it requires more than 2 hours. Also, it contains too much information 
than we need. For temperature control of this battery pack model, we need only 12 temperature values for 
each module, but simulation result gives whole temperature distribution. From this aspect, we remodel the 
simulation by ANN to have computationally efficient model with essential information. 
ANN input is composed of 3 dimensions containing coolant fan velocity, heat generation rate and one 

sensed temperature located at one of the 6 modules. ANN target is then rest of the 5 temperature of 
modules. Ideally temperature estimation without sensor data is desired but for now it is difficult task and 
involves risk of erroneous estimation as time goes on. However, by using one sensed temperature as an 
input of the ANN model, we can enhance the accuracy of temperature estimation, because sensor data 
are highly correlated. That is, we expect that if the temperature of one module is high, rest of them are 
accordingly high. Also, using 1 sensor data does not affect the intended goal of reducing total number of 
sensors.
Training data for the weight parameters optimization is obtained from the simulation results. The 

simulation is conducted under constant discharging conditions represented by the constant heat 
generation rate. The obtained output is the steady state temperature. Training conditions and 
corresponding heat generation rates are calculated by interpolation method. Once the model is trained, it 
must be validated. Validation is conducted under different conditions with the training conditions. Some of 
the validation conditions and results are shown in Table 2. We see that the estimated temperatures are 
close to the simulated temperature. Based on this steady-state result, we proceed to the temperature 
estimation for the semi-transient case. Semi-transient case means temperature estimation along time 
under the constant charging/discharging conditions. This condition is found in the constant speed driving 
test of EVs or a battery charging during the night. After training, it is validated under the same conditions 
as in as in Table 2. 
The training input contains the coolant fan velocity, heat generation rate, time and one sensed 

temperature and the output has the rest of the 5 temperature estimation. In Figure 7, the estimated result 
of the sensor 1 and 6 by ANN model under the 31°C and 99A discharging are plotted. The maximum error 
is 0.2722°C and the average error is 0.1951°C. This estimation is conducted for 1800 seconds in 
simulation time. For this time, the temperature increases linearly but later the rate of temperature increase 
slows down and reaches in steady-state. Although the estimation after 1800 seconds is not estimated in 
this simulation due to the computational time, it is verified using the battery pack test data. The result is 
shown in Figure 7 (c).  

Figure 6: Temperature distribution model for the EV battery pack by ANSYS FLUENT 
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4. Conclusion 

In this study, we introduce the temperature estimation model for the semi-transient case. First, 
experiments to know battery properties especially the heat generation rate are conducted. Based on this 
experimental information, we obtain the battery temperature under various conditions which is used as a 
training data of ANN. By changing the simulation model to the ANN model we take the advantage of 
having lighter model with reasonable accuracy. 
 Although this study shows temperature estimation under semi-transient conditions, it is limited to the 

constant charging and discharging conditions. For better profit of temperature estimation, temperature 
estimation under dynamic current should be accomplished. In the next research, we will conduct the 
temperature estimation of this dynamic condition. 
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Table 2:  Validation conditions and result 

 Case Current
[A]

Air Temp. 
[°C]

Heat Gen. Rate 
[W/m3]

Sensor1 
[K]

Sensor3 
[K]

Sensor4 
[K]

Sensor5 
[K]

1 36 20 4826 306.55 309.64 309.64 303.01 
2 36 24 4545 301.05 303.17 303.17 299.31 
3 59 20 9199 309.62 312.26 312.25 306.24 

True 

4 59 24 8715 304.37 306.09 306.09 302.72 
1 36 20 4826 306.51 309.59 309.58 302.96 
2 36 24 4545 301.08 303.20 303.20 299.34 
3 59 20 9199 309.60 312.23 312.23 306.22 

Est.

4 59 24 8715 304.41 306.12 306.12 302.75 
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Figure 7: Estimated temperature of sensor 1 (a), sensor 6 (b) in simulation and sensor 4 in test (c)
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