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This paper deals with fault diagnosis of induction motor containing common faults by using a novel 
intelligent framework and transient stator current signals. This framework consists of a Fourier-Bessel (FB) 
expansion for analyzing the transient signals, a generalized discriminant analysis (GDA) for feature 
reduction, and a relevance vector machine (RVM) for fault classification. The start-up transient current 
signals are acquired from different motor operating conditions and decomposed into single components 
using FB expansion. Subsequently, a number of statistical features in the time domain and the frequency 
domain are computed for each component to represent the motor conditions. The high dimensionality of 
the feature set is reduced by implementing GDA. Finally, the diagnosis performance is carried out by RVM, 
which is an intelligent method in pattern recognition area. The framework has been applied for traction 
motor faults including bowed rotor, broken rotor bar, eccentricity, faulty bearing, mass unbalance, and 
phase unbalance in general applications. The results show that the proposed diagnosis framework is 
capable of improving the classification accuracy significantly in comparison other methods. 

1. Introduction  
Induction motors are one of the most widely used electrical machines in industry due to their ruggedness 
and versatility. However, they are susceptible to many types of fault sourced from mechanical and 
electrical stresses which permanently exist in motor’s operation. According to motor reliability study 
(Bonnett, 1992), the faults in induction motor are typically related to bearings, stator, rotor, and the 
remainder that is a consequence of a great variety of other faults. These faults are often sources of 
increasing the maintenance costs, disturbances in production activity, and the main reason for stoppage of 
operation. Therefore, reliable diagnostic frameworks are of necessity to enable effective maintenance and 
operational costs. 
In order to detect and identify these faults, motor current signature analysis (MCSA) is a widely and early 
used scheme. Many studies have been developed based on MCSA under steady state operating 
conditions. For instance, Schoen (Schoen et al., 1995) and used MCSA for detecting the rolling-element 
bearing damage in induction machines. Thomson (Thomson and Fenger, 2001) focused on the industrial 
application of MCSA to fault diagnosis in three-phase induction motor drives. However, MCSA depends 
not only on the accuracy of measurements, but also on the ability to differentiate between normal and 
faulty conditions (Henry et al., 2002). Furthermore, the techniques using steady state conditions are 
effectively used only when the machines are almost fully loaded and running at a constant speed. 
Conversely, they result in less accuracy when applied to machines that are lightly loaded or operated 
predominantly under transient conditions (Douglas and Pillay, 2005).  
Transient signals have been attracted attention in recent times due to the fact that the machine is 
subjected to stresses above normal condition during the start-up. These stresses could highlight machine 
defects that are early in their development and are not easily detected at steady state conditions (Niu et 
al., 2008). However, transient signals are non-linear, non-stationary, and contains several components. 
These lead to difficulty in using common methods such as fast Fourier transform (FFT) to analyze the fault 
symptom in the induction motor. Short-time Fourier transform (STFT) and Hilbert-Huang transform (HHT) 
are other techniques which were proposed to deal with non-stationary signal. However, STFT also has 
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limitation which is its fixed time-frequency resolution whilst the limitations of HHT were reported in (Rato et 
al., 2008). Another outstanding technique is the wavelet transform which has been used for processing the 
motor transient current signals (Niu et al., 2008; Widodo et al., 2009). However, the wavelet basis function 
has to be defined a priori and this choice may influence the final results. This is a main drawback of 
wavelet transform. 
Recently, Fourier-Bessel (FB) expansion has been introduced as a suitable technique for non-stationary 
signal analysis because of that it has unique coefficients for a given signal and the Bessel functions are 
aperiodic and decay over time (Pachori and Sircar, 2008). FB expansion has been widely used for 
performing speech-related applications such as speech enhancement, speaker identification, speech 
recognition and synthesis, etc. In the fault diagnosis area, FB expansion in association with the Wigner-
Ville distribution has been used for gear fault study (D’Elia et al., 2012). In this paper, FB expansion is 
introduced to an intelligent framework as shown in Figure 1 for fault diagnosis of induction motor. This 
framework involves three stages which are signal decomposition, feature representation and reduction, 
and classification. In the first stage, the FB expansion is implemented to decompose the transient current 
signals acquired from induction motor into the FB series. Each single component in the signal is isolated 
by a non-overlapping cluster of FB coefficients. In the second stage, statistical features in the time domain 
and the frequency domain are extracted for each component decomposed in the previous stage. The high 
dimensionality of feature set is reduced by using the generalized discriminant analysis (GDA) (Baudat and 
Anouar, 2000). In the last stage, relevance vector machine (RVM) (Tipping, 2001), which is a remarkable 
method of machine learning techniques, is used to identify the faults occurring in the induction motor. 

Figure 1: The proposed framework for fault diagnosis 

2. Application and discussion 

2.1 Experiment and data acquisition 
To validate the proposed framework, an experiment was carried out using a test-rig as shown in Figure 2. 
The load can be changed by adjusting the blade pitch angle or the number of blades. Seven three-phase 
induction motors of 0.5 kW, 60 Hz, 4-pole were used to generate data. One of these motors is in normal 
condition (NOR) whilst the others are faulty motors involving bowed rotor (BR), broken rotor bar (BRB), 
eccentricity (ECC), faulty bearing (outer race) (FBO), mass unbalance (MUN), and phase unbalance 
(PUN). The conditions of these motors are described in Table 1. For acquiring data from test rig, three AC 
current probes were used to measure the stator current of the three-phase power supply. The data sample 
was 16,384 at a sampling rate of 12,800 Hz under a fixed load condition. For each condition, 20 samples 
were taken. 

2.2 FB expansion based signal decomposition 
Due to the fact that the data obtained from different motor conditions are non-stationary and contain the 
line frequency, the current signals of different conditions become similar, which leads to increasing 
difficulty of classification. To solve this issue, smoothing and subtracting techniques are normally used to 
reduce/remove the line frequency. However, smoothing the signal could also eliminate useful information 
which reduces classification accuracy. In this paper, FB decomposition is directly applied to transient 
current signals to separate them into single component signals so that elimination of useful information is 
avoided. 
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Figure 2: Test rig for experiment 
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Figure 3: a) Transient current signal of the bowed 
rotor in phase A, b) FB coefficients 

Table 1:  The description of motor conditions 

Fault Conditions Fault description Notes
Bowed rotor Maximum bowed shaft deflection: 0.075 mm Air-gap: 0.25 mm 
Broken rotor bar Number of broken bars: 12 Total number of 34 bars 
Eccentricity Parallel and angular misalignments Adjusting the bearing pedestal 
Faulty bearing Spall on the outer raceway #6203 
Mass unbalance Unbalance mass on the rotor -
Normal condition Healthy condition -
Phase unbalance Add resistance on one phase 8.4 % 
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Figure 4: Single components of the bowed rotor 
signal in phase A 
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Figure 5: The bowed rotor signal in phase A: a) 
Original, b) Reconstructed, c) Residual 

Figure 3 respectively shows the original transient current signal in phase A of the bowed rotor fault and its 
FB coefficients. It can be seen in Figure 3(b) that there are three abrupt changes and a distinct cluster of 
non-overlapping FB coefficients approximately located at the order 380, 1150, and 1900 respectively. 
These indicate that the original signal is constituted from three single components which can be 
automatically obtained by choosing proper coefficient bands. Figure 4 shows the single components in a 
phase of the bowed rotor condition. As observed, the first and the last components are identical in the 
original signal shape while the second component is significantly different. However, these phenomena are 
not same in the other conditions where all the components are transient phenomena. The reason is that 
the single components depend on the values of the FB coefficients. Figure 5 shows a comparison of the 
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original bowed rotor signal, the reconstructed signal from the three components and the residual in the 
time domain. As observed from this figure, the original signal could be reconstructed with a high degree of 
accuracy in shape and amplitude from its single components. However, the residual is still large enough to 
contain useful information for fault diagnosis; therefore, this residual is used as the last component of the 
decomposition process. Similarly, the process of identifying the components based on FB coefficients is 
repeated for the remaining phases (B and C) as well as all the remaining conditions. In total, 1680 
(3×4×140) components are obtained and used for the next stage.  

2.3 Feature representation and reduction 
In this study, 21 features are calculated with 10 features in the time domain (mean, RMS, shape factor, 
skewness, kurtosis, crest factor, entropy error, entropy estimation, and histogram of upper and lower 
limits) and 3 features in the frequency domain (RMS frequency, frequency center, and root variance 
frequency). The remaining eight features are auto-regression coefficients. Figure 6 shows the feature 
structure of each single component where the three-first statistical features (mean, RMS, and shape factor 
(SF)) are presented. It can be seen in that the features are disorder and overlap with each other which 
significantly decrease the accuracy of classification result and leads to the misunderstanding of the real 
machine condition. 
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Figure 6: The structure of the three-first features: a) Component 1, b) Component 2, c) Component 3, d) 
Component 4 (residual) 

To reduce the dimensions of the feature set and increase the separation of the feature structure, GDA is 
subsequently employed on the original features. As a result, sixty-three features in the feature space are 
reduced to six in the GDA space, which significantly increases computational efficiency. Furthermore, the 
structures of patterns related to the different conditions are reconstructed as shown in Figure 7. It can be 
seen that the features of the component 1, component 3, and component 4 of the same condition are 
located close to each other and are well separated from the other conditions in new space. Thus, the new 
reduced feature set not only increases the classification performance but also provides an appropriate tool 
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for a better discrimination of different motor conditions. However, the disorder and overlap still exist in the 
features of the component 2 which could lead to the inaccuracy in the diagnosis process. 

-0.05
0

0.05
0.1

0.15
0.2

-0.05
0

0.05

0.1
0.15

-0.05

0

0.05

GDA 1

GDA 2

G
D

A
 3

BR
BRB
ECC
FBO
MUN
NOR
PUN

a)
-0.6

-0.4
-0.2

0
0.2

-0.1
0

0.1

0.2
0.3

-0.04

-0.02

0

0.02

0.04

0.06

0.08

GDA 1
GDA 2

G
D

A
 3

BR
BRB
ECC
FBO
MUN
NOR
PUN

 
b)

-0.2
-0.15

-0.1
-0.05

0
0.05

-0.2
-0.1

0

0.1
0.2

-0.15

-0.1

-0.05

0

0.05

GDA 1

GDA 2

G
D

A
 3

BR
BRB
ECC
FBO
MUN
NOR
PUN

c)
-0.2

-0.1
0

0.1
0.2

-0.1
-0.05

0

0.05
0.1

-0.1

-0.05

0

0.05

0.1

GDA 1
GDA 2

G
D

A
 3

BR
BRB
ECC
FBO
MUN
NOR
PUN

 
d)

Figure 7: The features in the GDA space: a) Component 1, b) Component 2, c)Component 3, d) 
Component 4 (residual) 

2.4 Classification 
In the third stage, the features attained from GDA are inputted to a multiclass RVM classifier. The RBF 
kernel function is used as the basic function for this classifier and kernel parameter is set to 0.5. Firstly, the 
feature data set of each component is split into a training set with 10 samples for each condition and a test 
set with the remaining samples. The classification results of RVM in the training and testing processes are 
presented in Table 2. As observed, RVM achieves 100 % accuracy in the training process for the 
component 1, 3, and 4. However, the accuracy for the component 2 is not high as 82.86 %. This is due to 
the disorder and overlap in the feature structure mentioned in the previous section. In the testing process, 
the accuracy of the RVM classifiers achieves respectively 97.14 %, 84.29 %, 94.29 %, and 98.57 % for the 
sequence components. Obviously, the residual gives a better result than the decomposed component. The 
reason is that the components obtained from the decomposition process have eliminated the similarity 
caused by the line frequency in the transient signal; hence, the residual can contain useful information 
characterizing the difference of the machine conditions so that it can attain a higher result.  

Table 2:  Classification results of RVM 

Classification accuracy (%) Component 
Training Testing 

1 100 97.14
2 82.86 84.29
3 100 94.29
4 100 98.57
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Additionally, in order to emphasize the improvement of the proposed framework where FB expansion is 
used as a pre-processing tool, support vector machine (SVM) using one-against-all strategy is also 
implemented as a classifier for the component 4 to compare the performance with the previous studies. 
The similarity of the kernel parameter is chosen and the regularization in SVM is set as 100. As observed 
in Table 3, the training accuracy obtained from this study is similar to the previous works and achieves the 
highest value (100 %). This indicates that the classification model is well trained to diagnose the fault in 
the test set where the classification accuracy is more important. In the testing process, the framework of 
this study achieves 98.57 % classification accuracy, which is significantly higher than those of the previous 
studies. It can conclude that the proposed framework using FB expansion for signal preprocessing has 
considerably improved the accuracy of classification. 

Table 3:  The comparison of classification results using SVM 

Classification accuracy (%) Method
Training Testing 

SVM applies for the component 4 in this study 100 98.57
SVM applied for the detail d2 (Niu et al., 2008) 100 90
SVM + PCA (Widodo et al., 2009) 100 76.19
SVM + ICA (Widodo et al., 2009) 100 83.33

3. Conclusion 
This paper has presented the novel intelligent fault diagnosis framework for induction motors using the 
transient current signal. Its implementation follows three consecutive stages. The accuracy of the RVM 
classifier achieves a good result where is of 100 % in training and 98.57 % in testing. Additionally, a 
comparative study of the performance of this framework where SVM has been used as a classifier and 
those of the previous studies has been carried out. The results show that the proposed framework not only 
eliminates the smoothing and subtracting process used in previous works but also significantly improves 
the classification accuracy. Therefore, it is eminently suitable to use for real fault diagnosis applications. 
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