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A large number of methodologies dedicated to the continuous monitoring of systems have been developed
during the last years. Among these, the model-based Bayesian Filtering methods (e.g. Particle Filters, PF)
are able to combine the information provided by a monitoring system with the mathematical models
describing the observed phenomena, providing advantages in terms of safety and reliability of the
monitored systems. The analytical models of the phenomena are integrated in the Dynamic State Space
(DSS) model of the Particle Filter. The DSS model consists of a stochastic evolution equation linking the
current state vector with the state vector at the previous (discrete) time step. It is common practice to
consider deterministic DSS parameters inside the PF algorithm, with an additional Gaussian or non-
Gaussian noise to account for all the system uncertainties and the DSS model remains the same even
after the usual procedure of resampling. This often provides a poor description of actual system dynamics.
An Adaptive Dynamic State Space model is proposed here in order to overcome this problem. The
Adaptive DSS model is built with the prior probability density function of parameters available in literature,
and it uses the information provided by the measurement system to update the parameter distributions
during the system operation. This distribution updating is obtained through the Markov Chain Monte Carlo
(MCMC) techniques for the parameter estimation. The Particle Filtering algorithm based on Adaptive
Dynamic State Space model is applied to a Fatigue Crack Growth (FCG) on metallic structures.

1. Introduction

Literature about Bayesian Filtering gains more and more interest inside the field of reliability and
availability of complex systems. Even though the number of methods dedicated to fault detection and
prognosis recently increases, their applicability is limited because of the difficulties can be encountered in
real applications. The modelling of complex systems, the uncertainties of actual cases and the all possible
evolutions of the system degradation are not easy to solve outside the simulated environment. The study
of numerical methods and especially model-based filtering techniques remains an open field owing to
these difficulties. Starting from Kalman filter providing the optimal solution for linear problems subjected to
random Gaussian noise, the methods evolved up to advanced filters founded on Bayes’ rule and Monte
Carlo Sampling (MCS) techniques for highly-nonlinear problems with non-Gaussian noise. Haug (2005)
and Arulampalam et al. (2002) have reported a useful explanation of some different tracking techniques
based on Bayesian inference, starting from KF up to Particle Filters (PF) for whatever nonlinear problem.
In addition, the scientific community handles the problem of parameter estimation of complex systems in
parallel. Markov Chain Monte Carlo (MCMC) methods such as the Metropolis-Hastings (MH) algorithm
(Hastings, 1970), or the Metropolis Adjusted Langevin Algorithm (MALA) (Roberts et al., 1996) are used to
estimate the parameter of a whatever (linear or nonlinear) model. A basic advantage of these methods is
the capability to produce the Probability Density Functions (PDFs) of the estimated parameters, without
restrictions about the shape of these PDFs. An Adaptive Dynamic State Space model applied in a Particle
Filtering algorithm is proposed here thanks to these numerical methods. The DSS model initially built with
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the prior (known) densities of the law parameters (as proposed by the authors, Corbetta et al., 2013), is
updated through the information obtained by the observations on the monitored system. The main
advantage of the method is the applicability in on-line continuous monitoring systems for prognostic and
lifetime prediction. The results will be analysed in terms of prognostic capabilities within a simulated fatigue
crack growth tests. Since the mathematical tools contained in this work have been examined in-depth from
a theoretical viewpoint by Corbetta et al. (2013), the work is focused on the applicability of these
techniques, introducing some characteristics typical of a real environment.

2. Basic theory of Particle Filtering

The literature and the theoretical treatments of Monte Carlo Sampling, Bayesian Filters and MCMC
methods are wide and another paper about mathematics of these techniques would be useless. Therefore,
only a brief summary of Particle Filtering is given. The interested reader can refers to these authors for the
in-depth treatment: Doucet et al. (2001) for Monte Carlo methods, Ochard et al. (2009) for PF algorithm,
Roberts and Rosenthal (2001) for MCMC and MH algorithms.

2.1 Summary of Particle Filtering

Particle Filtering is a technique to implement a recursive Bayesian Filter by Monte Carlo simulation and it
is based on Sequential Importance Sampling/Resampling (SIS / SIR) technique. The system evolution is
represented by a series of possible trajectories or particles x;, based on the numerical and empirical
available knowledge on the system evolution and the current observation on the system z, (often called
the measure). Starting from the weighted particles {x,,w,}; it is possible to build the conditioned posterior
density of the state given the observations p(xy|z,.,) (Cadini et al. 2009). A brief description of weight
calculation is showed in Corbetta et al., 2013; instead see Haugh (2005) for a detailed mathematical
dissertation of the method.

2.2 Stochastic Dynamic State Space model for model-based filtering

Consider a system state indicated in the previous subsection as x; evolves in time observing a particular
mathematical law of the phenomenon. This law depends on parameters 9 = [9;,9,, ...,9,]. The DSS
model links the state x;_; with the subsequent x; thanks to the physic law and an artificial-added random
noise needed to produce a stochastic process. In the PF literature the equations describing the
phenomenon are built with deterministic parameters. However, a Stochastic DSS (SDSS) is proposed by
the authors in Corbetta et al. (2013). The SDSS is defined with a statistical description of the parameters
governing the model equation. In particular, the prior knowledge of model parameter PDFs is inserted
inside the PF algorithm. The aim of this technique is to involve the prior knowledge about the uncertainties
of the observed quantity within the standard DSS model. In particular, the outperforming of this technique
with respect to the traditional DSS for lifetime predictions is emphasized in Corbetta et al., (2013). The
Stochastic DSS is shown below:

1. Starting from step 0 (assuming known the quantities x_,):

- Initialize Ng particles x;,~IDF (E(xiyo),v(xi,o)) and their weights w;, = Ni Vi=1:Ng

- Draw Ny samples from multivariate PDF of parameters 9;~MVPDF (g, COV(9))
- Assign at each particle one parameter sample x;, = x;,(9;) and the weights w;, = p(9;),
Vi=1:N,
2.  Run PF algorithm:
- Sequential estimation of p(xy|z,.) according to normalized weights (equation 7, 8 and 9).
3. If resampling is required at general k' step:

- Ng particle resampling xi,k~lDF(E (xi,k(\‘)i)),v(xi_k(ﬂi))) according to some resampling

method
- Re-draw Ng samples from multivariate PDF of parameters 9;~MVPDF (g, COV(“)))
- Re-assign parameter samples at each particle x;, — Xx;,(9;) and the weights w;, = p(9;),
Vi=1:N
- Goto step 2.
The SDSS describing the evolution of the system for the it" sample at general k" time step assumes the
notation in (3). The parameter dependence persists because the parameters of the it" particle remain the
same during all the particle life. Thus the evolution of the general it" particle is modified according to the
noise statistics only.

xi(9;) = fk(xi,k—1(19i)»vk—1) (3)
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This novel approach is at the basis of the present work. As a matter of fact, the prior knowledge of
parameter PDFs will be updated thanks to the observation vector z,, through a particular MCMC
algorithm.

3. Updating of DSS model

A series of measurements are collected during the system operations. MCMC techniques allow estimating
the parameter of whatever mathematical model with whatever distribution by the sequence of noisy
observations. Moreover, MCMC techniques are able to estimate the noise associated to these measures.
Metropolis-Hasting (MH) algorithm is one of the widely adopted methods to estimate model parameters.
However, it has been shown that the variance of the proposal distribution from which draw samples affects
the performance of the chain (Roberts et al., 2001). This is a large limitation for the on-line application of
the algorithm, because a good variance for the proposal distribution has to be previously selected. Thus,
an Adaptive Proposal Metropolis-Hastings (APMH) algorithm developed by Haario et al. (1998) is
proposed here to overcome the problem. As a matter of fact, the basic idea of the APMH algorithm is to
adapt the variance of the proposal PDF according to the residuals of the chain. Since this technique
introduces a correlation among the different samples of the chain the obtained PDF is slightly biased, but
this bias can be neglected in most cases (Haario et al., 1998). Moreover, Haario et al. (2001) demonstrate
the ergodicity of the chain.

3.1 Adaptive Proposal Metropolis-Hastings

Let us consider at least H points of the chain sampled at time t during the MH operation. It is possible to
build the matrix [K(9)] € RF*¢ where H is the number of the last samples of the chain
{9¢—n+1,9¢—H42 -, 9} and it is called the memory parameter, while d is the number of parameters to
estimate. So the matrix [K(9)] contains H samples of the parameter vector 9 € R 4. The matrix [K(9)]
contains the residuals of the chain (4) and it is used to build the covariance matrix of the proposal (5).

[K®)] = [K®)] - E(K®)]D (4)
cov®) =4 [R@®)][R@)] (5)

The scaling factor c¢; depends only on the number of parameters to estimate d (Gelman et al., 1996). The
proposal updating can be done every U > H samples, where U is the frequency parameter. U and H are
taken equal in this work. Thanks to this algorithm, the necessity to tune the variance of the proposal PDF
to produce good results disappears. However, the parameters U, H and the number of samples have to be
properly selected (Haario et al., 1998). Considering a set of parameters normally distributed, the
consolidated MH algorithm becomes:
1. Initialize 9, = 9, and COV(9) = COV(I,)
2. fori =1: Ng
- Draw a sample 9;~MVNPDF(9,, COV(®))
- Accept the sample 9; with probability a = min (1,%)
- IfY;is accepted - 9, = 9, else - 9, = 9;_,
- If remainder of i/U is null
o Build the [K] matrix and the residuals [K]
o Update the covariance matrix of the proposal COV(9)
end for
3. Extract a vector of uncorrelated samples of the chain to produce the parameter PDFs.
Nevertheless, this algorithm can be applied to parameters with whatever distributions. The prior knowledge
of parameter PDFs represented by fg(99) on the pseudo-code guarantees the refusing of improbable
parameter values when few observations are available. The estimated average values of the posterior
parameter PDFs become the prior values 9, at the next iteration besides.

3.2 Particle Filtering with Adaptive DSS
During the PF operation, the well-known degeneracy phenomenon of the weights appears after few

measures, so a resampling technique is required. There are many resampling methods and they can be
applied at every iteration (SIR) or when the number of effective particles (i.e. particles with weights
markedly different from zero) drops under a pre-determined threshold (called On-Demand Resampling
here). Thus, the APMH algorithm can be run during the resampling procedure. The APMH algorithm
estimates the parameter distributions of the law prior the resampling operation. The new parameter PDFs
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will be used inside the Stochastic DSS according to the methodology proposed by Corbetta et al. (2013).
This algorithm allows reducing the uncertainties about the parameter of the DSS model in real time. So,
the sequential samples of the system state x;, self-adjust their trajectories improving the prediction

performance. Figure 1 shows a scheme about PF with APMH operating during the resampling.
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Figure 1: Scheme of PF with sequential updating of the parameter PDFs through APMH algorithm.

4. Application of Adaptive Particle Filters into a simulated fatigue crack growth

Let us consider a simulated thin plate subjected to Fatigue Crack Growth (FCG) problem. The algorithm
presented in the above sections is used to estimate the residual lifetime of the plate now, starting from
1.8 mm centre-crack and considering a failure crack length of 140 mm. The Residual Useful Life (RUL) of
the system is calculated as the difference between the estimated time to reach the failure crack length and
the current time. The crack dynamic is well-described by NASGRO equation (6), representing the state of
the art of lifetime prediction for structural components (NASA J. S. Centre, 2002). The DSS model of the
crack evolution is built through equation (6) and artificial noise defined by a log-Normal distribution v,_,,
considering small increment of cycles AN directly related to the time operation (7), (Corbetta et al., 2013).
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Figure 2: Multivariate normal distribution for DSS parameters. Prior PDF and target values
simulate the FCG
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The measurement system is simulated through normally-distributed measures with an uncertainty of
+1 mm centred to the exact crack length (measure variance: a2 = 0.11). The measures are provided to the
algorithm every 2000 load cycles up to 70 mm crack length. The parameters € and m are random
variables; their mean is set according to the aluminium Al2024 parameters for NASGRO equation, while
their covariance matrix is set according with Virkler's results (Virkler et al., 1978). The parameters are
sampled from these initial distributions and associated to the samples of the crack length a;, (Corbetta et
al., 2013).The PDFs to draw the parameter samples and the noise variance ¢ are updated through the
APMH algorithm during the resampling stage thanks to the available measures. This technique allows
accounting for all the possible evolutions of the crack firstly, and then filtering the most probable evolution
in time improving the RUL prediction. In order to highlight the prediction capability of the algorithm, the
parameters C and m used to draw the FCG simulation are selected far away from the average of the prior
parameter PDF inserted in the Adaptive PF. In particular, C = 4.4912e — 13 and m = 3.4978 instead of the
averages C = 2.382e — 12; m = 3.2. Figure 2 shows the prior combined multivariate normal distribution of
log(C) and m parameters for the Al2024 alloy and the values used during the simulation.
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Figure 3: RUL estimation by PF algorithms. (a) refers to the standard PF with Systematic Resampling, (b)
refers to Adaptive PF with Resampling under the effective particle threshold and (c) refers to Adaptive PF
with Resampling made at each iteration
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Figure 4: Parameter estimation through APMH algorithm during the Resampling stage. The two cases
refer to the On-Demand Resampling (a) and the one made at each iteration (b)

4.1 Results

Figure 3 shows the RUL prediction with Standard PF algorithm (a), Adaptive PF with On-Demand
Resampling (b) and Sequential Importance Resampling (c). The capability to self-centre the estimation
thanks to the parameter updating is clearly visible. Moreover, the reduction of the parameter variances
narrows the o-band of the RUL prediction. Figure 4 shows the estimation of €, m and a2 over time for the
cases of On-Demand Resampling and SIR. The parameters governing the FCG simulation are well-
estimated by the APMH algorithm.
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5. Conclusions

An Adaptive Dynamic State Space model for filtering problems has been proposed in this paper. The
proposed PF algorithm shows good prediction capability inside the Fatigue Crack Growth estimation
context. For example, it can be applied to on-line Structural Health Monitoring systems for diagnosis and
prognosis of aeronautical structures (See Colombo et al. 2007, Giglio et al. 2006, 2008 and Vigano et al.
2012 for crack problem on aeronautical components or Giglio et al. 2011 for cracks after ballistic damage).
Although the procedure can be extended to other dynamic degradation problems, further investigations are
mandatory. First of all, the bias related to the posterior parameter PDFs mentioned by Haario et al. (1998)
has to be studied and proved inside this context. Although it doesn’t affect the RUL estimation appreciably,
it can produce inefficiency of the Adaptive PF method in other applications. A clear disadvantage is the
higher computing time needed to run the APMH inside the resampling. Even though this is a minor issue in
the On-Demand Resampling, it might become of prime importance in the SIR algorithm. In addition, a
quantitative analysis of the estimation error of the Adaptive PF has to be made in order to underline merits
and disadvantages of the method, comparing it with other Resampling techniques.
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