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In order to perform Prognostic and Health Management (PHM) of a given system, it is necessary to define 
some relevant variables sensitive to the different degradation modes of the system. Those variables are 
named Health Indicators (HI) and they are the keystone of PHM. However, they are subject to a lot of 
uncertainties when computed in real time and the stochastic nature of PHM makes it hard to evaluate the 
efficiency of a HI set before the extraction algorithm is implemented. This document introduces Numerical 
Key Performance Indicators (NKPI) for the validation of HI computed only from data provided by numerical 
models in the upstream stages of a PHM system development process. In order to match as good as 
possible the reality, the multiple sources of uncertainties are quantified and propagated into the model. 
After having introduced the issue of uncertain systems modeling, the different NKPI are defined and 
eventually an application is performed on a hydraulic actuation system of an aircraft engine.  

1. Introduction 
In recent years, increasing availability has become the main purpose of many industries and particularly in 
aeronautics because a great amount of the average airlines costs is attributable to Maintenance, Repair 
and Overhaul (MRO) and Delays and Cancellations (D&C). In order to increase availability, advanced 
maintenance strategies based on failure anticipation and real-time optimization of MRO plan are being 
developed. Most of these strategies are based on Prognostics and Health Management (PHM), and the 
most used and proven one is Conditioned Based Maintenance (CBM). 
A PHM system can be seen as an entity linked on the one hand to the monitored complex system by an 
extraction process and on the other hand to the maintenance system by a supervision process. The 
extraction process’ purpose is to furnish relevant variables named Health Indicators (HI) to the PHM 
system and the supervision process’ purpose is to forecast the health assessment to the maintenance 
system. In an industrial application scope, both of these processes need some key performance indicators 
(KPI) in order to perform their validation. 
Whereas the supervision validation has been the subject of many papers, see (Saxena, et al., 2009) or 
(Baraldi, et al., 2013) for examples, the extraction validation is rarely addressed, because the issue of HI 
definition is often underestimated. Indeed, even if some research have been conducted in order to define 
some generic methods for HI construction, such as structured residuals and parity space (Gertler, 1997), 
when it comes to real operating complex systems, those methods are not adapted to overcome the 
following issues: random uncertainties, imposed sensors number and location, limited computation 
capabilities and prohibitive controller retrofit costs. Among those issues, the most restrictive one is the 
controller retrofit cost because it imposes that HI are definitively chosen before the system entry into 
service. However, PHM processes are inherently stochastic problems and it is obviously difficult to validate 
something stochastic before the availability of measured data. 
In order to overcome this lack of measured data for the validation of HI, numerical modeling associated to 
a complete management of parameters uncertainties is used to simulate their distributions with or without 
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degradations. Eventually, some Numerical Key Performance Indicators (NKPI) are defined in order to 
quantify the quality of the HI in terms of detection and identification potential. In the aeronautic industry, 
those NKPI could be a great progress because data storage is very expensive and there is currently no 
way to validate the relevance of extracted data. In order to illustrate the potential of these NKPI, they are 
computed for a set of HI defined for the PHM of a hydraulic actuation system. 
The remainder of the document is organized as following: In a first part, a new formalism for uncertain 
systems modeling is addressed. Then the definition of Numerical Key Performance Indicators will be 
introduced. The third and fourth parts are dedicated to the application on a hydraulic actuation system. 

2. Uncertain System Modeling 
2.1 Definitions and formalism 
In this document, a numerical model is defined as following: 

(1)

with  matrix of the model inputs, number of samples,  values of HI and  model 
parameters. 
Parameters are variables that are considered constant during a single simulation but can vary between 
two different runs. When a variable is not constant during a run, it is classified as an input.  
The parameters are divided into two types: context parameters  and structure 
parameters . A parameter cannot be both contextual and structural so . The 
structure parameters are sub-divided into epistemic parameters  and degradation 
parameters . A parameter can be simultaneously of epistemic and degradation types. 
The parameters classification is schematized on figure 1.  

Configurations:
We construct the configuration space  as a Euclidian vector space of dimension  provided with 
canonical base  and norm . A configuration is defined as a vector of  whose components 
are the parameters values: also written . The nominal configuration

is the configuration with the nominal values of the parameters .

Figure 1: Classification of the different types of parameters for a system modeling 

Conditions and Degradation Modes:
The condition space is defined as a subspace of the configuration space  of dimension  with 
canonical base . A condition is defined as a vector of  whose components are the degradation 
parameters values: also written . The nominal condition

is the configuration with the nominal values of the degradation parameters.  
A degradation mode is defined as a one dimension subspace of the condition space. A degradation mode 
is defined by a unitary generator  indicating its direction. A degradation  is a vector of a degradation 
mode, defined by its magnitude  so that .
A generator can be any type of unitary vector but if only simple degradation modes are considered, which 
is the case in this document, generators are vectors of the canonical base so there are  types of 
degradation mode. For instance, a degradation  of magnitude  corresponding to the jth degradation 
mode can be written .
The system cannot overcome all the magnitudes for a given degradation modes, at some point a failure 
will appear. The Maximal Admissible Magnitude (MAM) of a degradation mode is defined the as the 
magnitude for which this failure occurs. 
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Health Indicators: 
We construct the health indicator space  as a Euclidian vector space of dimension  provided with 
canonical base  and norm . A syndrome is defined as a vector of  whose components are 
the parameters values: also written . The nominal syndrome is the 
syndrome obtained for the nominal configuration: . A fault is defined as a syndrome 
different from the nominal syndrome. The diagnostic problem can be seen as an identification of the 
relation between degradations and faults. 

2.2 Uncertainties Management 
When it comes to the modeling of multi-physic complex systems subject to real operating conditions, to 
manage the parameters uncertainties is of paramount importance. In this paper, two types of uncertainties 
are considered: random uncertainties derived from environment variations affecting context parameters 
and systematic uncertainties derived from manufacturing variations affecting epistemic parameters. 
Those uncertainties are random variables that can be characterized by their probability density functions 
(pdf). A pdf is defined by its type (uniform, normal, exponential…) and its parameters vector

. For the remainder of the document, without loss of generality, it is supposed that uncertainties 
are of Gaussian type so their pdf are completely defined by the maximum likelihood estimation (MLE) of 
their parameter vector .
After having determined the pdf of uncertainty sources, configurations are propagated into the model. In a 
PHM scope, the purpose of this propagation is to compute the MLE of  for simulated distribution of HI 
under uncertainties for both nominal condition and MAM degradations.  
For the simulated healthy distribution of the ith HI, the parameter vector is written .
Likewise, the simulated faulty distribution of the ith HI, with jth degradation mode of magnitude , the 
parameter vector of the distribution is .
Many tools are available for uncertainties propagation but the most famous and proven one is the Monte-
Carlo algorithm (Metropolis & Ulam, 1949) which consists in a random sampling of the parameters in 
accordance with their parameter vector. In the applicative part, this algorithm will be applied. 

3. Numerical Key Performance Indicators 
3.1 Detection NKPI 
Typically, detection specifications give a maximum False Positive Rate (FP) and a minimum True Positive 
Rate (TP) for detection. The basics of detection theory can be found in (Wickens, 2002). Detection NKPI 
(D-NKPI) are based on Receiver Operating Characteristic (ROC) curves (Fawcett, 2005).Two types of D-
NKPI are used: Global Detectability matrix and Compliant Detectability matrix. 
ROC curves contain a lot of information about the relative positioning of two pdf. The ROC curve between 
two pdf of parameters vectors and is written , .
The ROC curve between two simulated distributions is defined as the ROC curve between their estimated 
pdf. Thus, for the ith HI, the ROC curve between healthy distribution and faulty distribution of degradation 
mode j with magnitude  is , .

Global Detectability: 
For a given ROC curve, Global Detectability (GD) is defined as a function calculating from the Area Under 
the Curve (AUC) (Bradley, 1997). The closer to one the value is, the higher the detection potential. GD 
does not depend on the detection specifications, so it is robust to specification changes.  

, , (2)

Finally, GD are computed for each couples  to construct the following 
NKPI: the Global Detectability matrix .

(3)

Compliant Detectability: 
For a given ROC curve, the compliance point is defined as the point of coordinates  with 

the specified maximal false positive rate and the specified minimal true positive rate. The 
Compliant Detectability (CD) is defined as following: 
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, (4)

If specifications on FP are very restrictive, for example less than , it is hard to see the compliance 
point on the curve. In this case, it is possible to use the semi-logarithmic ROC curve with a logarithmic 
scale in abscissa for FP in order to give more clarity to the curve.  

Finally, CD are computed for each couples  to construct the following 
NKPI: the compliant Detectability matrix .

(5)

3.2 Identification NKPI 
The classical identification process aims at finding the most probable Degradation Mode of the system. It 
is based on the classification of the current syndrome relatively to a reference database of different 
syndromes corresponding to degradations. In this section, one Identification NKPI (I-NKPI) is defined 
based on signature vectors: Cross Identificability matrix.   

Signature and distinguishability: 
The signature vector of degradation mode j ( ) indicates the level of similarity between a set of healthy 
distributions of HI and a set of faulty distributions of HI computed for the MAM of degradation mode j. It is 
function of the global detectability and the sign of the difference between distributions means. For 
example, the kth component of the signature vector for degradation mode j is: 

(6)

The Distinguishability index ( ) is defined as the angle between two signature vectors. For degradation 
modes j and k: 

 (7)

Cross Identificability: 
Cross Identificability matrix  is defined as following:  

 (8) 

4. Application to a Hydraulic Actuation System 
In this paper, the model is built on the AMESim© software which is based on the Bond Graph theory 
(Thoma, 1975). In this section, an application demonstrating the potential of NKPI is presented for the 
PHM of a hydraulic actuation system.  

4.1 System Presentation 
The system is a control loop regulating the position of a hydraulic cylinder. It is composed of a servovalve, 
a cylinder, a PID corrector, a Linear Variable Differential Transformer (LVDT) sensor and some harnesses 
as presented in Fig.2. Co-simulation between AMESim© and Matlab/Simulink© is used in order to manage 
the runs of the Monte-Carlo algorithms.  

Figure 2: Actuation Loop Scheme. Where  is the position demand,  the measured position, the
error, the control current, the actuation flow sent to the cylinder and  the real position of the 
cylinder 
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detection and so that the detection efficiency will not be robust to the loss of this HI. The global 
detectability matrix traduces that the first degradation mode has more impact on the set of HI. 

Figure 5: ROC curve of HI2 for degradation mode 1  Figure 6: Same curve in semi-logarithmic scale 

5.3 Identification NKPI 
The computation of the cross Identificability matrix gives the following result:  

(10)

Identification NKPI shows that the two degradation modes signature are separated by an angle of 52.46°. 
If it is considered that two signatures are different enough if their relative angle is more than 45°, the 
identification criterion is verified. 

6. Conclusion 
In this paper, a new kind of key performance indicator for PHM has been defined. Contrary to most of the 
others, focalized on the supervision process, the purpose of these performance indicators is to evaluate 
the efficiency of a health indicator set in order to perform the validation of the extraction process. The 
method is primarily intended for industries like aeronautics suffering from prohibitive retrofit costs because 
it is based only on simulated data from modeling. In the course of the document, a new formalism for 
uncertain systems modeling has been set and numerical key performance indicators has been defined. 
Eventually, the efficiency and interest of the method has been tested on a real industrial application aimed 
at performing PHM of a hydraulic actuation system and has shown good result to validate the potential of 
health indicators both for detection and identification. For further applications, the objective is to generalize 
the method first to the complete actuation loop with all the parameters and all the degradation modes and 
then to the whole fuel system of an aircraft engine. 
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