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Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. 

This was generated by the growing of aviation. Furthermore, the quality requirements have become more 

aggravated for jet fuels. This was generated by the more severe environmental regulations and the 

increasing demand for performance requirements. Nowadays reduced aromatic hydrocarbon fractions are 

necessary for the production of jet fuels with good burning properties, which contribute to less harmful 

material emission. 

The aim of our experimental work was to study the catalytic transformability to jet fuel of 70 – 30 % 

Hungarian crude oil originating from a previously desulphurized kerosene fraction and a coconut oil 

mixture at different process parameters (temperature, pressure, liquid hourly space velocity, H2/feedstock 

volume ratio). We carried out the experiments on a metal/support catalyst (T = 280 - 360 °C, LHSV = 1.0 h
-

1
, P = 30 - 80 bar, H2/feedstock volume ratio = 600 Nm

3
/m

3
).  

Based on the experimental results in case of the studied feedstock the yield and the properties of the 

products were favourable at the following process parameter combinations: temperature 320 – 330 °C, 

pressure 50 bar, LHSV 1.0 h
-1

, volume ratio H2/feedstock volume ratio 600 Nm
3
/m

3
. Based on the quality 

properties of the product mixtures we determined that we successfully produced products with a high yield 

(approaching theoretical yield >90%), that have a reduced aromatic content, their performance properties 

are excellent (eg. crystallization point <-46°C) and they contain biocomponents. These are excellent jet 

fuel blending components, what are compatible with current fuel systems and jet fuel blending 

components, they damage the environment less. 

1. Introduction 

After the global economic crisis, demand for jet fuels shows growing. (Figure 1) (IEA, 2013). Furthermore, 

the quality requirements were more aggravated for the jet fuels. This was generated by the more severe 

environmental regulations and the increasing quality requirements. Nowadays reduced aromatic 

hydrocarbon fractions should be used necessarily for the production of jet fuels with good burning 

properties, too (Eller, 2013). 
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Figure 1.: Demand for jet fuels Figure 2.: Classification of jet fuel production possibilities 
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Present days the jet fuels are produced from different crude oils. By using them environment-friendly (low 

sulphur and aromatic content) fuels with preferable application technique properties can be produced  see 

Figure 2 (Hancsók, 2011). 

During the production of jet fuels efforts must be made to produce high hydrogen/carbon ratio 

components, so to produce n- and i-paraffins, and cycloparaffins (Blakey, 2011). Isoparaffins have the 

lowest freezing point; they burn – together with n-paraffins – clean. The cycloparaffins have a lower 

hydrogen/carbon ratio (Dagaut, 2006), but their energy content raises the energy content of n- and i-

paraffins (Hancsók, 2007). Together with isoparaffins, they improve the low temperature properties; this is 

one of the most important quality properties (Maurice, 2001). 

2.  Experimental part 

According to the previously mentioned, the aim of our experiment was to study the production possibilities 

of biocomponent containing jet fuels with reduced sulphur and aromatic content (Tóth, 2010). We studied 

the conversion of 10 % coconut oil containing kerosene fractions. We studied the effects of the process 

parameters on the yield and quantity of the liquid products. 

2.1 Experimental apparatus 
The simplified process flow diagram of the apparatus is shown in Figure 3. The effective volume of the 

reactors was 200 cm
3
. 
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Figure 3: Experimental apparatus 

2.2 Materials 
We carried out the experiments on an oxyde-state Co(2.8%)Mo(11.2%)/Al2O3 heteroatom removal 

catalyst. During our experiments we hydrogenated coconut oil/kerosene mixtures. The applied kerosene 

fraction was obtained from crude oil with distillation and desulphurization; its parameters are given in Table 

1. We used during the triglyceride catalytic conversion experiments Indonesian origin coconut oil as 

feedstock. We summarized the main quality properties of it in Table 3. 
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Table 1. Main quality properties of the kerosene fraction 

Property Value 

Density on 15°C, g/cm
3
 0.8036 

Aromatic content, %, (HPLC)  

Monoaromatic 

Diaromatic 

19.9 

0.5 

Paraffin distribution, % (GC) 

C10 

C11 

C12 

C13 

C14 

 

5.91 

18.60 

36.45 

31.05 

7.99 

Total sulphur content, mg/kg 4 

Crystallization point, °C -49 

Smoke point, mm 26.0 

Table 2: Main quality properties of the applied coconut oil 

Fatty acid composition, % Coconut oil 

<C8:0 0.63 

C8:0 7.73 

C10:0 6.08 

C11:0 0.03 

C12:0 46.98 

C13:0 0.04 

C14:0 17.9 

C14:1 0.07 

C16:0 8.86 

C18:0 2.88 

C18:1 6.86 

C18:2n6(c) 1.60 

>C18 0.30 

 

2.3 Product separation and test methods 
We separated the product mixtures from the coconut oil containing feedstock from the hydrogenation 

experiments to gas phase, water phase and organic phase (Figure 4.).   
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Figure 4: Theoretical scheme of separation of product mixtures produced by hydrogenation of coconut oil 

containing kerosene fractions with catalytic hydrogenation 

The main quality properties of the petroleum fraction and coconut oil, which was used as feedstock and 

the liquid products of the heterogeneous catalytic experiments were determined according to the 

standards with the prescribed tolerance given in Table 3. 
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Table 3.: Standardized and not standardized test methods of feedstocks and liquid 

Property Standard number 

Density EN 12185:1998 

Sulphur content EN 20846:2004 

Aromatic content EN 12916:2000 

Smoke point EN 3014:1993 

Crystallization point EN 2047:2002 

Paraffin distribution Shimadzu GC 2010 

 

3. Results and discussion 

During the experiments we changed the temperature between 260 °C and 360 °C, pressure was 20, 50 

and 80 bar, while the liquid hourly space velocity was 1.0 h
-1

 based on pre-experimental results. The 

H2/feedstock volume ratio was 600 Nm
3
/m

3
, we chose that value so that it should be twice as high as the 

theoretical value. Figure 5 shows the yield of the total liquid products as a function of the process 

parameters. We determined that the yield of the liquid products was above 85% in every case. The gas 

phased part came from the hydrocracking of the kerosene fraction components and the gas products of 

the oxygen removal reactions of coconut oil. 
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Figure 5. Yield of liquid products as a function of process parameters (LHSV = 1.0 h
-1

, H2/feedstock 

volume ratio: 600 Nm
3
/m

3
; CO: coconut oil content) 

Figure 6 presents the kerosene fractionated components of the liquid products as a function of the process 

parameters. With the increasing of the process parameters, the yield of the target product increased, 

because the conversion of triglycerides was even higher. The shortfall from the theoretical yield value 

(Table 4.) can be explained with the low grade cracking reactions. 
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Figure 6: Yield of target product as a function of process parameters (LHSV = 1.0 h
-1

, H2/feedstock 

volume ratio: 600 Nm
3
/m

3
; CO: coconut oil content) 
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Table 4: Theoretical product yields 

Triglyceride content of feedstock, %  DCO reactions HDO reaction 

10  96.40 96.77 

 

Figure 7 shows the changing of the aromatic content. Based on the liquid products analyzed with HPLC 

we determined that the hydrogenation of aromatics took place near the hydrogenation of triglycerides too. 

The quantity of it was lower than in case of pure kerosene. Basically, the reason is that the triglyceride 

molecules occupied the active sites of the catalyst from the aromatic compounds. At 360 °C the aromatic 

content of the products was higher than in case of the products obtained at lower temperatures. The 

reason is the thermodynamic inhibition caused by the exothermic equilibrium reactions. 
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Figure 7: Aromatic content of products as a function of process parameters (LHSV = 1.0 h
-1

, H2/feedstock 

volume ratio: 600 Nm
3
/m

3
; CO: coconut oil content) 

Figure 8 shows the smoke point of the liquid products obtained with different process parameter 

combinations increased with the severity of the process parameters. At 280 °C components with 

favourable combustion properties are in majority. The very high, over 35 mm smoke point values come 

from the excellent combustion properties of paraffins and cycloparaffins from the hydrogenation of 

triglycerides and aromatics. 
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Figure 8: Smoke point of products as a function of process parameters (LHSV = 1.0 h
-1

, H2/feedstock 

volume ratio: 600 Nm
3
/m

3
; CO: coconut oil content) 

The crystallization point values of the obtained products (Figure 9.) fulfill the standard (<-47°C) on and 

above 320 °C. Crystallization point is affected highly by the n-paraffins formed from triglycerides, which 

have high freezing points. At the same time, cycloparaffins formed by hydrogenation of aromatics improve 

the low temperature properties, so the crystallization point decreases a little. 
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Figure 9: Crystallization point of products as a function of process parameters (LHSV = 1.0 h
-1

, 

H2/feedstock volume ratio: 600 Nm
3
/m

3
; CO: coconut oil content) 

4. Summary 

The aim of our experimental work was to study the possibilities of producing biocomponent containing, 

reduced sulphur and aromatic content jet fuel. We studied the conversion of different amounts of coconut 

oil containing kerosene fractions. We carried out the experiments on a great laboratorial heterogeneous 

catalytic reactor system on a CoMo/Al2O3 catalyst. The yield of the liquid products was higher than 85 % in 

every case, the loss came from the gas products (H2O, CO2, CO, C3H8) made by the hydrocracking 

reactions. We determined that n-paraffins forming from triglycerides improve the combustion properties 

well, but at the same time they affect crystallization point negatively.  After the evaluation we determined 

the favourable process parameters, which are favourable to produce high paraffin content products: 

temperature: 320 °C, pressure: 50 bar, liquid hourly space velocity: 1.0 h
-1

, H2/feedstock ratio: 600 

Nm
3
/m

3
. 
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