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The work deals with the theoretical foundation and development of the engineering methods for calculating the 
kinetics of the aggregation of insoluble products in chemical apparatus in terms of joint chemical reactions and 
coagulation processes in the working zone of reactors. The models of aggregation of a disperse phase in 
systems with chemical reactions have been developed. Regularities of aggregation process in systems with a 
chemical source of first and second orders of insoluble phase monomers have been studied.   

1. Introduction 

Currently, the use of chemical apparatuses and reactors formation, aggregation and sedimentation of 
insoluble phases in the working volume of the chemical apparatuses becomes more and wider, particularly in 
the range of modern processes (Liu, 2008). In many cases processes of chemical technologies are 
accompanied by formation of the new solid disperse phase. It can be phase transition, as in cases of 
crystallization or desublimation, or it can be formation of low soluble substances during chemical reactions 
(Voloschuk and Sedunov, 1975). As a whole, it is possible to allocate a lot of directions of a modern science 
dealing with processes and apparatuses in which the problems of the kinetics and dynamical characteristics of 
reactors with formation of a dispersed solid phase in a working zone are relevant (Blackman and Marshall, 
1994). They are: 1) purification of gas pollution from fine particles and dust (Friedlander, 2000); 2) production 
of nano-dispersed powders for constructional and functional bioceramics; 3) creation of sorbents, catalysts, 
drugs and molecular grids with given structure (Bodmeier and Paeratakul, 1989); 4) creation of methods for  
optimal engineering of technological processes dealing with a method of chemical sedimentation (Logan, 
2012); 5) elaboration of polymeric films for molecular covering the products of chemical industry (Menon and 
Pego, 2004). At the same time, the known theoretical models of aggregation of dispersed phase and 
sedimentation are of little use for engineering calculations, as they are too complex and involve the need to 
use a set of parameters some of which are difficult for finding (Spicer and Pratsinis, 1996). 
In this paper, we propose a simple mathematical model, which opens, in our opinion, the prospects for 
creating a calculation method of aggregation of insoluble solids in systems with chemical reactions of pseudo-
first and of second orders. As the result we can obtain expressions for calculating the evolution both of the 
total number of clusters in the system and of the average cluster order with allowance for the  kinetic 
constants of the given chemical reaction and elements of the aggregation of the matrix.  

2. First-order reaction 

Let us consider the first-order reaction occurring in solution according to a conventional scheme  

   BA →  (1) 

In accordance with a relaxation approach (Brener, 2006), the kinetic equation for the reaction (1) can be 
written as (Brener et al., 2009) 

                                

 
 

 

 
   

                                                  
DOI: 10.3303/CET1543136 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Brener A., Muratov A., Golubev V., 2015, On the modelling of particles aggregation in disperse reaction- diffusion 
systems, Chemical Engineering Transactions, 43, 811-816  DOI: 10.3303/CET1543136

811



11
0

1 )()exp( dttAtt
dt
dA t

c
c

−−−=
τ

η  (2) 

For sufficiently small chemical relaxation time, we get the following expression for the concentration of the 
reaction product (Boehm et al., 1998)  

( )( )ctAB τ−−= exp10  (3) 

Further, let us there exists a process of the nucleation of an insoluble dispersed phase of the reaction product 
in the system 

CB →  (4) 

Primary nucleation process is quite complex and theoretically poorly described, although his analysis is 
involved by many researchers (Ernst, 1986). However, here we will describe the kinetics of this process, 
approximately, namely, using the delay time of formation of the insoluble phase with respect to the time of 
formation of the reactants for a certain period of nucleation. The time of formation of the equilibrium 
concentration of the reaction product in the solution is not accounted. It seems acceptable for poorly soluble 
substances (Slemrod, 1990).  
Thus, the following kinetic equation can be written 
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Here cτ is the typical relaxation time of chemical reaction, and nτ is the typical time of primary nucleation. 
Smoluchowski equation for coagulation of the insoluble phase with account of the chemical source reads as 
follows (Brener, 2011)  
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Assume for simplicity, that during the primary nucleation only monomers of the insoluble phase can arise 
(Wong et al., 2009), i.e.  
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From this assumption it follows (Davies et al., 1999) 
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Let us introduce the generating function of the form (Wattis, 2006) 
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In the case of constant coagulation kernels, the kinetic equation in terms of the generating function takes the 
form  
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Let us introduce now the designations (Yu Jiang and Hu Gang, 1989a)  
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Thus, the kinetic equation for a total concentration of clusters of different orders takes the form of (Yu Jiang 
and Hu Gang, 1989b) 
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For obtaining the analytical solution of Eq. (14) it is convenient to introduce transformed variable s and the 
special control parameter E0  
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Thus  Eq. (14)  can be rearranged to the form of Riccati equation (Bittanti et al., 1991) 
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The solution of Eq. 16 can be expressed through Bessel functions 0I  and 0K  (Jin and Jjie, 1996) 
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The found solution has theoretical interest but it is unlikely useful for practical calculations (Leyvraz, 2003).  
Figures 1, 2 depict some results of numerical experiments for calculating the evolution of the total clusters 
concentration of various orders in the system during the aggregation in the system with monomers forming by 
the first order reaction scheme. 
 

 
Figure 1: Evolution of the total clusters concentration of insoluble phase in the first order system for a long  
              time (E0=1- 80; 2- 200; 3-800) 
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  Figure 2: Evolution of the total clusters concentration of insoluble phase in the first order system for             
                 small time (E0=1- 80; 2- 200; 3-800) 
 
While processing the results of numerical experiments, it was found that the time moments, at which  extrema 
of the total number of clusters in the system of first-order reaction can be observed, are determined on the  
parameter 0E : 

286,0
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3. Second-order reaction 

Let us consider the scheme of second-order reaction as follows  

CBA →+  (19) 

The total concentration of reactants reads 

000 BA +=ρ    (20) 

After obvious rearrangements the kinetic equation takes the following form  
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Thus, we obtain the expression for the evolution of the product concentration 
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If the reaction product is insoluble, it begins again the aggregation of primary monomers according to the 
mechanism described above, but it occurs with the other type of chemical source of monomers:  
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In order to analyze of this problem it can be used the same method as before. The kinetic equation for a total 
concentration of clusters of different orders takes now the form  
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Eq. (24) can be also resolved with the help of Bessel functions. This method however leads to the very bulk 
relations. So, it is more expedient apparently to use numerical experiments as before. The more so, that in this 
case we succeeded to distinguish also the convenient control parameter.  
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Figure 3 depicts some results of numerical experiments for calculating the evolution of the total clusters 
concentration of various orders in the system with the second-order chemical source of monomers.  
 

 
Figure 3: Evolution of the total clusters concentration of insoluble phase in the second- order system for             
                a small time (E0=1- 800; 2- 1000; 3-4000) 
 
The graphs show that the order of the reaction does not affect essentially the qualitative character of the 
evolution of the total number of clusters. It may be noted only a slower decline in the total number of clusters 
after the peak of coagulation. 

4. Conclusions 

The paper discusses the modified equations for calculating the kinetics of aggregation of the dispersed phase 
in the chemical reaction system based on the Smoluchowski equation for the binary coagulation. The basic 
process control parameters of the aggregation process in the systems with a chemical source of insoluble 
monomer phase of first and second-orders have been determined, and their validity has been confirmed with 
the help of numerical experiment. It was shown that order of chemical reaction did not change the character of 
aggregation process of insoluble product of the reaction. Particularly, in both cases the time moment, which is 
corresponded to the peak of the total number clusters of insoluble phase in the system, is determined by the 
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one control parameter. Relations for calculating this parameter however are different depending on the order 
of chemical reaction.    
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