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In the presented paper dynamic state analysis, stability and controllability aspects of recycle processes are 

discussed, in general. A comparison of process dynamic behaviour and investigation of influence of 

process recycle loop parameters are carried out, applying simulation experiments on linear transfer 

function models. Stability and controllability considerations are provided in both, open and closed loop 

mode.  

1. Introduction 

In most cases, recycle leads to positive feedback effects. For example, increasing the concentration of a 

chemical species in a process stream will normally increase the amount of this species in the recycle 

stream, and, thus, lead to a reinforcement of the original increase. It refers to a self-reinforcing mechanism 

associated with the recycle. This positive feedback will usually increase the plant time constant, and also 

increase the process sensitivity to slow disturbances. This is because recycle will tend to “store” material 

or energy within some part of the plant. An example is a high purity distillation column where extremely 

long time constants can be observed.  

The overall dynamics of chemical processing plants with material recycle or heat integration can be very 

different from the dynamics of the individual processing units. Material recycle and heat integration may 

dramatically alter the overall gain and time constants of the plant, and may give rise to oscillatory or 

instable behaviour, even when the individual processing units are stable by themselves. Moreover, plant 

interconnections may introduce fundamental limitations in the achievable performance of any control 

system. The knowledge of such phenomena is important for controller design, and their effects may even 

pose a threat to plant safety if not foreseen. There has been lot of works devoted to the problem of 

investigating and handling chemical processes with recycle. Luyben (1993) shows that, by changing the 

gain of the recycle process independently from the other process parameters, the open loop response can 

become slow, oscillating and even unstable. Morud and Skogestad (1994) analyse the effects of different 

elements on the dynamics. Scali and Antonelli (1995) investigate the performance of different regulators 

(PI, IMC) for plants with recycle. Taiwo and Krebs (1996) show how a robust control system can be 

designed and cope with recycle plant problems. 

The aim of this paper is to give a comprehensive picture on dynamic behaviour of processes with internal 

recycle (PIR) in both, open loop and closed loop configuration. A comparison of process dynamic 

behaviour and investigation of influence of process recycle loop parameters is carried out, applying 

simulation experiments on linear transfer function models. Stability and controllability conditions are 

derived and influence of recycle parameters are shown for open loop and closed loop cases.  

2. Open-loop system with internal recycle 

Let us consider a heating plant process identified in the form of simple linear system consisting of two 

forward paths and a recycle unit as depicted in Figure 1. GM, GD and GR stand for plant forward unit, 
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disturbance and recycle unit u, d and y are the input, load disturbance and output. Assuming GM = GD, we 

get the simplified structure of the recycle process, shown as Figure 2. 

 

 

Figure 1: Open-loop process with recycle 

 

Figure 2: Simple open-loop process with recycle 

Let the first object of our study be the recycle system in Figure 2, assuming d = 0. This can be described 

by the open loop transfer function (s being the derivation operation) 
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In dynamic analysis of the recycle system Eq(1), we will focus on investigation of influence of the recycle 

path (GR) parameters onto the overall plant behaviour. For open-loop and closed-loop stability 

considerations and simulation experiments, GM and GR will be considered as units of first order dynamics. 

It can be done without significant loss of generality, as to the results expected, because lot of real plants 

dynamics can be identified, in a close neighbourhood of the operation regime, as a first order lag with 

steady-state gain and dead time (if necessary). Simulation experiments could prove that increasing order 

of either GM or GR does not basically alter the tendency of recycle parameters influence onto overall 

process dynamics. 

Then, the forward path is described by a simple linear transfer function consisting of a steady-state gain, 

KM, and a first order lag with time constant, M. The unit in the recycle path also has a simple gain and lag 

transfer function (with KR and R), as follows 
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Inserting (2) into (1), we get the overall transfer function 
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From characteristic equation of system (3), 
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the necessary and sufficient condition for recycle plant stability is 
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2.1 Influence of recycle loop gain and time constant 

In order to show the effect of recycle parameters, KR and R, we express the overall process steady-state 

gain, KS, and time constant, S, using Eq(3) 
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and calculate the limits of GS for boundary values of KR and R, from the same equation 
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From Eq(8) and Eg(9) it is obvious that the recycle effect is diminishing for “very small” values of the gain 

as well as “very large” values of the time constant. Large values of KR cause instability and “very large” 

values stop the whole process operation while “very small” values of R reduce the order of process.  

To give a complete picture on recycle effect, step-wise response dynamic simulations have been carried 

out and evaluated with respect to recycle loop parameter changes. In Figure 3 and Figure 4, a comparison 

of the plant output responses is given for various values of KR and R. The other process parameters 

during the two courses of simulation kept the following values: KM = M = R = 1 and KM = M = 1, KR = 0.8. 

It can be concluded that the effect of KR is more straightforward because it influences both, overall gain 

and dynamics, while R changes system behaviour in transient stage only. 

From theoretical and simulation results it is obvious that one of the most important effects of recycle is to 

slow down the response of the process, i.e. increase the process overall time constant. 

 

Figure 3: Influence of recycle loop gain onto 

process dynamics 

 

Figure 4: Influence of recycle loop time constant onto 

process dynamics 

3. Closed-loop system with recycle effect 

Considering the recycle process with closed loop control as depicted in Figure 5, the system characteristic 

equation takes the form 
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Figure 5: Recycle system with closed loop control 

3.1 Dynamic Analysis and Stability Considerations 
 

Case I. Proportional controller 

 

The controller transfer function is 

CC KG   (11) 

With respect to (1), (2) and (3), characteristic eq. (10) results in 
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The necessary and sufficient condition of closed loop system stability is 
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For boundary values holds 
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CK : CR KK   (15) 

where Eq(14) corresponds to the open loop case Eq(5). 

To give a picture on recycle effect, set-point step-wise response dynamic simulations have been carried 

out and evaluated with respect to recycle loop parameter changes. In Figure 6 and Figure 7, a comparison 

of the controlled plant output responses is given for various values of KR and R. The other process 

parameters during the two courses of simulation kept the following values: d = 0, KM = τM = R =1, KC = 5 

and d = 0, KM = M = 1, KR = 0.8, KC = 5.  

 

 

Figure 6: Influence of recycle loop gain onto 

controlled process dynamics 

 

Figure 7: Influence of recycle loop time constant 

onto controlled process dynamics 



 
1739 

Simulation results confirmed the theoretical stability analysis. It is straightforward from (13) that the closed 

loop system remains stable only for the values KR  6. It can be concluded that the effect of KR is more 

straightforward because it influences both, overall gain and dynamics, while R changes system behaviour 

in transient stage only. 

Case II. Proportional-integral controller  

The controller transfer function is 
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Characteristic eq. (10) takes the form 
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Applying the Hurwitz criterion, the necessary and sufficient condition of closed loop system stability is 
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For boundary values of τi holds 
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where the latter corresponds to the case of P-control - Eq (13). 

As above, set-point step-wise response dynamic simulations have been carried out and evaluated with 

respect to recycle loop parameter changes. In Figure 8 and Figure 9, a comparison of the controlled plant 

output responses is given for various values of KR and R. The other process parameters during the two 

courses of simulation kept the following values: d = 0, KM = M = R = 1, KC = 5, i = 0.2 and KM = M = 1, KR 

= 0.8, KC = 5, i = 0.2.  

 

 

Figure 8: Influence of recycle loop gain onto 

controlled process dynamics 

 

Figure 9: Influence of recycle loop time constant 

onto controlled process dynamics 

It can be concluded that the effect of both, KR and τR is well compensated by PI controller and it is in 

accordance with the theoretical stability results. The closed loop system for given parameters remains 

stable for values KR  31. However, larger values of the recycle parameters may cause more oscillatory 

behaviour of the overall system. 
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4. Controllability of PIR 

For controllability analysis, let us consider the PIR identified in the form of transfer functions (1), (2) and 

(3). Then, the input-output process model takes the form a differential equation of second order 

)()()()1()()()( tuKtuKtyKKtyty MRMRMRMRM    (21) 

Introducing state variables y=x1, y'=x2, u1=u, u2=u',  

the PIR state space model 
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is composed by the following matrices 



















RM

RM

RM

RMKKA







1
10

, 









RMM KK
B



00
, )01(C   

Applying the Controllability Theorem in state space context (Mikleš and Fikar, 2000), the Controllability 

Matrix of the system can be constructed as 

)( ABBQC   (23) 

The PIR system is then completely controllable if the rank of (23) is equal to two. This leads to the 

following condition of controllability 

0 RMK   (24) 

The above results refer to a significant condition: a PIR system can be completely controlled only if the 

recycle loop contains a first or higher order lag with non-zero time constants. A static positive feedback 

can make the overall system uncontrollable. 

5. Conclusion 

In this paper, dynamic state properties and control aspects of recycle processes, in general, have been 

studied. Assuming first order dynamics, comparison of process dynamic behaviour and investigations of 

influence of process recycle loop parameters were carried out, applying simulation experiments on linear 

transfer function models. A comprehensive picture of dynamic behaviour of processes with internal recycle 

(PIR) in both, open loop and closed loop configuration was given. Stability and controllability conditions 

were derived and influence of recycle parameters were shown for open loop and closed loop cases. 

Theoretical as well as simulation results have shown serious limitations as to PIR system stability and 

controllability conditions.  
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