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To avoid the complex modeling process of the system object and design the controllers for nonlinear systems 
fast and effectively, the design of the feedback controller of the nonlinear system draws lessons from the 
thinking of the virtual reference feedback tuning method. On this basis, in order to improve the system stability 
and eliminate the uncertain disturbance, adding a linear controller in the feedback loop can improve the 
tracking performance of the system, and the design is converted into the parameter identification of the 
nonlinear function under the expansion equation of a basis function. The simulation has verified the 
effectiveness of the proposed algorithm. 

1. Introduction 

Nonlinearity is the most common phenomenon in nature and engineering technical fields, and the research of 
nonlinear systems has also achieved rapid development and breakthrough. Thereinto the exact linearization 
method developed by means of differential geometry has received the extensive attention. The development 
of modern computer technology has enhanced the further understanding of nonlinear systems. 

2. Design of the two degree of freedom controller for nonlinear systems 

Drawing on the thought of the virtual reference feedback tuning method, the nonlinear controller is designed, 
which is converted into the identification problem of the nonlinear function under the expansion equation of a 
basis function. In order to further enhance the stability of the system, a linear controller is added to the system, 
which makes the system have a good tracking performance. For the parameterized linear controller, the 
recursive least square method is used to identify the parameters of the nonlinear controller(Song et al., 2010). 
Consider that under the condition of the closed-loop, a nonlinear controller klin is added to the closed-loop 
system S, based on the nonlinear controller knl. The closed-loop system structure of the two degree of 
freedom controller is designed, as shown in Figure 1. 
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Figure 1: Structure of the closed-loop feedback control system 

                               
 
 

 

 
   

                                                  
DOI: 10.3303/CET1651212

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Zhou H.C., Yang J., 2016, Research on nonlinear system tuning based on virtual reference feedback, Chemical 
Engineering Transactions, 51, 1267-1272  DOI:10.3303/CET1651212   

1267

mailto:zhouhc8%2540163%252Ecom
mailto:zhouhc8%2540163%252Ecom
mailto:zhouhc8%2540163%252Ecom


S is a nonlinear system; knl is a nonlinear controller; klin is a linear controller; u(t) denotes the input variable; y(t) 
denotes the output variable; ε(t) denotes an external disturbance variable applying to the system object. r(t) is 
the input reference signal of the closed-loop system; unl(t) is the output variable of the nonlinear controller knl; 
ulin(t) is the output variable of the linear controller klin; is the tracking error(Chaturvedi et al., 2015). 
The nonlinear system object model S in Figure 1 is described as: 

( ) ( ) ( ) ( )( )1 , ,y t g y t u t tε+ =                                                                                                                         (1) 

From the Figure 1, u(t)  is obtained by adding the output of the nonlinear controller knl and the output of the 
linear controller klin (Xu. et al., 2013). 

( ) ( ) ( )nl linu t u t u t= +  

Two degree of freedom controllers are described as 

( ) ( )( )
( ) ( ) ( ) ( )( )

nl nl

lin lin lin
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u t K t K r t y tσ
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
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                                                                                                          (2) 

The nonlinear controller knl is located in the feedback control, which aims at stabilizing the closed-loop system, 
while the linear controller klin in the feedback control loop can reduce the closed-loop error through the 
feedback error, so that the closed-loop system owns the good real-time tracking performance(Dai. et al., 2015). 

3. The design of nonlinear controller 

3.1 Shortcomings of the model inverse method 
The nonlinear controller can be obtained directly by using the model inverse control method. It assumes that 
the identification model ( )ˆ 1y t +  of the nonlinear function g is 

( ) ( ) ( )( )ˆ 1 ,y t f y t u t+ =
                                                                                                                                 (3) 

If the identification model ( )ˆ 1y t +  is obtained, the output variable unl(t) of the nonlinear controller knl can be 

designed through the online inverse relationship, that is, the output variable unl(t) is designed by solving the 
following inverse relationship (H. Kim. et al., 2015). 
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Where standard constants yρ  and uρ  are respectively defined as 
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u≥0 is the design parameter. 
Take the inverse of the above formula, and define a virtual input reference variable as(Zhang et al., 2014) 

( ) ( )1r t M y t−=                                                                                                                                                (6) 

3.2 Parameter identification under the basis function 
For the nonlinear controller knl (y(t)), its parametric basis function expansion form is  

( )( ) ( )( )
1

ˆ
M

nl i i
i

K y t y tθψ
=

=
                                                                                                                             (7)
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Where ψi is the Lipschitz continuous function; the coefficient θi∈R is the unknown parameter to be identified, 
and M is the total number of basis functions.  
The parametric form of formula (7) is rewritten as the linear regression form: 

( ) ( )( ) ( ) ( )ˆ T
nl nlu t K y t t e tϕ θ= = +

                                                                                                               (8) 

Where e(t) is the forecast error. From the formula (8), we can see that the design of the controller can be 
transformed into the identification problem of the unknown parameter vector θ  under the condition of basis 
functions (I. Raptis. et al., 2011). 
Define the objective optimization criteria function as 

( ) ( ) ( )( ) ( ) ( )( )
2

2

1
1 1 1
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t i t

J u t y t u t t
N N
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  
                                                               (9) 

The unknown parameter is obtained as follows by solving the optimal solution of the above formula. 

( )1
ˆ min J

θ
θ θ=

                                                                                                                                                (10) 

By processing the above formula, the estimated value of the unknown parameter vector, namely θ̂ , is shown 
as follows. 
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                                                                 (11) 

3.3 The design of linear controller 
For the design of the linear controller klin, the method of virtual reference feedback tuning in the data-driven is 
adopted, i.e., use the collection and observation sequence at both ends of the controller klin to tune the linear 
controller. The relevant part is extracted from the closed-loop feedback system shown in Figure 1, and the 
local part only contains the closed-loop structure of the linear controller klin and the nonlinear system object 
module S, as shown in Figure 2. 
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—

 

Figure 2: Design of linear controller in feedback loop 

The closed-loop transfer function M which is given an expectation is included in Figure 2. When collecting the 
output data y(t), define a virtual reference signal ( )r t  which satisfies the equation(Su.et al., 2013): 

( ) ( )y t Mr t=                                                                                                                                                  (12) 

If the output obtained by applying the virtual signal ( )r t  to the closed-loop system is consistent with the 

collected output data y(t), the design goal of the controller can be achieved. Define the reference tracking error: 

( ) ( ) ( ) ( ) ( )1 1t r t y t M y tσ −= − = −
                                                                                                             (13) 

The reference tracking error is applied to the output signal of the controller klin: 

( ) ( )lin linu t K tσ=                                                                                                                                            (14) 
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Then with reference to Figure 2, ( )linu t  can be expressed as 

( ) ( ) ( ) ( )lin nlu t u t u t u tδ= − =                                                                                                                       (15) 

The input data σ(t) and the output data δu(t) of the controller klin are obtained, respectively. The parameterized 
form of the linear controller klin is given in advance. 

( )
[ ] [ ]1 2 1 2,

T
lin

T T
n n
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β β β β η η η η

=

= =                                                                                          (16) 

Where β is the linear discrete transfer function which is known in the controller, and η is the parameter vector 

to be solved. By using the input and output observation data ( ) ( ){ } 1
,

N

t
t u tσ δ

=
 and the parameterized linear 

controller, the unknown parameter vector η can be solved through the following optimization problem (Zhao et 
al., 2009). 
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3.4 Analysis of the closed-loop stability 
The nonlinear closed-loop feedback system shown in Figure 2 is described as 

( ) ( ) ( ) ( )( )
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(18) 

Where the nonlinear controller knl and the linear controller klin all satisfy Lipschitz continuity conditions, and the 
nonlinear function g also satisfies Lipschitz continuity. Under the assumption of Lipschitz continuity, the 
nonlinear function g can be described as (Che.Z. et al., 2011). 

( ) ( ) ( )( ) ( ) ( )( ) ( )0, , ,g y t u t t g y t u t g tεε ε= +  

Where 

( ) ( )( ) ( ) ( )( )
( )

0 , , ,0g y t u t g y t u t

g tε εε γ
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=

≤
 

Define a residual function as  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )0, , ,y t u t g y t u t f y t u tΔ = −
                                                                                         (19) 

And the residual function all satisfies Lipschitz continuity, i.e., there is a nonnegative constant γy that for 
different y and y’, there is 

( ) ( ), , yy u y u y yγ
∞

′ ′Δ − Δ ≤ −
                                                                                                                (20) 

4 Simulations 

The nonlinear system object is described as  

( ) 0.8 ( 1) ( ( )) ( )y t u t f u t tε= − − + +
 

The nonlinear function f is 

( )0 22f x x=  

1270



The nonlinear controller knl is  

( ) ( )( ) ( )( )2
2nl nlu t K r t r t= =  

The linear controller klin is  

( ) ( ) ( ) ( )( )
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In the simulation process, since the basis function ϕ1 is explicitly fixed, the parameter η2 can be directly 

identified, while the parameter η1 cannot be estimated directly, and only function 1 1
T

nlK η ϕ=  can be calculated. 
Use the radial basis function and the obtained dual vector to express the nonlinear function knl as the weighted 
sum form of the kernel function, whose comparison with its actual situation is shown in Figure 3. The 
continuous curve in the figure is the real and practical curve corresponding to nonlinear functions.  The 
asterisk curve is the nonlinear function curve of identification estimation. From this figure, we can see that the 
identification curve and the actual curve are basically overlapped, indicating that the kernel function of 
identification estimate can be infinitely close to the original nonlinear function. 
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Figure 3: Nonlinear function estimate 

The parameterized linear controller klin has 5 parameters needed to be further identified, and they are solved 
by the recursive estimation algorithm. The changing process of the values of the 5 unknown parameters with 
the change of iterations is shown in Figure 4. The controller parameter values gradually tend to be steady and 
converge to the true values with the increase of the number of iterations. 
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Figure 4: The convergence curves of the estimated values of the 5 unknown parameters 

After designing the controller of the closed-loop system, in order to further verify the control effect of the 
controller, the command signal r(t)=0.5sin(2πt/200)+0.2sin(2πt/50) is applied to the closed-loop system. As 
shown in Figure 5, the simulation shows that there is a certain deviation between the system output produced 
by the inverse control of the model and the command. This is because that the nature of the model inverse 
control is an open-loop control whose anti-disturbance ability is not strong, at the same time, that the process 
of building the system inverse model is more complex and easy to produce deviation is also a reason. In this 
paper, we add a linear controller based on the nonlinear control feedback controller, but it is not a simple 
addition of linear controllers. In order to enhance the stability of the system, making up the deviation which 
arises in the design of the nonlinear controller can further restrain the system disturbance. 
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Figure 5: The comparison of the system output curves (----the two degree of freedom controller design 
method;—the model inverse control) 

5 Conclusions 

In this paper, the design of nonlinear system controller is studied. The design of nonlinear controller can be 
transformed into the identification problem of the nonlinear function under the expansions of a certain kind of 
basis functions, and the SVM kernel function is used to replace the product operation of the linear regression 
matrix. On this basis, in order to improve the tracking performance of the closed-loop system, a linear 
controller is added, and the recursive least squares method is adopted to identify the parameters of linear 
controller. The design of the input signals of the closed-loop system draws lessons from the virtual reference 
feedback tuning method. Finally, the stability of the closed-loop system is analyzed, and the simulation verifies 
the validity of the algorithm. 
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