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In order to make a comprehensive evaluation of the profit, risk prevention, profit and loss coefficient and other 
performance parameters of high frequency trading strategies, this paper proposes High Frequency Trading 
Strategy Evaluation System (SES) model based on gray relational analysis and power spectral estimation 
algorithm. This model uses gray relational analysis to determine the main strategy factors and power spectral 
estimation algorithm for strategy evaluation. Based on historical data simulation test, SES provides strategy 
performance evaluation report, and it also has functions of data management, strategy development, regression 
testing and clearing implementation. 

1. Introduction 

Currently, high-frequency tradings are mainly highly-integrated procedural algorithmic trading (Zou and Zhang, 
2014). The strategy principles used in high-frequency trading have no fundamental difference with common 
trading principles, they are just models constructed through careful quantification by mathematicians or 
physicists who have a high level of mathematical logic ability, and then packed into strategy pools one by one 
through sequencing in order to establish objective criteria for trading strategy by IT engineers according to the 
special requirements of high-frequency trading hardware and software performance environment. But this does 
not mean that investors can fully abandon their subjective judgment, after all, a lot of things are difficult to 
quantify (Hu, 2010)(Hendershott, 2008). 
Since the "flash crash" of 2010, global regulators are increasingly concerned about algorithms and 
high-frequency trading strategies. Recently, the US Securities and Exchange Commission (SEC) sued two 
high-frequency trading firms, accusing them of setting a large number of instructions which will not be executed 
in transaction, resulting in a false market demand and luring investors to trade under manipulation rather than 
the price determined by market supply (Ji, 2010; Wang, 2014). High-frequency trading distorts the market and 
frauds investors through advanced computer equipment and malicious trading strategies. Therefore, for 
regulators, strategy developers and investors, it is of great significance to design and implement a testing and 
evaluation system for market trading strategies. 

2. Model Structure and Workflow 

High-frequency trading is a kind of computer programming trading, that is to say, it is through computer and 
high-speed data connection technology to handle the large number of orders at a high speed, such as analyzing 
the small changes between bid and ask price of certain securities, or the tiny price change of a certain stock 
between different exchanges, quick implementation of orders, earning substantial profits in milliseconds, 
microseconds or even nanoseconds (Yang and Paddrik, 2012). The high-frequency trading strategy evaluation 
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system based on gray relational analysis and power spectral estimation algorithm (Strategy Evaluation System, 
SES), its function modules and performance flowchart are shown in Figure 1: 

 

 
Figure 1: Evaluation system model of high frequency trading strategy  

1) Strategy compiler module does the natural language processing of trading strategies, and analyzes and 
describes the strategy factors.  
2) Strategy analyzer module identifies and discover strategy execution timing from historical data based on 
power spectrum estimation algorithm timely.  
3) Strategy responder module makes operations such as placing orders, withdrawing orders according to the 
rules set in the rule database, and issues clearing command to simulation trading system.  
4) Event and rule database module stores a variety of log information of storage strategy execution, including 
storing the strategy's primary factor information selected by gray correlation analysis algorithm, as well as the 
preset strategy rules. 
Strategy evaluation system workflow: 1) transform the trading ideas of traders into trading strategies which can 
be identified by the system; 2) clean and organize the historical data, and format it into neat uniform analysis 
data for system use; 3) Simulate matchmaking deals; 4) give strategy evaluation analysis report. Specifically 
shown in Figure 2: 

 

Figure 2: Work data flow diagram of SES 
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3. Key Algorithms 

3.1 Data preprocessing and data modeling 
The data SES model uses are from high-frequency trading market monthly historical data and needs to be 
processed through the data washer before using. It uses auto regression moving average (Auto Regression 
Moving Average, ARMA) algorithm to fill the default data, and sets the price threshold to exclude some stocks of 
higher prices (Camilo, Rostoker, 2011). 

3.2 Determine the main strategy factors based on gray correlation analysis 

Extract strategy factors such as key policy parameters of transaction costs, bid-ask spread, placing manner and 
transaction speed from the strategy description text through strategy compiler which is based on semantic rules. 
This paper uses gray correlation analysis to analyze and determine the main factors of input strategy, and 
determines the association degree by gray correlation analysis based on the similarity degree of parameter  
geometric curves in order to quantify the continuously changing situation problems (Yang and Wu, 2008; Wang 
et al., 2010). Set strategy reference sequence X0=(X1,X2,…,Xn), yj=(yj1,y12,…,yjm), to indicate the m comparison 
sequences at the moment j, then the gray correlation coefficient is: 

  

                (1)  

 
ρ is the distinguish coefficient within the interval (0.1) which is generally set as 0.5. The smaller ρ is, the greater 

the distinguish particle. However, excessive refinement will lead to a waste of system resources, thus one 
reasonable approach is to adjust at any time according to the system requirements. The association degree is: 

        (2) 

3.3 Strategy estimation algorithm based on power spectral estimation  
Power spectral density estimation algorithm is mainly used to study the various changeable objects in frequency 
domain; it can extract the constant change states from the noise according to the limited original information, 
which makes it very suitable for the estimation and forecasting of the development of events. In practical 
application, the strategy power spectrum is the sum of the respective frequency components of specific 
information, the power size of each component reflects the effect ratio (Zhang Hui, 1979)]. SES model tracks all 
strategy event elements, and strategy analyzer will evaluate the strategy based on the power spectral density 
estimate after the completion of basic information screening, filtering and pretreatment, the specific process is 
as follows: 
Φ (m) represents the autocorrelation function of event features x (n) of a certain strategy; P (m) indicates its 
power spectral density, the relationship between the two is as follows: 
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The actual strategy implementation is a continuous process, but no system can get the whole sequence of 
events except subsequences, so our system uses the discrete Fourier transform. There are: 

               (5)

                 (6) 
For strategy elements, take A (Action) as an example: when a strategy is activated, there will be plenty of 
"action" instructions accumulated to the above two components, then the strategy analyzer can send 
commands to the strategy responder. 
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4. Test Results and Analysis 

SES extracts and filters effective information from the strategy information source, uses Oracle database to 
store evaluation data, calculates each report data through statistical performance data, and does a longitudinal 
comparison to give the strategy evaluation analysis results. 

4.1 Test index 
The strategy return evaluation is relatively simple, so we consider the performance of different strategies mainly 
around risks: 1) The maximum retracement gains; 2) The maximum retracement duration; 3) The maximum 
continuous time during which no profit is made; 4) Return volatility; 5) The skewness and kurtosis of returns. As 
shown in figure 3: 

 
Figure 3: Trading strategy revenue curve 

4.2 Analysis of test results 
The data set used for model test is from the intraday high frequency data (40 ms / T) of Tokyo Stock Exchange 
(Tokyo Stock Exchange, TSE), and processes them into minute data. The period is from January 4, 2014 to May 
25, 2014, a total of 95 days, with data of 11 days missing. Based on this data set, the following are tested:  
1) High-frequency trading strategies based on polynomial fitting (PF);  
2) High-frequency trading strategies based on double averages system (DA) under different parameters. 

4.2.1 High frequency trading strategies based on polynomial fitting 

The traditional strategy needs analysis of continuous form (for example, triangle, square flag, round bottom / top, 
etc.) and reversal patterns (the cup handle, head and shoulders, etc.) according to the practical experience of 
traders, and these morphological indexes are hard to quantify. Using polynomial fitting stock price model can 
better get the stock price change pattern (Guo Jianfeng, 2012), and its benefit lies in describing the trend of price 
changes over a period of time by using finite-dimensional data, the transaction manner is as follows:  
1) Do not make transactions during the half an hour of everyday opening quotation, and estimate future changes 
by polynomial fitting to determine whether or not to open positions, long or short positions;  
2) Forecast every 15 minutes once again to determine whether the original way of the position building is 
correct;  
3) if it is right, continue to hold; If wrong, close out the original position and then open a reverse position until the 
closing of the day, close the position to end the cash position. 

4.2.2 High frequency trading strategies under double averages system 
Double averages trading system analyzes the moving averages of price and volume simultaneously, considers 
the price-volume factors, and avoids overlooking important factors (Wu, 2012). There are three common types: 
Simple Moving Average (SMA), Linear Weighted Moving Average (LWMA), Exponential Moving Average (EMA) 
(Abioye and Olukorede Eliza, 2012), and this paper uses SMA whose function representation format is MA 
(price property, the number of cycles). The function format of double averages system is MA (p, q) whose 
trading manner is as follows:  
1) Calculate the two long and short averages MA (p) and MA (q) based on minute line price data;  
2) Build more long positions when short average across long average, and build more short positions otherwise;  
3) Close the long position held at the following short signal, otherwise hold the long position to the closing of the 
day and close the long position to end transaction;  
4) Close the short position held at the following long signal, otherwise hold the short position to the closing of the 
day and close the short position to end transaction. 
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The test results of polynomial fitting and double averages are shown in Table 1 and Table 2 below respectively: 

Table 1: PF strategy simulation results under different parameters (trading commissions 0.008%, execution 

costs 10 yen, period: 2014-01-04 to 2014-05-25) 

 Rate of 
Return 

Winnin
g Rate 

Profit 
and 
Loss 
Ratio 

Maximum 
Single 

Profit Rate 

Maximum 
Single 

Loss Rate 

Maximum 
Drawdown 

Rate 

Average Daily 
Transaction 

umber 

f(x,3) -85.2 21.6 1.36 3.2 -2.1 -90.1 12.2 

f(x,4) -54.0 25.9 1.45 2.4 -1.9 -91.4 15.1 

f(x,5) -13.6 27.6 1.57 4.1 -1.8 -76.2 17.8 

f(x,6) 12.9 30.0 1.68 2.8 -1.9 -45.8 20.4 

f(x,7) 43.7 48.4 1.73 3.5 -1.9 -32.6 22.3 

f(x,8) 24.5 35.0 1.66 4.7 -2.1 -20.1 25.0 

f(x,9) 20.4 32.7 1.57 5.1 -1.9 -12.1 28.9 

Table 2: AD policy simulation results under different parameters ( trading commissions 0.008%, 

execution costs 10 yen, period: 2014-01-04 to 2014-05-25) 

 

Rate 
of 

Retur
n 

Winning 
Rate 

Profit 
and 
Loss 
Ratio 

Maximum 
Single 

Profit Rate 

Maximum 
Single 

Loss Rate 

Maximum 
Drawdown 

Rate 

Average Daily 
Transaction 

umber 

MA(15,30) -24.6 35.5 1.75 5.4 -1.4% -73.8 15.3 

MA(20,40) -11.0 34.1 1.88 5.3 -0.9% -30.3 9.9 

MA(25,50) 43.5 37.4 1.93 4.8 -1.9% -15.4 7.2 

MA(30,60) 74.9 38.3 1.84 5.2 -2.3% -17.9 5.8 

MA(35,70) 107.2 40.4 1.98 5.1 -2.4% -10.3 4.9 

MA(40,80) 69.2 41.3 1.77 5.7 -1.9% -9.9 3.6 

MA(45,90) 34.1 42.0 1.74 5.2 -2.1% -6.2 2.4 
 
As can be seen from Table 1, the low-order polynomial can capture the major trend of price changes, but it is 
easy to overlook the subtle price changes over time, so the yield rate is not high; and although high-order 
polynomial can capture more subtle price changes, the frequent fluctuations will reduce the final strategy 
benefits for they are easy to make the trading system issue too many invalid trading signals. As can be seen 
from Table 2, when the short-term average time is less than 20, the strategy trade frequency is too high and 
results in loss; while when the short-term average time is greater than 45, the strategy response is too slow and 
lower the strategy earnings. Therefore, in actual modeling process, we need to weigh therefrom. 

5. Conclusion 

This paper describes in detail the model building, workflow and main algorithm of high-frequency trading 
strategy evaluation system and verifies the validity of SES strategy evaluation functions through test. 
Meanwhile, SES has a complete analog system, it can take market influence factors into account and generate 
a new directive according to the current spreads, it also has a very fast "product" matching engine which makes 
it possible to simulate multiple markets (Guo et al., 2015). Future research will focus on the test of "flash crash" 
mode and introduce mass market events to observe the application of algorithm for further improvement. 
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