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Explosive gas mixtures which are prone to undergo the transition from deflagrative to detonative explosion can 
occur in chemical process plants. In this case explosion pressure resistant design is the only viable safety 
concept. Whereas such a design is straightforward to realize for deflagrative explosions, which can be treated 
as static loads, there is worldwide not yet any accepted procedure for constructing pipes and vessels to be 
pressure proof against the dynamic loads brought about by gas-phase detonations. In particular, there is still a 
huge lack of the fundamental information on the peak height and peak width of the different conceivable 
detonative pressure scenarios, not to mention of how to evaluate the interaction of these pressure peaks with 
the walls of the enclosures.   
In this paper the focus is on detonations in pipes. For the first time ever a systematic classification of the different 
detonative pressure scenarios is established. To do so, it is proposed to define two different pipe types and to 
distinguish between 8 different detonative pressure scenarios.  In a next step the pipe wall deformation method 
is proposed which allows to assign to each of the 8 detonative, highly dynamic pressure scenarios an equivalent 
static pressure which can then be used in the formulae of by the established pressure vessel guidelines, which 
can only cope with static loads, to determine the desired detonation pressure proof pipe design. Based on the 
large number of experiments done so far, a proposal is presented which allows to predict in good quantitative 
approximation all short pipe scenarios on the basis of two long pipe scenarios, which substantially reduces the 
experimental effort. The expected variation of the static equivalent pressures with variation of initial temperature, 
initial pressure and the mixture composition is discussed.     

1. Introduction 

In explosive gas mixtures the self-sustaining flame front, which is ususally the result of an oxidation reaction or 
a decomposition reaction, can either propagate in a deflagrative (flame speed is less than the speed of sound 
of the unreacted gas mixture, which is in most cases close to the speed of sound in air) or in a detonative (flame 
speed is larger than the speed of sound) manner through the entire volume filled with gas mixture. For ternary 
mixtures of type combustible/O2/N2 figure 1 gives examples for the composition ranges where the flame front 
always propagates in deflagrative manner and where the transition from the deflagrative to the detonative 
propagation (“DDT” = deflagration to detonation transition) is in principle possible. Whether the DDT actually 
occurs still depends on the geometry of the enclosure, the type of the ignition source and the composition of the 
mixture.  
In chemical process plants potentially detonative mixture compositions can occur during deviations from normal 
operating conditions. For some processes (e.g. partial oxidation reactions) the use of such mixtures under 
normal operating conditions would even be of economic interest since these mixtures often allow for higher 
space/time yields. Since the presence of effective ignition sources can usually never be ruled out in process 
plants with absolute certainty, the only viable safety concept in the case that detonable gas mixtures are present 
is detonation pressure proof design of the enclosures (usually pipes and vessels). Note that explosion pressure 
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relief does not work with gas-phase detonations because the reaction front propagates at speeds larger than 
the speed of sound in the hot reaction products and therefore the pressure relief happens only after the walls of 
the enclosures have been exposed to the detonative pressure.   
Gas-phase deflagrations in closed structures (vessels, pipes) exhibit explosion pressure ratios (maximum 
pressure developed during the course of the explosion divided by pinitial which denotes the pressure in the closed 
structure at the moment of ignition) in the range of 8 to 10 (values for stoichiometric combustible/air mixtures at 
Tinitial = 20 °C). The pressure load can be regarded as quasi-static, i.e. the time period during which the pressure 
rises from its initial value to the maximum value is some orders of magnitude larger than the cycle times of the 
fundamental radial oscillation modes of the pipes and vessels affected by the deflagrative explosion. An 
explosion pressure resistant design of plant components is state-of-the-art and can be done according to well 
established standards (for example: DIN EN 13445, part 1-6 and DIN EN 13480, part 1-6), which exclusively 
deal with static loads.   
Gas-phase detonations bring about pressure/time profiles with an infinite slope of the leading edge and a width 
at half maximum as short as 10 µs and up to some milliseconds. The explosion pressure ratio (maximum value 
pdet of the detonative pressure peak divided by pinitial) can be much higher than for deflagrations. Since these 
peaks represent highly dynamic loads, a methodology capable of reliably predicting the structural response of 
plant components exposed to this type of load would have to account for aspects like eigenfrequencies of 
longitudinal and transversal oscillation modes, mode coupling and strain rate hardening. Hitherto, there are 
worldwide no guidelines available for an explosion pressure resistant design of pipes and vessels against the 
pressure load of gas-phase detonations.    
From the perspective of process engineering there is an ever increasing demand for a guideline on detonation 
pressure proof design of pipes and vessels, since admitting potentially detonable gas mixtures on a routine 
basis would widen the admissible range of process parameters in many cases and thereby increase the process 
efficiency.  
 
 

 

Figure 1: Explosion diagrams (Molnarne, 2008) of H2/O2/N2 and n-Butane/O2/N2 at pinitial = 1 bar abs and Tinitial = 
20 °C.  The detonation limits at 1 bar abs and 20 °C, which are indicated by black crosses in the diagrams, are 
taken from Nettleton (1987). The curve connecting the crosses is an interpolation of the author. The region 
enclosed by this curve represents the subset of the explosive range where mixtures can undergo a transition 
from deflagrative to detonative explosion. 

2. State of knowledge concerning the pressure load associated with gas-phase detonations  

The worldwide knowledge base in this respect is as such:  
1: Detonative explosions of gaseous mixtures in long pipes (length is much larger than the predetonation 

distance) had been investigated to a reasonable extent in the past, mainly between 1960 and 1990. The 
focus of the work was on the behavior of the detonable mixture itself, but not on the interaction between the 
associated detonative pressure peaks and the wall of the pipes. For process safety the knowledge of the 
latter topic is paramount.  
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2: Short pipes (length is between between 1 and about 1.5 times the predetonation distance), in which much 
higher pressures than in long pipes can occur due to precompression effects, were hardly investigated. 
Therefore, in contrast to long pipes, there has not even evolved a clear perception of the different detonative 
pressure scenarios possible in this type of pipe, not to mention information about effective loads on the wall. 

3: Gas-phase detonations in vessels have hardly ever been matter of research.   
4: The investigated mixtures were only of the type combustible/air with but a few exceptions. However, in 

chemical process plants a much wider spectrum of combustible/oxidant/inertgas mixtures is relevant.  
5: In the past 15 years publications emerged in which people tried to predict the structural response of a pipe 

wall on the detonative load by FE calculations (Karnesky 2013, Duffey 2011, Shepherd 2009, Smeulers 2010, 
Smeulers 2012). In principle FE calculations, provided they include the strain rate hardening of the wall 
material and both the elastic and the plastic structural response, do have the potential to predict the effective 
load brought about by gas-phase detonations on the pipe wall. The fundamental input required by any FE 
calculation is the detonative pressure/space/time profile. These profiles are theoretically understood only for 
the two most simple detonative pressure scenarios “stable detonation” and “reflected stable detonation”. 
However, for the remaining 6 scenarios all related to the transition from deflagration to detonation (DDT) 
these profiles are unknown, and the attempts to predict them by simulating the extremely complex process 
of flame acceleration up the occurrence of the DDT by reactive computational fluid dynamics have not yet 
reached a level in reliability high enough to be accepted as a basis for evaluating process safety issues (and 
the question is whether they ever will).      

In conclusion it can be stated that there is not yet any methodology available on which the design of detonation 
pressure proof pipes, not to mention detonation pressure proof vessels, could be based. 

3. Background information on the transition from deflagration to detonation  

The most important aspects related to the run-up from deflagration to detonation in a pipe are compiled in figure 
2. Note that all quantitative values in this figure are roughly what can be expected for common stoichiometric 
hydrocarbon/air mixtures. After the flame front was established by the local release of ignition energy, it 
permanently converts unreacted mixture into hot reaction gases which, due to their temperature being about 
2000 K to 3000 K higher, expand correspondingly (note that there is usually not a big change in the mole 
number) and act like a moving piston on the yet unreacted and initially quiescent mixture ahead of the flame 
front. This results in a pressure distribution in the pipe as illustrated by the curve t1 in figure 3: a pressure front 
bringing about a pressure rise by a factor of approximately 2 propagates into the quiescent unreacted mixture 
at a speed slightly larger than its speed of sound (typically about 330 m/s for most stoichiometric hydrocarbon/air 
mixtures). The unreacted gas between the flame front (=head of the piston) and the initial pressure front moves 
in direction of flame propagation (i.e. to the right side in the figure) with about 200 to 250 m/s.       
As the flame accelerates due to the positive feedback loop explained in figure 2, the piston represented by the 
expanding reaction gases also accelerates. As soon as its speed relative to the moving gas ahead of it becomes 
larger than the speed of sound in the moving unreacted mixture (i.e. the piston moves with about 500 to 600 
m/s relative to the pipe), unreacted mixture is compressed directly ahead of the flame front, such that a bump 
emerges in the pressure signal (curve t2 in figure 3). Furthermore, the compression of unburned mixture ahead 
of the accelerating piston is also caused by its inertia and by restrictions to flow in the pipe. In figure 3 the 
pressure distribution between the bump of unburned mixture and the initial pressure front is slightly simplified 
as a plateau whereas in reality the pressure level rises slightly as one moves from the initial pressure front 
backwards to the pronounced bump of compressed gas directly ahead of the flame front as consequence of 
small shock waves being generated at the location of the flame (here the gas expands) during the entire process 
of flame acceleration. At the very last stage of flame acceleration (i.e. before the DDT occurs) the flame moves 
at 1000 to 1300 m/s relative to the pipe and the acceleration is typically about 1000000 m/s2 (see example in 
figure 4). The corresponding values of the “piston” can be expected to be about 10 to 20 % less.  
The transition to detonation occurs as soon as the temperature in the precompressed unburned mixture directly 
ahead of the flame front has risen by adiabatic compression to values so far beyond its autoignition temperature 
that the ignition delay time has fallen to values of a few microseconds. Since the time interval between 
compressing the unburned mixture and burning it in a deflagrative flame is extremely short, the ignition delay 
time must become that small to enable autoignition before the mixture is “eaten up“ by the deflagrative flame 
front. Figure 4 presents single frames of a high speed video giving evidence of this autoignition event in the 
precompressed mixture ahead of the flame front. Once this autoignition event happens, the detonative mode of 
burning is established (sudden expansion of the autoignited gas causes a powerful shock wave into the cold 
gas upstream and the next adjacent “layer” is brought to such a high temperature that it also autoignites and so 
on).   
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Figure 2: Illustration of the flame acceleration process in a hydrocarbon/air mixture. The expanding reaction 
gases act like a moving piston on the unburned mixture, which starts to flow in turbulent manner shortly after 
ignition (see example for Reynolds number). Then, in the second stage, a positive feedback loop further 
increases the flame speed.  

 

Figure 3: Qualitative sketch of the pressure distribution in a pipe as resulting from a flame acceleration process 
as illustrated by figure 2 at consecutive instants during run-up to detonation. 
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Figure 4: Sequence of consecutive frames of a high speed video illustrating the transition from a deflagrative to 
a detonative explosion. Clearly visible is the ignition by adiabatic compression in the bump of precompressed 
gas ahead of the flame front at -47.6 µs (see yellow arrow). Note that the pipe ruptured a several locations after 
the DDT occurred, so flames escaping from the pipe are visible in the frames at relative times ≥ 282 µs and at 
distances ≥ 1.7 m. The video was recorded at BASF.   

4. Approach proposed by BASF to develop a guideline for detonation pressure proof design 
of pipes exposed to internal gas-phase detonations  

At BASF in Ludwigshafen a comprehensive research project was carried through during the last 4 years to 
quantify the effective load experienced by pipes when exposed to internal gas-phase detonations. Intermediate 
results were published as the work progressed (Schildberg 2013, 2014, 2015, 2016). Now, at the end of the 
project a rather clear perception of the involved effects has emerged. The effective load of gas-phase 
detonations in vessel-like geometry has not yet been investigated.   

4.1 Proposal for classifying the detonative pressure scenarios into 8 different types and the pipes into 
two different types  

Based on the pressure/distance plots shown for the predetonation stage in figure 3, figure 5a displays pressure-
distance profiles at different time instants in the course of the transition from deflagration to detonation in a long 
pipe and figure 6a displays the analogue for short pipes. Quantitatively the pressure ratios given in both figures 
roughly correspond to what can be observed for stoichiometric hydrocarbon/air mixtures at 20 °C.  
For the ease of illustration and for to enable coarse quantitative estimates discussed later, we have drawn these 
figures with the “plateau approximation” introduced in chapter 2, i.e. the pressure between the bump of unburned 
mixture and the initial pressure front is assumed constant. Quantitatively, this pressure front raises the pressure 
in the unreacted mixture by about a factor of 2.  Also, as soon as the initial pressure front gets reflected and 
propagates backwards in the direction of the location of the ignition source, we assume a constant pressure in 
the region affected by the reflected wave. Quantitatively, the reflected wave raises the pressure by a factor of 
approximately 1.5.       
Note that the pressures in both figures 5a and 6a are meant to be the maximum values of the pressures that 
would be measured at a certain axial position by an ideal piezoelectric pressure transducer (very fast response 
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characteristic and very small diameter of the pressure sensitive membrane) and not the static equivalent 
pressures defined later in chapter 4.2. 
 

 

Figure 5: a) Schematic illustration of the pressure/distance profiles in a long pipe at different time instances 
close to the point of time of DDT-occurrence. The peak in the curve labelled t0-ε represents the highly 
precompressed unreacted gas immediately ahead of the flame front, generated by the ever faster expanding 
“piston” formed by the hot reaction gases.  b) Maximum pressure ratios found in a long pipe during the course 
of an explosion with transition from deflagration to detonation in dependence on the axial position (schematic). 

 

Figure 6: a) Schematic illustration of the pressure/distance profiles in a short pipe at different time instances 
close to the point of time of DDT-occurrence.  b) Maximum pressure ratios found in a short pipe during the 
course of an explosion with transition from deflagration to detonation in dependence on the axial position 
(schematic). Scenario 8, which is not displayed in the above sketch, is generated by coalescence of 5 and 7 
under omission of 6, i.e. the DDT occurs directly ahead of the blind flange. 
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