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This paper proposes to study the potential of use a three-tank system in laboratory scale to teach how to 
design a predictive controller (MPC) applied to a system with multiple inputs/multiple outputs (MIMO). An 
algorithm that predicts the future behavior of the plant characterizes the controllers (MPC). With a 
representative model of the process, the algorithm calculates the future optimal control actions that will 
minimize the error between the controlled variables and their respective reference values, then, only the first 
values calculated for the plant inputs is sent. These controllers have a high popularity in the academy and in 
the industry because they provide high performance control systems without requiring interventions of 
operators for many hours. These important controllers were emerged initially in the 70’s, in order to overcome 

occurring difficulties in oil refineries and in power plants. Today, MPCs are also in food processing, aerospace 
industry, and automotive industry among others. The system used in this study can provide students with 
practical knowledge of automation and process control that it is not possible to be acquired using only the 
process simulators or theory. For this purpose, a predictive controller based on a linear state-space model 
was developed and evaluated to check the influence of tuning parameters in the response of variables 
controlled and the control actions. The mainly parameters studied were the prediction horizon, control horizon 
and weight of future increases in the system actuators. 

1. Introduction 

In this work, has been used a system of three tanks with a didactic objective to demonstrate how to obtain 
mathematical model and to design controllers for a system with multiple inputs and multiple outputs (MIMO). 
This system has non-linear behavior as a characteristic. However, through linearization process around an 
operating point, it is possible to obtain a linear model of the process. Chemical processes usually have many 
interactions among their variables (a MIMO system). However, the most of industrial applications in chemical 
processes use ordinary feedback control systems (PID controller), which are single input single output 
systems (SISO) and exhibit linear actuation. In order to overcome this restriction, it is possible to use model 
based predictive controls (MPCs). They emerged during the 70’s from the need imposed by the oil crisis to 
reduce energy consumption, that is, the need to operate the processes with greater efficiency. This type of 
controller have as advantages, besides of its multivariable characteristic, the imposition of constraints in the 
variables, analysis of stability of the system in closed system, performed in a relatively simple way, and also, 
capacity of realization of on-line optimization. The MPCs controllers have an algorithm based on calculating 
the future values sent to the plant inputs, using a representative model of the process, which can be linear or 
non-linear, in order to obtain the optimized values of the plant output variables to reach their respective set 
point values. The system used in this work is low-cost equipment, and presents no major difficulties in its 
construction phase, which makes it an easy tool for teaching process control theory. The opening or closing of 
the locking valves between the tanks can offer two configurations of the tanks used, can be analyzed two 
independent SISO systems, or a MIMO system. The opening of the tank outlet valves also allows modifying 
the dynamics of the system, making it faster or slower, depending on the opening or closing of the valves 
respectively.   
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2. Experimental setup and procedure 

2.1 Description of the apparatus 

A schematic diagram of the experimental apparatus is shown in Figure 1b. The system was completely 
instrumented for continuous operation with using a supervisory system. The design of this three-tank 
experiment comprises seven key components as follows: (a) two transparent interactive tanks which has an 
approximate liquid volume of 1.6 l each one and one transparent reservoir which has an approximate liquid 
volume of 3.3 l. The vessels are made of acrylic; (b) three lock ball valves, which regulate the volumetric flow 
among the tanks; (c) two pumps with variable rotation; (d) three differential pressure sensors of the Siemens® 
MPX5010 series which measure the tanks level; (e) a programmable logic controller (PLC) of the 
manufacturer Delta®, model DVP20EX2 which realize the interface between the used system and a 
microcomputer; (f) a PC equipped with Indusoft Web Studio Educational 7.1 software for the collection and 
storage of the experimental data. 

 
(a)                                                                                           (b) 

Figure 1: Photograph of the experimental setup (a) and Schematic diagram-P&ID of Three-Tank Process (b). 

Various preliminary tests were made in order to define an appropriate dynamics which allowed to explore the 
range of the pumps (manipulated variables) and to define a point of operation of the levels (controlled 
variables), where were made changes of set point, in order to analyze the performance of the controller. 

2.2 Supervisory System and Communication 

In this system was used the Indusoft Web Studio Educational8.1® as supervisory system. The experimental 
data from level sensors and actuation signal to pumps were obtained by Modbus ASCII protocol (American 
Standard Code II) of communication. The controller used in this work was designed in the Matlab® software 
which used OPC protocol (OLE for Process Control) in order to exchange data with the apparatus. 

2.3 Mathematical Modeling 

The First Order Plus Dead Time Method - FOPDT (Process Reaction Curve) was chose to obtain the 
mathematical models of the level system, as found in Zhu, 2002. The perturbations carried out in the pumps 
can be seen in Table 1, considering levels in 50% as operational points. 

Table 1: Step disturbances in pumps. 

Situation Pump1 (%) Pump 2 (%) )  
Operation Point 40 30   
Experiment 1 
Experiment 2 

45 
40 

30 
35 

  

 
Through linear regression, it was possible to obtain the representative parameters of the studied system. In 
this step was used the Solver tool of the Microsoft Excel® software. The reaction curves were fitted an 
ordinary functions of first order plus dead time or overdamped second order according, in time domain. Since 
it is a MIMO system, it was inserted the parameters of each tank obtained in each experiment into a transfer 
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matrix using the tf command in Matlab® software. Finally, it was transformed the continuous transfer matrix 
into a discrete state-space model using the ss and c2d commands, with sampling (Δt) of 1s. Thus, the Eq(1) 
and Eq(2) were reached considering that the output cannot be affected by the input at the same instant of 
time: 

𝑥(𝑘 + 1) = 𝐴 𝑥(𝑘) + 𝐵 𝑢(𝑘) (1) 

𝑦(𝑘) = 𝐶 𝑥(𝑘) (2) 

2.4 Model Augmented 

It is important to note that the input of the state space model, in Eq(1), corresponds to u (t), however, it is 
desired that the input correspond to the increment to be added to the control signal, that is, Δu (t). Thus it is 

necessary to augment the state-space model in a velocity form, and embedded with this integral action 
naturally in the algorithm (Wang, 2009). Therefore, a new state space model can be written in a similar form to 
Eq(1) and Eq(2), where matrices A, B and C correspond to the augmented model. 

2.5 Model Predictive Control 

The predictive controller was designed after obtaining of the augmented model. Using the current values of 
the states it is possible calculate their respective future values, until a certain instant of time, NP, called the 
prediction horizon, and the added future increments to be to the actuator signals, NC, called the control 
horizon. The procedure can be found in Wang, 2009. Defining the vectors, where T means transposed matrix: 

𝑌 = [𝑦(𝑘 + 1) 𝑦(𝑘 + 2)     𝑦(𝑘 + 3) … 𝑦(𝑘 + 𝑁𝑃]𝑇 (3) 

∆𝑢 = [∆𝑢(𝑘 + 1) ∆𝑢(𝑘 + 2)     ∆𝑢(𝑘 + 3) … ∆𝑢(𝑘 + 𝑁𝑃]𝑇  (4) 

It can be written that: 

𝑌 =  𝐹 𝑥(𝑘) + 𝜙 ∆𝑢(𝑘) (5) 

Being: 

𝐹 = [𝐶𝐴 𝐶𝐴2   𝐶𝐴3   …   𝐶𝐴𝑁𝑃]𝑇 (6) 

𝜙 = [

𝐶𝐵
𝐶𝐴𝐵

⋮
𝐶𝐴𝑁𝑃−1𝐵

0
𝐶𝐵

𝐶𝐴𝑁𝑃−2𝐵

0 … 0
0 … 0

 𝐶 𝐴𝑁𝑃−3𝐵 … 𝐶𝐴𝑁𝑃−𝑁𝐶𝐵

] (7) 

Thus, future values are sent to the plant actuators, through Eq(5), it can be obtained via the minimization of an 
objective function in the following format: 

𝐽 = (𝑅𝑆 − 𝑌)𝑇(𝑅𝑆 − 𝑌) + ∆𝑢𝑇𝑅 ∆𝑢 (8) 

Where: 

𝑅𝑆
𝑇 = [1 1 1 1…1] 𝑟(𝑘𝑖) (9) 

The Eq(9) contains the desired set point information r (ki).The unit vector size corresponds to the NP value, the 
parameter R corresponds to the weight in the controller increment. In order to find the value of Δu which 
minimizes Eq(8), it must be rewrite this equation using Eq(5): 

𝐽 = (𝑅𝑆 − 𝐹 𝑥(𝑘𝑖))
𝑇
(𝑅𝑆 − 𝐹 𝑥(𝑘𝑖)) − 2∆𝑢𝑇𝜙𝑇(𝑅𝑆 − 𝐹 𝑥(𝑘𝑖)) 

   +∆𝑢𝑇(𝜙𝑇𝜙 + 𝑅)∆𝑢 
(10) 

The condition of minimum value of Eq(10) is obtained as: 

𝜕𝐽

𝜕∆𝑢
= 0 (11) 

Thus, given the optimal solution for the control signal as:  

∆𝑢 = (𝜙𝑇𝜙 + 𝑅)−1𝜙𝑇(𝑅𝑆 − 𝐹 𝑥(𝑘𝑖)) (12) 
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From the result found, it is added only the first increment to the plant inputs, another points are discarded, and 
the calculations are restarted again, characterizing a moving horizon prediction. It was also implemented the 
imposition of constraints on the value of the controller output (u), and on the value of its increment (Δu), using 

quadratic programming. The codes used here for controller development were found in Wang, 2009. 

3. Results 

3.1 Model 

After applying perturbations in the system, according to Table 1, the level behavior can be seen in Figure 2 
and Figure 3: 

 
Figure 2: Level responses, in variable deviation, obtained from the perturbations applied in pump 1. 

 
Figure 3: Level responses, in variable deviation, obtained from the perturbations applied in pump 2. 

Small oscillations in the level responses were observed, when reaching the steady state. These are due to 
electric oscillations of the pumps. There is also a high noise in the signal from the pressure sensors, which 
measured the level indirectly. Such noise was caused by the proximity of the level sensors with the feed 
pumps. It was obtained the transfer matrix, G (s), after linear regression, according to Eq(13): 

𝐺(𝑠) = [
𝑦1

𝑦2
] =  

[
 
 
 

1,88

56,43 𝑠 + 1

1,9

78,21 𝑠 + 1
1,32

560,57 𝑠2 + 70,74 𝑠 + 1

1,99

71,95 𝑠 + 1]
 
 
 

[
𝑢1

𝑢2
] (13) 

 
3.2 Multivariable Controller 

The tuning parameters of the controller used initially were based on the settling time of the process, as 
indicated in Moudgalya, 2007. However, the performance of tests in the system led to the use of the 
parameters showed in Table 2: 

Table 2: Controller tuning parameters. 

Parameters Value    
Prediction Horizon (NP) 40    
Control Horizon (NC) 
Weight (R) 

4 
10 

   

 
The sampling rate (Δt) was also calculated based on the settling time of the process, according to the 

procedure found in Zhu, 2002. However, preliminary tests also provided better controller performance with the 
use of 1s for sampling. The behavior of the system can be observed, in Figure 4 and Figure 5, in set point 
changes. It was observed on Figure 5 that the controller is able to maintain the level of both tanks 
independently, in positive and negative changes in the set point. The responses did not show oscillatory 
behavior, and exhibit relevant overshoot only in the first change of the set point. This behavior maybe has 
been caused by an inadequate value of the increment weight, or by an inadequate model of the process. The 
efficiency of the controller can still be verified in Figure 6, it can be observed that the control signal of both 

1582



pumps do not have large oscillations in their operating range, and the changes made to bring the levels to the 
new ones references occurs smoothly, which increases the lifetime of the actuators. 

 
Figure 4: Responses obtained from the set point disturbances applied. 

 
Figure 5: Control actions obtained after the set point disturbances. 

In Figure 6 and Figure 7, it can note the influence on the weight controller, to this reduction of the value of the 
parameter to 0.1, which allowed sending the plant increments with higher values than the previous case. 
Thus, it was verified that a response of the values in relation to changes in the set point has become faster 
and oscillatory, and consequently, it was observed also that the control signal has become more oscillatory, 
which increases wear of actuators. 

 
Figure 6: Responses after control weight change to 0.1, obtained from the set point disturbances applied. 

 

Figure 7: Control actions obtained after the set point disturbances, with control weight change to 0.1.  

In Figure 8 and Figure 9, verified the influence of the prediction horizon, which decreased to the value of 12. 
The response has some overshoots and undershoots, after the changes in the set point, that is, increased 
instability. The control signal showed some peaks in front of changes in the set point, which indicates a more 
aggressive control action. Such behavior is in agreement with the literature. If prediction horizon is large, case 
not analyzed here, it can have problems of ill conditioning of the matrices, according to the literature (Wang, 
2009). 

 

Figure 8: Responses after prediction horizon change to 12, obtained from the set point disturbances applied. 
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Figure 9: Control actions obtained after the set point disturbances, with prediction horizon change to 12. 

In Figure 10 and Figure 11, observed the influence of the control horizon, which increased to the value of 20. 
The response of the levels, in front of changes in set point values, became similar to those found with 
decrease the weight of the prediction horizon and the control signal, that is, more instable. This effect occurs 
because the aggressive control action in a move is compensated by subsequent moves. A small NC value is 
recommended to have a smoother control action, as found in Moudgalya, 2007. 

 

Figure 10: Responses after control horizon change to 20, obtained from the set point disturbances applied. 

 

Figure 11: Control actions obtained after the set point disturbances, with prediction control change to 20. 

4. Conclusions 

A three-tank system in laboratory scale has a great potential to support students about design of MPC 
controllers. The experiential learning that can be acquired by the students through this experiment 
complements their classroom education in process control. The experiment also enables the students to gain 
experience in operating and controlling a real system. Furthermore, this apparatus is well adapted to studying 
other types of controller and its characteristics. This work proposed a predictive controller based on linear 
models to exemplify an application of the system, the facility to obtain such models, through a reaction curve 
method justifies its use. It was concluded that a response of the controller becomes more aggressive with the 
increase of the control horizon and with a decrease of the prediction horizon. The reduction of the weight of 
the controller causes that the response is faster but more oscillatory. In addition, can be used the system to 
obtain non-linear models, based on neural networks and fuzzy logic, and for the use of controllers that use 
such models, future tests will be performed for this purpose. 
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