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Currently it is observed, in many countries, an increasing concern by environmental agencies to monitor and 
control the air pollutants levels and, in this scenario, nitrogen oxides mainly arising from combustion 
processes deserve special attention. In large cities, the concentration and dispersion of NOx should be 
monitored not only by its toxicity, but also to be associated with photochemical production of tropospheric 
ozone, fine particulates, and its participates in the production of free radicals in atmosphere. In this context, 
the importance of understanding this phenomenon is grounded not only for to understand the complex 
dynamics involved in air pollution, but also the indispensability of the study of modeling and forecasting 
methodologies that can provide information for decision making with regard to the control of this compound in 
atmosphere. Thus, the present study aims to model, by probability density functions (PDF), the annual 
concentrations of NOx obtained in the period of 2010 to 2015 at the monitoring station of Ibirapuera Park, Sao 
Paulo, belonging to the Environmental Sanitation Technology Company of the State of Sao Paulo, Brazil. 
Initially, temporal data were exported directly from the electronic platform of Sao Paulo’s agency of air 

pollution control. The variation of annual NOx concentration is expressed in time series, with 1 hour of 
acquisition frequency and a total of 8,600 points/year. After obtaining the time series, the original data were 
organized into classes, and the maximum and minimum intervals determined by Sturges rule. In order to 
choose the most representative statically bin, it was evaluated the coefficient of variation of the mean to 
determine the point from which there are no more significant variations of the mean values of concentration of 
each time series. After this step, fourteen probability density functions were evaluated, and the fitting of the 
models were assessed by the Kolmogorov-Smirnov test. From the analyzes, it was concluded that the 
evaluated data showed clear positive displacement and leptokurtic distribution, indicating the Gumbel 
probability density function as the most representative among those evaluated in this study. 

1. Introduction 

One of the biggest problems associated with a country's economic development is air pollution. The 
relationship between the increasing concentration of air pollutants and the incidence of various health 
problems of the population is becoming increasingly clear, making air pollution a serious public health problem 
(Braga, 1999). In both developed and developing countries, the motor vehicles and the increasing emissions 
of toxic pollutants from industrial chimneys (Derisio, 1992), cause high concentrations of harmful substances 
that are responsible for low visibility and various respiratory problems in living beings (Pope et al., 2002). After 
the advent of the Industrial Revolution little was done to control or study these effects, the episodes of thermal 
inversion related to meteorological events being those responsible for impelling the scientific community to 
verify, certify and relate mortality rates in urban centers to atmospheric pollution (Dockery and Pope, 1994). In 
this aspect, the oxides of nitrogen (NOx) stand out. Automotive vehicles account for 96.3% of all NOx 
emissions in the São Paulo Metropolitan Region (CETESB, 2004) and, therefore, produce more nitrogen 
oxides than any other human activity. It is clear that it is necessary to control the emission of pollutants and in 
this sense several methodologies are applied in order to quantify, control the concentrations of these 
compounds and generate indicators of air quality. In this scenario, the probabilistic methodologies are 
highlighted. Probability density functions have been applied successfully in many physical phenomena such 
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as river discharges, wind speed, rainfall, and air quality (Harikrishna and Arun, 2003; Kan and Chen, 2004; 
Oguntude et al., 2014). Studying the dispersion of pollutants through a probabilistic approach is important 
because when the parent probability distribution of air pollutants is correctly chosen, the specific distribution 
can be used to predict the mean concentration and probability of exceeding a critical concentration 
(Oguntunde et al., 2014). Therefore, the present work aims to study the atmospheric dispersion of NOx in the 
years 2010 to 2015 by means of time series obtained at the Monitoring Station of the Environmental Sanitation 
Company of the State of São Paulo, located in the Ibirapuera Park, in the city of São Paulo. The approach 
used was purely probabilistic, focusing on the interpolation of the best probability density function for the data 
modeling. 

2. Materials and methods 

The time series of NOx concentrations were directly exported from the electronic platform of the 
Environmental Sanitation Technology Company of the State of São Paulo (CETESB). All analyzes were 
performed for the years 2010 to 2015. The sampling frequency is 1 hour, with 8,760 total points (N) in each 
series. Therefore, the present work is divided in two parts. In the first one, the data were divided into bins (K) 
using as limits the Sturges Rules presented in Equations 1 and 2. To validate the choice of the optimal bin, the 
coefficient of variation of the mean (CV = σ/μ ) was calculated for K = 3, 5, 8, 10, 12, 15, 20, 25, 30, 35, 40, 50, 
60 e 70. 
 

Sturges Rules (N < 25): NK log3,31                                                                                                  (1) 

Sturges Rules (N > 25): NK                                                                                                                  (2) 
 
For all time series, mean (μ), standard deviation (σ), variance (σ²), skewness (A) and kurtosis (C) were 
obtained according to Equations 3, 4, 5, 6 and 7. 
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The second stage of this study consisted in adjusting the probability density functions (PDF) present in 
Equations 8 to 21. In all, 14 functions were evaluated: Normal, Log-Normal, Weibull, Exponential, Gamma, 
Pearson III, Beta (Singh, 1998; Walck, 2007), Logistic, Moyal, Gumbel, Cauchy, Chi-square, Rayleigh, 
Maxwell (Walck, 2007). The adjustment method used was least squares and the quality of the adjustments 
was evaluated using the Kolmogorov-Smirnov methodology. The Kolmogorov-Smirnov (K-S) test consists of 
the non-parametric analysis of two univariate and continuous distributions (Stephens, 1970; Press, 1992). The 
K-S method starts from the comparison between a critical difference of the cumulative distribution and the 
model with the theoretical critical parameter associated with the desired significance. All calculations 
performed in the steps described above were performed in Excel 2013 software (64 bits). 
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Log-Normal: 
 













 


2

2

2 2

)ln(
exp

2

1
)(







x

x
xf     (9) 

Moyal: 






















 















xx
xf exp

2

1
exp

2

1
)(                 (10) 

Gumbel: 














 





a

bx

a

bx

a
xf expexp

1
)(                 (11) 

Weibull: 

 































 


b

x

b

x

b
xf exp)(

1

                (12) 

Gama:  
 

)exp(
1

)(
1

ax
b

axaxf
b







                (13) 

Rayleigh: 
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Maxwell: 
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Logistic:
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Pearson III: 
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3. Results and Discussion 

In Figure 1, the time series of NOx concentration for the years 2010 to 2015 are presented. It is verified that 
there is no clear variation or tendency around an average value and noises are observed. In order to extract 
more information about the behavior of the series, Table 1 shows the mean, standard deviation, variance, 
skewness and kurtosis calculations for each of the years studied. It is quite evident the lack of homogeneity in 
the data of each time series, because in all cases, it is observed that the standard deviation presents mean 
amplitude and a very high variance. These facts are corroborated by the fact that these measurements are 
highly sensitive to atmospheric conditions, sudden physical changes at measurement sites and other changes 
that make the series very heterogeneous and unpredictable in the long run. With regard to the skewness, it is 
possible to notice a situation of asymmetry in all cases, with right or positive displacement. In the case of the 
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kurtosis coefficient, in situations where C = 3 the kurtosis is denominated mesocurtica (normal curve), C > 3 
the curve is leptokurtic, and for C < 3 it is called the platicuric curve (Neckel, 2016). In the case of the data 
under study, for all series evaluated, C > 3, therefore are leptokurtic curves. It is important to note that, for the 
data under analysis, the symmetry issue is quite clear, as will be seen below, but sometimes it is visually 
subtle and it is difficult to assert any conclusion through simple graphical observation (Neckel, 2016). 
 

2010 2011 2012 

   
2013 2014 2015 

   
Figure 1: Time series of NOx concentration for the years 2010 to 2015. 

Table 1: Mean, standard deviation, variance, skewness and kurtosis calculated for each time series. 

 2010 2011 2012 2013 2014 2015 

µ (ppb) 35.90 31.44 26.78 26.72 26.38 22.09 
σ (ppb) 47.44 41.17 29.27 31.79 32.28 24.11 
σ² 2250.23 1694.79 856.77 1010.86 1042.15 581.14 
A 5.37 4.61 4.03 4.40 5.06 4.54 
C 41.14 29.70 25.18 27.14 38.54 30.18 

 
After this analysis, the optimization of the best bin to represent the distribution of the data to be adjusted was 
performed. In this sense, Figure 2 shows the evolution of the coefficient of variation of the average with the 
increase of the bins. By means of the graphical observation it is evident that there is no more significant 
variation in the mean for values of K ≥ 20. Therefore, it was adopted the distribution in 20 bins in the modeling. 
 

 
Figure 2: Evolution of the coefficient of variation of the average with the increase of the bins. 
 
Once the bin was defined, the adjustment of the 14 probability density functions was performed using the least 
squares methodology, and then the quality of the adjustments was verified through the Kolmogorov-Smirnov 
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test and the evaluation of the sum of the quadratic errors (S(e²)). Table 2 presents the K-S test results for the 
probability density functions that best fit the data and also the parameter values of the models. In this table it is 
possible to compare the critical deviation value (Dc), at a significance level of 1%, with the value of the 
maximum deviation (D) for each adjusted functions. In cases where D < Dc, the adjustment is approved 
according to the K-S criteria. Approved functions are highlighted in the table. It is also possible to observe that 
all the adjustments approved by the K-S test presented very low values for the maximum quadratic error 
(S(e²)), thus corroborating such adjustments as being the best for the respective series. 

Table 2: Results of the Kolmogorov-Smirnov test and the parameters of the approved models. 

 Weibull Gumbel Moyal 
Log-

Normal 
Gama Weibull Gumbel Moyal 

Log-

Normal 
Gama 

Dc 0.019 0.050 0.078 0.015 0.035 η; b a; b μ; σ μ; σ a; b 

2010 

S(e²)×10
5
 

0.014  
5 

0.037 
64 

0.031 
82 

0.069 
12,212 

0.041 
23,785 

0.92 
26.27  

19,85 
0 

4.92 
8.29 

- 

- 

- 

- 

2011 

S(e²)×10
5
 

0.018 
30 

0.047 
77 

0.060 
95 

0.085 
11,6690 

0.087 
226,814 

0.97 
22.78 

16.69 
0 

4.61 
8.18 

- 

- 

- 

- 

2012 

S(e²)×10
5
 

0.039 
33 

0.020 
29 

0.042 
26 

0.013 
6 

0.048 
37 

- 

- 
16.18 

0 
4.39 
8.84 

2.40 
0.82 

- 

- 

2013 

S(e²)×10
5
 

0.018 
420 

0.037 
38 

0.014 
33 

0.092 
9,596 

0.245 
158,391 

1.15 
21.12 

15.89 
0 

5.10 
8.50 

- 

- 

- 

- 

2014 

S(e²)×10
5
 

0.010 
11 

0.037 
52 

0.039 
64 

0.083 
11,787 

0.123 
255,862 

0.96 
19.73 

14.80 
0 

4.33 
7.19 

- 

- 

- 

- 

2015 

S(e²)×10
5
 

0.098 
36 

0.048 
29 

0.113 
44 

0.012 
7 

0.027 
28 

- 

- 
11.85 
4.63 

- 

- 
2.69 
0.74 

0.093 
1.59 

 
Finally, Figure 3 shows the comparison of the adjustments of the best probability density functions with the 
respective original series (Experimental). By means of this figure it is possible to note, again, the leptokurtic 
tendency with positive displacement of both the adjusted models and the experimental data. Also, the small 
differences between the experimental profile and those of the adjusted functions are more clearly 
demonstrated, since in this reconstruction, different from what occurs with the cumulated frequency, the errors 
are no longer damped by the accumulation of frequencies, so that discrete discrepancies become sharper. 
Such discrepancies do not invalidate the results, since the representativeness presented by the models is 
higher than expected given the heterogeneity of the series. It is important to make it clear that the only 
probability density function that was repeated for all cases was Gumbel suggesting, therefore, that this is the 
most generic PDF to express the data studied. 

2010 2011 2012 

   
2013 2014 2015 

   
   

Figure 3: Comparison of fitted models with experimental data. 
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4. Conclusion 

Through the study, it can be concluded that all the time series studied presented skewness with positive 
displacement and leptokurtic curve. After extensive analysis of the variation of the bin, the best grouping 
occurred for K = 20. Regarding the adjustment of the best model of probability distribution, it was verified that 
for each year a set of PDFs are satisfactorily adjusted, but the Gumbel model appeared in all evaluated years, 
suggesting that this is the most generic PDF to express the atmospheric NOx concentration variation in the 
monitoring station of Ibirapuera Park, São Paulo, Brazil. 
 
List of Symbols 

Latin Symbols 

A – skewness; 
a, b, c – PDF parameters. 
C – Kurtosis; 
E(X) – expected value; 
f(x) – probability density function. 
fj – frequencies of appearance of a certain value; 
K – bin; 
N – total number of points in a set; 
n – order of the moving average; 
X – element of a random sample; 
xj – data that will compute the mean. 
Greek Symbols 
μ – Arithmetic mean of a set; 
σ – mean standard deviation; 
σ² – variance. 
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