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This study was aimed to develop a customised thin film composite (TFC) membrane for the separation in 

biorefinery. After the biomass hydrolysis stage, sugars component (i.e. glucose and xylose) need further 

refinement to remove any inhibitor (i.e. acetic acid) that can decrease the yield of the product during the 

fermentation stage. Substrate layer properties and the condition of thin film formation during interfacial 

polymerisation (IP) influenced the performance of the TFC membrane. Not much attention is given on the effects 

of substrate membrane properties as most support membranes were purchased commercially. Polyethersulfone 

(PES) membrane substrate was fabricated in the current study at different PES concentration range of 15 wt% 

to 23 wt%. IP was performed using the piperazine and trimesoyl chloride monomers. As the PES concentration 

in the membrane substrate increased, the pure water permeability (PWP) decreased. The PWP of the 

membrane substrate prepared from 15 % PES and 23 % PES were 231.67  16.59 L/m2.h.bar and 24.49  6.54 

L/m2.h.bar. After the IP, the PWP decreased to the range of nanofiltration. The PWP value were 28.07  5.42 

L/m2.h.bar and 3.94  1.21 L/m2.h.bar for the TFC membrane prepared using 15 % PES and 23 % PES 

membrane support. TFC membrane prepared using 23 % PES showed the rejection value 24.07  5.96 % of 

xylose, 47.56  1.99 % of glucose and 2.67  1.05 % of acetic acid. This is corresponding to the ideal separation 

factor of 1.45  0.06 for xylose/glucose, 1.86  0.05 for acetic acid/glucose and 1.29  0.09 for acetic acid/xylose. 

1. Introduction 

Biorefinery concept refer to the production of fuels and chemicals from biomass feedstock (He et al., 2012) that 

involves several processing routes such as biomass pretreatment, hydrolysis, separation and fermentation 

process (Binod et al., 2011). Biomass has been acknowledged globally as a potential alternative renewable 

resources to replace fossil fuels in industrial production (Cherubini, 2010). Through the hydrolysis process, 

fermentable sugar such as glucose, xylose and arabinose will be released from cellulose and hemicellulose 

fractions of lignocellulose biomass (Chenxi et al., 2013). Glucose and xylose are the main sugars that can be 

converted to wide variety of chemicals, bio-plastic, cellulosic ethanol and advanced bio-fuels like green gasoline, 

green diesel and bio-fuel. Other impurities such acetic acid were also formed during hydrolysis (Grzenia et al., 

2008). This inhibitor will interferes the fermentation process and eventually lowering the product yield (Weng et 

al., 2009). An appropriate separation technology is required for the separation of individual sugar and for the 

removal of potential inhibitors in biomass hydrolysate.  

Thin film composite (TFC) membrane bring an attractively attention in the separation process in biorefinery. 

Gautam and Menkhaus (2014) had evaluated a range of commercial reverse osmosis (RO) and NF TFC 

membrane for sugar concentration and inhibitor removal from model and real biomass hydrolysate solution. 

Careful selection of the TFC membrane and operating conditions are essential in the development a continuous 
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process for biomass hydrolysis (Malmali et al., 2014). TFC membrane is prepared by interfacial polymerisation 

(IP) technique to form a selective active skin layer on top of porous membrane substrate. TFC membrane can 

offers a better separation performance by optimising both characteristic of the membrane substrate and 

selective skin layer (Han, 2013). Among the important variables during the development of TFC membrane are 

monomer concentration, partitions coefficient of the monomer, reaction times, post-treatment and properties of 

membrane substrate (Huang et al., 2015). Many studies focusing on the optimisation of IP process in order to 

produce high performance TFC membrane. Li et al. (2014) had compared four different types of water soluble 

monomer during preparation of TFC membrane. The tested monomers were diethylenetriamine (DETA), 

triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and piperazidine (PIP). Among all the TFC NF 

membranes, PIP based membrane displayed the highest permeability. Abu Seman et al. (2013) studied the 

effect of IP reaction time during production of TFC membrane from 6 % w/v of triethanolamine (TEOA) in 

aqueous solution and a solution containing trimesoyl chloride (TMC). Liu et al. (2012) investigated the IP 

preparation parameters including reaction time, pH of the aqueous phase solution, reactant concentration, as 

well as curing temperature, and time during preparation of polyvinylamine (PVAm) and TMC based TFC 

membrane.  

A very limited research has been focused on the effect of membrane substrate on the TFC separation 

performance. Misdan et al. (2014) found that the separation performances of the poly(piperazine-amide) layer 

of the TFC membranes were altered when using different types and properties of the flat sheet membrane 

substrate. The substrates were made of three different polymer materials of polysulfone (PSf), polyethersulfone 

(PES) and polyetherimide (PEI). Hollow fiber TFC membrane was also effect by the properties of the substrate 

used as demonstrated by Kong et al. (2016). Membrane substrate has important role during IP as it functions 

as a container for one of the monomer precursors, and provides the interface where the IP reaction will occur. 

Membrane substrate core structure and chemistry properties (e.g.: pore size, pore structure, pore length, 

hydrophobicity, and reactivity toward monomers) could influence the rate of polymerisation by controlling the 

amount of monomer reaching the reaction zone and the width of reaction zone (Jimenez-Solomon et al., 2013). 

The best membrane substrate should had a high mechanical stability with low resistant to permeate flow 

(Mansourpanah et., 2011) and tolerates the formation of a defect-free thin top layer (Tiraferri et al., 2011). In the 

current study, five types of PES membrane substrate were prepared by varying the PES composition in dope 

polymer solution from 15 wt% to 23 wt%. IP was performed using the PIP and TMC monomers. The separation 

performances of TFC membrane prepared using different substrate properties were tested for xylose-glucose 

refinement and acetic acid removal. 

2. Materials and Method 

2.1 Materials 

Polyethersulfone (Radel® A) was purchased from Solvay Specialty Polymers, USA. Pluronic 270 was 

purchased from Sigma-Aldrich (MO) to be used as a pore forming agent. N-methyl-2-pyrrolidone (NMP) was 

purchased from Merck, Darmstadt, Germanyfor used as solvent in dope polymer preparation. TMC and PIP 

were purchased from Sigma-Aldrich and were used as monomers. The solvent for monomer, hexane (reagent 

grade,) was purchased from Fisher Scientific, UK. 

2.2 Membrane substrate preparation  

The dope polymer solution was prepared at constant Pluronic concentration of 10 wt%. Five types of membrane 

with different PES composition (15 wt%, 17 wt%, 19 wt%, 21 wt% and 23 wt% PES) were produced. The PES 

pellets and pluronic were dissolved in NMP at temperature 50 ºC under stirring for about 8 h until homogeneous 

dope polymer solution was achieved. The polymer solution was treated in ultrasonic bath for about 2 h to remove 

bubbles and then was kept at room temperature for 24 h. The asymmetric UF membrane substrate was 

fabricated via phase inversion method using a semi-automated casting machine. The membrane was casted at 

0.317 cm/s casting velocity, 250 μm membrane thickness and immersed immediately into deionised water 

coagulation bath at room temperature. The membranes were kept in deionized water for 24 h before use.  

2.3 Interfacial polymerisation process 

Membrane sheets were cut into round shape with 49 mm in diameter for IP process. The membrane substrate 

was immersed in 0.2 %, w/v PIP aqueous solution for about 2 minutes. Excess monomer on the membrane 

surface was removed and the membrane was dipped in 0.2 %, w/v TMC in hexane for 2 min IP reaction time. 

Finally, the membrane was dried in air for 30 min and then was stored in deionised water overnight before used. 

All the experiment steps were performed at room temperature.  
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2.4 Dead end filtration performance 

The performances of the membranes were measured using Sterlitech HP4750 (Sterlitech Corporation, USA) 

dead-end filtration cell with an effective membrane area of 14.6 cm2. The feed pressure was controlled using 

the compressed nitrogen gas connected to the liquid reservoir of the filtration cell. The membrane was first 

compacted using pure water at 6 bars to get a steady flux for 2 h. After that, the pure flux was recorded at three 

different pressures (5 bar, 4 bar and 3 bar) for 2 h. The pure water permeability (PWP) was calculated based 

on the slope of water flux vs. pressure plot. Water flux, (Jw) was calculated by Eq(1) 

Flux (Jw) =
V

A ΔT
 

 
(1) 

where Jw is the permeation flux of the membrane (L/m2.h), V is the volume of permeate (L), A is the effective 

area of the membrane (m2) and t is the permeation time (h). The flux and rejection of single solution of 10 g/L 

of xylose, 10 g/L of glucose and 10 g/L of acetic acid were tested at 6 bars for 1 h. The concentration of solute 

in retentate and permeate were analysed to calculate the solute rejection (R) using Eq(2) (Sjoman et al., 2007).  

Rejection  (%) =  (1 −
Cp

Cf
) × 100 %  (2) 

where Cp and Cf are the concentrations of solute in permeate and feed solution, respectively (wt%). Based on 

the rejection value, the separation factor (Xs1/s2) of solute 1 to solute 2 was calculated using Eq(3) (Sjoman et 

al., 2007). 

X(s1 s2⁄ ) =  
1 − R, s1

1 − R, s2
  (3) 

where R,s1 and R,s2 is the retention of solute 1 and solute 2. The separation factor value bigger than one 

indicates that the separation process was achieved. The same membrane was used to filter different types of 

solute. The membrane was thoroughly rinsed with pure water at 8 bars after each of solute filtration until the 

original membrane water flux is restored. For each type of membrane prepared, at least duplicate membranes 

sample were tested in filtration experiment.  

2.5 Solute concentration analysis 

Xylose and glucose concentration were analysed using 3,5-dinitrosalicylic acid (DNS) method. Acetic acid 

concentration was analysed by Synergi 4U Hydro-RP 80A (Phenomenex) HPLC column (250 x 4.6 mm) using 

0.7 ml/min 0.02 M potassium phosphate mobile phase with PDA detector at 211 nm wavelength. 

2.6 Membrane porosity testing 

Membrane porosity (ε) was calculated based on the mass fraction of water lost after drying of wet membrane. 

The membrane was incubated with water for 24 h and weighed as w0 (kg). The wet membrane was placed in 

an air-circulating oven at 60 °C for 24 h for drying and then was weighed as w1, (kg). The porosity of the 

membranes was then calculated using Eq (4) 

𝜀 =  (w0 - w1 ) / ρwAι× 100 %  (4) 

where, A is the membrane surface area (m2), ι is the membrane thickness (m) and ρw is water density (kg.m-3). 

The average porosity based on triplicates membrane sample were reported. 

3. Results and discussion 

3.1 Pure water permeability of PES TFC membrane 

Table 1 shows the PWP and porosity of the membrane substrate and TFC membrane. 15 % PES membrane 

substrate has the highest PWP of 231.7  16.67 L/m2.h.bar, which is more than ten times higher compare to 

other membrane substrate. As expected the PWP decreased with the increasing of polymer concentration in 

substrate, but the decrement of PWP for the membrane prepared within the PES concentration of 17 to 23 wt% 

was not very significant. The PWP value for this concentration range is within 18, 84 ± 1.94 to 24.83 ± 5.09 

L/m2.h.bar. No linear relationship found on the porosity value of the substrate to the PES concentration in the 

substrate or to the PWP. It can be noticed that the porosity reduced significantly after the formation of TFC 

membrane. As for PWP, the size of pore in the skin layer effect significantly on the PWP rather than the total 

porosity measured in this study. After the IP, all the TFC membrane shows the PWP within the NF range. Based 
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on the PWP of several commercial NF membranes that had been used in biorefinery, the reported values are 

within 5.05 L/m2.h.bar to 17.1 L/m2.h.bar (Sjoman et al., 2007). 

Table 1: Pure water permeability (PWP) and porosity of membrane substrate and thin film composite 

membrane. 

 Membrane Substrate Thin Film Composite Membrane 

Membrane  PWP (L/m2.h.bar) Porosity, ε (%) PWP (L/m2.h.bar) Porosity, ε (%) 

15 % PES 231.67 ± 16.59 69.59 ± 3.26 28.07 ± 5.42 34.46 ± 3.99 

17 % PES 24.83 ± 5.09 97.57 ± 18.08 14.38 ± 7.75 35.02 ± 6.41 

19 % PES 19.86 ± 0.24 69.99 ± 13.89 17.71 ± 3.25 37.55 ± 4.47 

21 % PES 18.84 ± 1.94 87.89 ± 7.44 5.22 ± 1.82 40.29 ± 9.90 

23 % PES 24.49 ± 6.54 65.10 ± 13.39 3.94 ± 1.21 29.08 ± 8.80 

Table 2: Flux, rejection, and separation factor of xylose, glucose and acetic acid for the TFC membrane 

prepared using different PES membrane substrate at 6 bars. 

Membrane 
TFC membrane 

15 % PES 17 % PES 19 % PES 21 % PES 23 % PES 

Flux (L/m2.h)      

Xylose 3,032.11 ± 765.72 99.32 ± 10.66 40.41 ± 28.09 56.85 ± 24.22 17.30 ± 2.66 

Glucose 2,164.37 ± 688.70 97.26 ± 7.75 33.56 ± 18.40 41.78 ± 10.66 21.58 ± 15.98 

Acetic acid 2,038.68 ± 603.98 105.48 ± 3.88 71.23 ± 21.31 43.84 ± 17.44 19.52 ± 10.17 

Rejection      

Xylose 26.22 ± 7.90 23.21 ± 1.22 9.25 ± 9.09 24.19 ± 14.30 24.07 ± 5.96 

Glucose 33.91 ± 2.68 13.98 ± 3.30 25.49 ± 10.06 36.52 ± 21.47 47.56 ± 1.99 

Acetic acid 1.23 ± 0.16 1.28 ± 0.04 1.26 ± 0.40 1.02 ± 0.78 2.67 ± 1.05 

Separation factor      

Xyl/Glu 1.12 ± 0.07 0.89 ± 0.02 1.31 ± 0.21 1.23 ± 0.19 1.45 ± 0.06 

AA/Xyl 1.35 ± 0.15 1.14 ± 0.13 1.09 ± 0.13 1.29 ± 0.13 1.29 ± 0.09 

AA/Glu 1.50 ± 0.06 1.10 ± 0.01 1.27 ± 0.27 1.16 ± 0.13 1.86 ± 0.05 

3.2 Filtration performance 

The molecular weight cut off (MWCO) for TFC NF membrane usually ranges from 150 to 1,000 Da (Murthy et 

al., 2005). The MWCO for acetic acid, xylose, and glucose are 60.05, 150.3, and 180.6 g/mol. If the TFC 

membrane operated mainly based on the size exclusion, it is expected that the acetic acid will show the highest 

flux and lowest rejection percentage. Table 2 shows the flux, rejection, and separation factor of solutes for the 

TFC membrane prepared using different PES concentration in the membrane substrate. Almost all membrane 

showed high xylose flux compare to the glucose, except for the membrane of 23 % PES. The rejection of acetic 

acid is lowest in all membranes. High flux value of acetic acid only showed in the TFC membrane of 17 % PES 

and 19 % PES. This phenomenon occurred could be due to the charged dissociation of acetic acid, which has 

a low pKa value of 4.756. When the pH value was higher than pKa, acetic acid becomes negatively charged 

acetate. TFC membrane also had a negatively charged. This could lead to an increasing of electrostatic 

repulsion between the membrane and acetic acid molecule during the filtration. The flux and rejection on acetic 

acid is mostly influence by the membrane surface properties that determine the degree of electrostatic repulsion 

(steric hindrance) occurred during filtration.  

Based on the size, the rejection for the solute should follow this trend: acetic acid < xylose < glucose. Acetic 

acid showed a rejection less than 2 % for all membrane.  Most of the TFC membrane showed a rejection of 

xylose lower than glucose except for the 17 % PES membrane. The separation factor is calculated based on 

the rejection of solute. As shown in Table 2, the separation factor between the solutes does not change 

significantly compare to the flux changed when using different PES membrane substrate. The separation factor 

between xylose to glucose is bigger than one, except for 17 % PES membrane. The highest separation factor 

of 1.34 for xylose/glucose is comparable with the value reported by commercial RO98pHT (Zhou et al., 2013) 

and Desal-5 DK (Sjoman et al., 2008), which had a value of 1.56 and 2.00. The separation factor of acetic acid 

to sugar achieved is bigger than one for all the membrane. Although the acetic acid separation is feasible if the 

value is bigger than one, but the commercial membrane normally showed the separation value more than 200 

(Zhou et al., 2013). 
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4. Conclusions 

This study showed that the TFC NF membrane prepared using different PES membrane support influences the 

separation performance of the membrane for biorefinery application. The membrane substrate had a significant 

effect on the membrane flux compare to the separation factor between the solutes. The best separation factor 

achieved in the current study for xylose/glucose, acetic acid/xylose, and acetic acid/glucose are 1.45 ± 0.06, 

1.35 ± 0.15, and 1.86 ± 0.05. 
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