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Chitin is a very abundant polysaccharide that can be obtained from well-known marine sources (crustaceans), 

but also from terrestrial sources (mushrooms and insects). In the case where animal sources are considered, 

the material can be obtained by much abundant food or feeding waste. The extraction methodologies were not 

developed with similar technical readiness levels considering the different sources and the further conversion 

to chitin nanofibrils and chitosan is also under study, enabling the production of products differentiated for their 

macromolecular structures and morphology.Chitin nanofibrils from sea food sources were used in sanitary, 

cosmetic and packaging applications, where their anti-microbial properties and good biocompatibility were very 

useful. Chitin from mushrooms and sea food was used as starting material in possible coatings for cellulosic 

and bioplastic substrates. Currently chitin from insects (Hermetia Illucens) is also under study as well as the 

methodologies for extracting derivatives from it. Infrared analysis is an interesting technique to compare chitins, 

chitin nanofibrils and chitosan from different sources as well as electron microscopy for studying their 

morphology. 

The derivatives of chitin, such as chitosan and chitin nanofibrils, show anti-microbial properties. Hence, their 

use in several applications, ranging from packaging to sanitary and cosmetics, can conjugate high performance 

novel products with a reduced environmental concern. The comparison between chitin derivatives from different 

sources is very useful to address the biopolymers to specific applications, including the agricultural sector. 

While more and more applications for chitin derivatives will be developed, differences between them should be 

clarified and correlated to the sources, the methodologies of their production and their physical-chemical 

properties.  

1. Introduction 

Chitin, composed of repeating β(1,4)-N-acetylglucosamine units, is a very abundant biopolymer that can be 

obtained from both marine (crustaceans) and terrestrial (mushrooms and insects) sources. 

Interesting products can be obtained by chitin deacetylation: chitin nanofibrils, that represent the crystalline 

whisker-like part of the material, and chitosan. In the case of chitosan, a full deacetylation of the polymer is 

achieved, whereas in the case of chitin nanofibrils the acetyl groups are only partially removed (Morganti 2019). 

Chitosan is soluble in acidic water, on the contrary, the solid chitin nanofibrils can form nanostructured 

suspension in water (Panariello et al. 2019). Chitosan (Pakizeh, Moradi, and Ghassemi 2021) and chitin 

nanofibrils (Muzzarelli and Morganti 2006) were largely obtained from waste coming from sea food, in particular 

shrimps, with different methodologies and applied in sanitary, cosmetic and packaging applications, where their 

anti-microbial properties and good biocompatibility were very useful (Coltelli et al. 2019).  
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Chitin from mushrooms and sea food was investigated as starting material in possible coatings for cellulosic 

and bioplastic substrates (Gigante et al. 2021). Currently chitin from insects (Hermetia Illucens) is also under 

study as well as the methodologies for extracting derivatives from it (Hahn et al. 2020). The effect of the different 

life stages of the insect as well as the necessary pre-purification steps to obtain a chitin product having a purity 

similar to largely available ones have been recently studied. 

Interestingly Hermetia Illucens is a bioconverter insect, thus it can valorise organic waste from the agri-food 

industry through the bioconversion process. This process allows numerous products to be obtained of high 

biological and economic value: proteins and lipids of animal origin, chitin and residue from the bioconversion 

process (frass of insect and partially digested organic material comparable to soil conditioners for agriculture 

and therefore useful for crop fertilization) (Triunfo et al. 2021). 

Chitosan and chitin nanofibrils, showed anti-microbial properties and their use in several application, ranging 

from packaging to sanitary and cosmetics, can conjugate high performance novel products with a reduced 

environmental concern (Panariello et al. 2019). The comparison between chitin derivatives from different 

sources is very useful to address the biopolymers to specific applications, including the agricultural sector 

(Pagno et al. 2018). 

Infrared analysis is an interesting technique to compare chitins, chitin nanofibrils and chitosan from different 

sources. Many articles reported a reduction of amide I band of acetamide groups, that showed a well-defined 

peak at 1650 cm-1 with a minor shoulder at 1625 cm-1, in more deacetylated products, thus revealing a 

converstion of chitin to chitosan (Brugnerotto et al. 2001). This technique was used by several researchers to 

determine the deacetylation degree of chitin based on transmission spectra (Kasaai 2008). 

A faster methodology for characterizing chitin, chitosan and chitin nanofibrils is Attenuated Total Reflectance 

(ATR) infrared spectroscopy, a non-destructive technique based on recording the spectrum of a sample in 

contact with a crystal having a high refractive index. ATR-IR technique allows spectra to be obtained also from 

solid samples, without any preliminary preparation, saving time and allowing to analyse non-soluble systems 

such as chitin.  Spectra were strongly dependent on the adhesion between sample and crystal but, if the samples 

to be characterized are powdery, generally it is possible to obtain good quality spectra and a sufficient 

representativity for composition of the powder-based sample. 

In the present paper, chitin powder, obtained from insects (adult of Hermetia Illucens) with very recent 

techniques, was studied and compared with other samples coming from different sources such as shrimps and 

mushrooms on the basis of their ATR infrared spectra. Then the acetylation degree was evaluated for chitosans 

obtained from adult insect samples and compared with commercial shrimps chitosans. Moreover, the 

morphology of chitin and chitosan were compared by Scanning Electron Microscopy (SEM). It was found that 

Hermetia Illucens microstructured and nanofibrillated chitin was successfully converted to chitosan, resulting 

more homogeneous. 

2. Experimental 

2.1 Material 

The extraction of chitin from insect samples was carried out based on the multi-step process reported by Hanh 

et al. (2020) including a demineralization and deproteinization steps. A bleaching step was also considered. 

The chitosan was produced by heterogeneous deacetylation of adult Hermetia Illucens chitins by using 12 M 

NaOH. After the end of the reaction, the suspension was filtered using filter paper. Successively the solid residue 

was washed on the filter to neutral pH with distillated water. Then, the deacetylated sample was suspended in 

1% (v/v) acetic acid and, under continuous stirring, it was maintained at room temperature for 48 h. After 

centrifugation, the supernatant was collected. By using NaOH the solution was converted to a pH 8. Then, it 

was incubated overnight in order to precipitate the chitosan. A second centrifugation was carried out, so the 

recovered chitosan was washed with distilled water, to remove the residual acetate adsorbed by chitosan (Hahn 

et al., 2020).  At the end, the product was freeze-dried and stored at ambient temperature. 

Chitin showed a brown color because of residual pigments. With the aim of removing them, a bleaching 

treatment was applied to a portion of the chitin obtained from Hermetia Illucens, by using a solution of 5% 

hydrogen peroxide (H2O2) (Hahn T. et al., 2021). Bleached samples were then filtered using filter paper and 

washed with deionized water until neutral pH was reached. 

Commercial chitin from shrimp shells was purchased by Aldrich, commercial chitin from mushrooms was 

purchased by Glentham Life Sciences.  

Commercial chitosan from shrimp shells low viscosity was purchased by Aldrich, commercial chitosan from 

shrimp shells low molecular weight was purchased by Aldrich and commercial chitosan GP8523 was purchased 

by Glentham Life Sciences.  
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2.2 Infrared Characterization 

The powder of chitin or chitosan was homogenized and reduced in dimension in a mortar using a pestle. Then 

the powder is transferred from the mortar to the ATR crystal by using a spatula. Infrared spectra were recorded 

in the 550–4000 cm−1 range with a Nicolet 380 Thermo Corporation Fourier Transform Infrared (FTIR) 

Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with smart Itx ATR (Attenuated Total 

Reflection) accessory with a diamond plate, collecting 256 scans at 2 cm−1 resolutions. ONMIC software was 

used to elaborate the spectra and to compare different spectra profiles.  

The RAC ratio, that can be correlated to the acetylation degree of the sample, was determined by Eq(1)  

RAC=
A1620

A1020

 (1) 

 

where A1620 is the area of the band obtained by integrating the peak at 1620 cm-1 in the range 1695-1618 cm-1 

and A1020 is the area of the reference band in the range 1184-1024 cm-1.   

The integrations were carried out after tracing a baseline passing through the minima present in all the spectra 

at about 1735 cm-1 and 1185 cm-1. 

2.3 Scanning Electron Microscopy characterization 

SEM investigations were carried out on the powder samples. The instrument was a FEI Quanta 450 ESEM FEG 

scanning electron microscope (SEM) (Thermo Fisher Scientific, Waltham, MA, USA), which has a resolution 

power of 3.5 nm and possibility of magnification until 300,000×. Samples were preliminary coated with a thin 

metallic layer to avoid charge build up. 

2.4 Deacetylation degree of chitosan 

The acetylation degree (AD) of all chitosan samples was determined by potentiometric titration (Jiang, Chen, 

and Zhong 2003). Chitosan solutions were prepared dissolving 0.25 g of chitosan in 10 ml of deionized water 

and 20 ml of 0.1 M HCl. After stirring for 2 h at room temperature until complete dissolution of the chitosan 

sample, the chitosan-HCl solution was titrated with 0.1 M NaOH. 3 ml of NaOH were firstly added and the 

resultant pH of the solution was measured. Then 1 ml of NaOH at a time was added several times, measuring 

the pH of the solution after each addition. The titration was ended after the addition of 7 ml NaOH. Acetylation 

degree of chitosan was calculated considering the protonation of glucosamine group in the chitosan chains 

according to the Eq(2). 

AD % =(1-
[HCl] ∙ 𝑉𝐴 - [NaOH] ∙ Ve

W
 ∙161

g

mol
 )∙100  (2) 

 

where [HCl] is the concentration of HCl (0.1 M), VA is the volume of 0.1 M HCl (20 mL), [NaOH] is the 

concentration of NaOH (0.1 M), Ve is the consumed volume of NaOH at the equivalence point, W is the weight 

of dissolved chitosan and 161 g/mol correspond to the molecular weight of glucosamine in the chitosan chain  

3. Results and discussion 

The chitin obtained from adult Hermetia Illucens was compared with commercial chitins from other sources 

(shrimps and mushrooms) with ATR-IR spectroscopy to compare eventual differences in their molecular 

structure (Figure 1). 

Characteristic peaks of chitin can be identified in all the spectra. In particular peaks typical of amine and amide 

group of chitin can be observed. The stretching CO (amide I) can be identified at 1620-1650 cm-1, the bending 

NH (amide II) at 1550-1560 cm-1. At higher wavenumbers, -OH stretching broad band in the range 3000-3400 

cm-1, NH symmetric stretching at 3100-3110 cm-1 and NH asymmetric stretching at 3255-3270 cm-1 are present. 

All the spectra showed a similar structure, although the chitin from insect showed a different shape of the 

characteristic peaks. Those differences can be attributed to a different structure of the chitin fibrils but also to 

the different extraction and purification methods and to the different acetylation degree.  

Chitin from adult (CHITI-A) was bleached to obtain an alternative purified version with a less intense coloration 

(CHITI-AB). Then, chitosan was obtained from deacetylation of chitin from adult insects. Bleached (CHITO-AB) 

and unbleached (CHITO-A) versions were analyzed by ATR-IR to evaluate their acetylation degree through the 

comparison of RAC values. A higher value or RAC represents a higher acetylation degree of chitosan, so it 

indicates that the deacetylation was less effective.  
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Figure 1. comparison between ATR spectra of chitin extracted from different sources 

Table 1: Areas calculated by ATR spectra and corresponding RAC values 

samples A1620 A1020 RAC 

CHITI-A 7.256 13.643 0.53 

CHITI-AB 8.768 19.184 0.45 

CHITO-A 3.314 16.883 0.20 

CHITO-AB 2.853 14.748 0.19 

 

The RAC values obtained for chitin samples were more than two times the values calculated for corresponding 

chitosans, indicating the occurrence of extensive deacetylation passing from chitin to chitosan. Comparison 

between bleached and unbleached samples evidenced that the bleaching treatment induced also a slight 

deacetylation, but this effect was more evident for chitin than for chitosan samples.  

The correlation between RAC and acetylation degree of chitosans was investigated measuring the RAC values 

and acetylation degree of three commercial chitosans respectively with the ATR-IR spectroscopy and the 

potentiometric titration. The RAC data for commercial chitosan samples are similar but slightly lower than those 

of chitosan from adult insects.  

Table 2: RAC values from commercial chitosans and acetylation degree from potentiometric tests 

samples RAC Acetylation 

degree 

CHITO ALD 1 0.1543 17 

CHITO ALD 2 0.1440 15 

CHITO GLENT 0.1215 9 

 

The data, elaborated by linear fitting, were used to evaluate the equation of a line (Figure 2). Considering the 

equation of the line it is possible to predict that the acetylation degree of CHITO-A and CHITO-AB samples is 

28.5 % and 26.06 %, respectively. This methodology can be applied for a fast prediction of acetylation degree 

of chitosan samples, for optimizing the deacetylation reaction converting chitin into chitosan. Nevertheless, this 

methodology, should be improved and better validated after successive purification of insect samples, to verify 

that the higher values is affectively attributable to a different polymeric structure (acetylation degree) and not to 

the presence of impurities. In particular, the presence of unreacted chitin, could significantly affect the 

acetylation degree values. Moreover, the linear dependence of Acetylation Degree and RAC should be also 

verified and validated in a wide range of values, especially for ATR-IR analysis, where the change in functional 

groups can affect the molecular structure and consequently the shape and intensity of bands. 
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Figure 2: correlation line between RAC and acetylation degree from commercial chitosan analysis 

The morphology of chitin and chitosan was investigated by SEM analysis. In Table 3 the micrograph at low 

magnification evidenced for chitin (CHITI-A) a peculiar geometrical structure correlated to the specific surface 

morphology of the insect body. On the contrary the chitosan, obtained after the deacetylation, present as 

fragments in the micrograph of CHITO-A, showed a homogeneous morphology. Nanofibrils are present both in 

chitin and chitosan micrographs at high magnification. 

 

Table 3 micrographs of chitin and chitosan from insects at different developmental stages that evidence their 

microstructure 

 Low magnification High magnification 

CHITI-A 

  

CHITO-A 

  

4. Conclusions 

Investigation of extract from different sources such as shrimps, mushrooms and insects evidenced the feasibility 

of chitin supplying from many sources, obtaining similar products (as reported in the ATR-IR analysis) and 

comparable with spectra obtained with FT-IR in transmittance (Van de Velde and Kiekens 2004). Correlation 

between acetylation degree of chitin and chitosan and the RAC parameter was experimentally verified, allowing 

an evaluation of acetylation degree with ATR-IR technique. Chitosan can be successfully obtained through the 

deacetylation of chitin from Hermetia Illucens insects and its deacetylation degree resulted slightly lower respect 

to the commercial ones from other sources, in agreement with literature (Luo et Al. 2019). Morphology analysis 

of chitosan and chitin mainly evidenced differences in the microstructure. Chitin structure preserved 

microstructures typical of different insect body surface (Waśko et Al. 2016), whereas chitosan resulted 

homogeneous. 

While more and more applications for chitin derivatives will be developed, differences between them should be 

clarified and correlated to the sources, the methodologies of their production and their physical-chemical 

properties.  
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Nomenclature

RAC = acetylation ratio, -  

AD % = acetylation degree, % 

% T = Transmittance, % 
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