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Thermal pyrolysis of Thai Napier grass, cassava stalk and rice straw were studied thermogravimetrically, which 

was followed by a kinetic analysis assuming multiple kinetic schemes and a distributed activation energy model 

(DAEM) with reaction order n = 1 and n ≠ 1. The results showed that the DAEM described well the experimental 

data. The assumption of multiple kinetic schemes appeared more reasonable than that of similar studies

reported in the literature assuming a single kinetic scheme. Consequently, the kinetic parameters extracted from 

the present study are more realistic and within reasonable ranges. Overall, the activation energies are within 

31.6–223.53 kJ mol-1. The reaction orders are within 1.02–1.32 for the assumption of n ≠ 1. 

1. Introduction

According to a report of the National Science Technology and Innovation Policy Office of Thailand, the total of 

agricultural residues in Thailand in 2013 was equivalent to 9.20 Mtoe, of which cassava stalk accounted for 0.50

Mtoe. On the other hand, approx. 8-14 Mt of rice straw becomes byproduct after paddy harvesting annually 

(Suramaythangkoor and Gheewala 2008).  Lately, the Thai government has promoted a project of electricity 

production from energy crops with an emphasis on Napier grass and biogas production from Napier grass by

anaerobic digestion (AD). However, AD is not capable of digesting the lignin component of grasses, which

normally account for one thirds of the energy content of energy crops. The digestate can be used as fertilizer or

solid fuel for heat and power generation via thermochemical conversion processes. In general, the digestate,

Napier grass, cassava stalk and rice straw can be converted to thermal energy through combustion, of which

the devolatilization (pyrolysis) is a fundamental step ( Biagini et al. 2008). Therefore, it is important to study the 

thermal behaviour of these biomass materials during devolatilization. However, past studies on non-catalytic 

pyrolysis of Napier grass (Phuakpunk et al. 2020) and cassava stalk (Zhang et al. 2020; Jia et al. 2014) available

in the literature were very limited. In addition, these studies assumed single lump kinetic schemes, which are 

less relevant for pyrolysis of complex lignocellulosic materials (Tran et al. 2014). For these reasons, the present 

study was carried out for better understandings of pyrolysis behaviour and kinetics of Napier grass and cassava

stalk. Rice straw was included in this study for comparison, co-considering the seasonal variation of biomass

and the consistence need of an energy alternate. The pyrolysis was studied by means of thermo-gravimetric

analysis (TGA), associated with a kinetic modelling assuming multiple kinetic schemes followed with a non-

linear regression analysis. 
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2. Material and experimental methods 

Three biomass samples of Napier grass, cassava stalk and rice straw from Thailand were collected for this work. 

The samples were carefully washed with distillated water to eliminate contaminants. After that, the samples 

were dried at 378 K for 24 h, followed by grounding and sieving to obtain sample powders with particles sizes 

smaller than 125 μm. The use of these particle sizes is to ensure a kinetic control regime for the TGA 

experiments. The obtained powder was stored in plastic bags and kept at room temperature.  

Table 1.  Characterization of three biomass samples 

Sample Proximate analysis (wt%) Ultimate analysis (wt%) 

 M        VM       FC       Ash C         H       N          O 

Cassava stalk 

Napier grass 

Rice Straw 

3.12    80.77   10.36     5.75 

3.56    64.45   14.54   17.45 

3.20    69.23     9.36   18.21 

38.60     7.22   1.00    53.18 

35.50     6.10   1.80    56.60 

34.33     5.96   0.96   58.75 

M = Moisture; VM= volatile matter; FC= fixed carbon. 

Fuel properties of the biomass materials under investigation are shown in Table 1, which include the data of 

ultimate analysis and proximate analysis. The content of carbon, hydrogen and nitrogen was determined by an 

elemental analyzer LECO Truspec CHN, whereas the oxygen content was calculated by difference. The 

proximate analysis was determined by using a thermogravimetric analyzer (NETZSCH STA 449F3). The 

proximate analysis procedure is as followings: first the samples were heated from room temperature to 383 K 

at a heating rate of 10oC min-1 with a hold-up time of 10 min to obtain the weight loss associated with the 

moisture content; Subsequently, the temperature was ramped at 20oC min-1 to 1173 K, at which the samples 

were held for 10 min to determine the weight loss associated with the volatile matters. Oxygen was then 

introduced into the furnace chamber to oxidize the formed charcoals. The weight loss during this period was 

attributed to the fixed carbon. The remaining material after combustion was regarded as the ash content 

(Jeguirim et al. 2014). Another thermogravimetric analyzer Pyris 1 (TGA), Perkin Elmer, was used to study the 

non-isothermal pyrolysis of the biomass samples in Nitrogen. For each TGA run, approximately 6-8 mg of a 

dried sample was loaded into a crucible located in the furnace of the TGA. Before heating, the furnace was 

purged with Nitrogen for 20 min to eliminate any possible air content. The furnace was then heated from room 

temperature to 873 K at a constant heating rate of 10oC min-1 and a Nitrogen gas flow rate of 80 ml min-1.  

2.1 Kinetic modelling assuming distributed activation energy model 

Thermal pyrolysis of biomass may be defined as the process of thermal treatment of the material at elevated 

temperatures in an inert environment. It is a common practice to describe the process by the global scheme of 

Eq. 1 (Tran et al. 2014). 

Solid biomass -- > Char + volatiles                                         (1) 

The fundamental kinetic equation for the above scheme is represented by Eq. (2) 

𝑑𝛼

𝑑𝑡
= 𝐴. 𝑒

−𝐸𝑎
𝑅𝑇 . 𝑓(𝛼)                                                                                     (2) 

where f(α) is the conversion function of conversion degree, α, which is determined as the mass fraction of the 

decomposed solid (mass loss) or released volatiles of samples. The conversion degree α is defined by Eq. (3) 

𝛼 =
𝑚𝑜 −𝑚𝑡
𝑚𝑜 −𝑚𝑓

                                                                                               (3) 

where m0, mf , and mt are the initial mass, final mass, and the mass of the sample at time t, respectively.  The 

conversion function f(α) is dependent on the reaction mechanism and its different forms can be found in the 

literature (Criado et al. 1989; Vlaev et al. 2003) 

Various methods for estimating the kinetic parameters have been proposed and can be classified into three 

main groups based on the solution approaches: 1) simple algebraic models; 2) analytical model; and 3) integral 

model. The details of many different models have been intensively reviewed by several researchers (Di Blasi 

1993; Moghtaderi 2006). Among others, the distributed activation energy model (DAEM) is believed to be the 

most accurate model. This model assumes that thermal pyrolysis consists of numerous independent parallel 

reactions with their own activation energy and pre-exponential coefficient. If it is simplified that all reactions 

share the same pre-exponential coefficient and the number of reactions is large enough so that the activation 

energy is then represented by a continuous distribution function f(E) (Anthony and Howard 1976). Several forms 

of f(E) can be applied to DAEM model including Gaussian, Gamma, Weibull and Logistic distribution (Cai and 

Liu 2008; Cai et al. 2011; De Caprariis et al. 2012). Among these, Gaussian function (Eq. 4) is most widely used 

following the popularization (Anthony et al. 1975). 
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𝑓(𝐸) =
1

σ√2π
exp [−

(𝐸 − 𝐸0)
2

2σ2
]                                                     (4) 

where E0 and σ are the mean activation energy and its standard deviation, respectively. 

For the single DAEM model with the reaction order that equals to unity, n = 1 (Eq. 4a), or differs from unity, n≠1 

(Eq. 4b), the conversion degree can be described as below (Anthony and Howard 1976): 

∫ 𝑒𝑥𝑝 (−∫
𝐴

𝛽

𝑇

𝑇0

exp (−
𝐸

𝑅𝑇
)𝑑𝑇)   𝑓(𝐸)

∞

0

𝑑𝐸                               (4𝑎) 

𝛼 = −∫ ( −(1 − 𝑛)∫
𝐴

𝛽

𝑇

𝑇0

exp (−
𝐸

𝑅𝑇
)𝑑𝑇) 

1
1−𝑛  𝑓(𝐸)

∞

0

𝑑𝐸      (4𝑏) 

In general, lignocellulosic biomass materials are mainly composed of three components including hemicellulose, 

cellulose and lignin. The chemical structure of hemicellulose is more complicated than that of cellulose and it 

undergoes the thermal degradation in the temperature range of 473- 623 K (Jensen et al. 1998; Shen et al. 

2010). However, the degradation of cellulose occurs mainly in the range between 588 and 673 K (Yang et al. 

2007). In addition, lignin is thermally the most stable and decomposes within a broad temperature range 

(Raveendran et al. 1996). It is therefore too simplistic to describe the thermal decomposition of lignocellulosic 

biomass material by a single DAEM model. Recently, the multi DAEM model has been adapted by researchers 

to represent three main components including hemicellulose, cellulose and lignin (Várhegyi et al. 2011; Cai et 

al. 2013; Tran et al. 2016). The reaction rate is then described by Eq. (5) wherein ci is the contribution factor of 

i component.  

𝑑𝛼

𝑑𝑡
=∑𝑐𝑖

𝑑𝛼𝑖
𝑑𝑡

3

1

        𝑖 = 1,2,3                                                             (5) 

In addition to that, Napier grass contains considerable amount of protein and lipid, 27% and 14.8%, respectively 

(Dongmeza et al. 2009; García-Galván et al. 2012). In other words, Napier grass consists of five main 

components including protein and lipid apart from holocellulose and lignin. Therefore, it is reasonable to assume 

a multi DAEM model consisting of five pseudo-components for the pyrolysis of Napier grass. A similar approach 

done by Bui at al. was successful to reflect the pyrolysis kinetic of microalgae residues (Bui et al. 2016). 

Following this assumption, the pyrolysis can be kinetically represented by Eq. (6).  

𝑑𝛼

𝑑𝑡
=∑𝑐𝑖

𝑑𝛼𝑖
𝑑𝑡

5

1

        𝑖 = 1,2,3,4,5                                                         (6) 

In Eq. (5) and Eq. (6), the conversion degree of every pseudo-component follows Eq. (4a, b) and the overall 

conversion rate equals to the summation of partial conversion rates.  

2.2 Numerical method 

The non-linear least square method was applied to the kinetic modelling and simulation of the assumed models. 

The objective function to minimize is described in Eq. (7). 

𝑆 =∑[(
𝑑𝛼𝑖
𝑑𝑡
)
𝑒𝑥𝑝

− (
𝑑𝛼𝑖
𝑑𝑡
)
𝑚𝑜𝑑𝑒𝑙

]2
𝑛

𝑖=1

                                                        (7) 

where (
𝑑𝛼𝑖

𝑑𝑡
)
𝑒𝑥𝑝

 and (
𝑑𝛼𝑖

𝑑𝑡
)
𝑚𝑜𝑑𝑒𝑙

 stand for the experimental and modelled conversion rate, N is the number of 

experimental points.  The fit quality is appraised by Eq. (8) (Branca and Di Blasi 2003)  

𝐹𝑖𝑡 (%) =

(

 1 −

√𝑆
𝑁

[(
𝑑𝛼𝑖
𝑑𝑡
)
𝑒𝑥𝑝
] 𝑚𝑎𝑥

)

 . 100%                                             (8)   

3. Results and discussion 

Results from the kinetic analysis are presented in Figures 1, 2 and 3 for both cases of n = 1 and n ≠ 1, whereas 

the extracted kinetic parameters are tabulated in Table 2. Note that the Napier grass curves and data are 

obtained from simulation assuming five pseudo-components, while only three pseudo-components were 

assumed for the cassava stalk and rice straw data. As can be visually inspected, the simulated curves fit well 

the experimental data. This is confirmed by the high fit qualities of around 99% in Table 2. The simulations with 

n ≠1 allow small improvement in fit quality. For instance, it is just 0.22% increment in the case of Napier grass. 

Other investigations also confirmed that the reaction orders higher than one allowed better description of 

experimental data (Manyà et al. 2003; Bach, Tran et al. 2015). Nonetheless, other researchers argued that the 

pyrolysis process of lignocellulosic biomass materials can be represented by first order reaction, n = 1 (Broström, 
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Nordin et al. 2012). Indeed, for the case n≠1, the reaction order was not far away from unity for the present 

study. 

 

 

Figure 1: DAEM simulation for Napier grass with (A) n=1; (B) n≠1 

  

Figure 2: DAEM simulation for Cassava stalk with (A) n=1; (B) n≠1 

 

 

Figure 3: DAEM simulation for Rice Straw with (A) n=1; (B) n≠1 

The calculated kinetic parameters shown in Table 2 are consistent with other studies (Grønli et al. 2002; Manyà 

et al. 2003). It is observed that the value of standard deviation for hemicellulose was highest among the others 

whereas that of lignin was smallest. It means that the activation energy of hemicellulose varies within a wider 

range than those for other pseudo-components. The mean activation energy of hemicellulose from Cassava 

stalk was about 167 kJ mol-1, consistent with the literature of 154-165 kJ mol-1 (Teng and Wei 1998). 

Nevertheless, it was claimed that the decomposition of hemicellulose is described by activation energy in the 

range of 80-90 kJ mol-1 (Orfão et al. 1999) or 105-111 kJ mol-1 (Várhegyi et al. 1997). Among the three samples, 

hemicellulose of the cassava stalk sample exhibited the highest activation energy, being within the range of 

166.61-167.85 kJ mol-1, followed by 149.21-151.27 kJ mol-1 for the rice straw and 98.04-100.64 kJ mol-1 for the 

Napier grass. However, cellulose of the rice straw sample had the highest activation energy, being within the 

range of 233.37-233.53 kJ mol-1, followed by 176.21-187.02 kJ mol-1 for the cassava stalk and 171.05-184.81 

kJ mol-1 for the Napier grass. When it comes to the activation energy of lignin component, the Napier grass 

sample showed the highest value within 61.10-64.41 kJ mol-1, followed by 41.57-46.08 kJ mol-1 for the rice straw 

and 31.60-33.24 kJ mol-1 for the cassava stalk. In addition, the activation energy of lipid and protein component 
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of the Napier grass is within 147.14-148.10 kJ mol-1 and 123.08-124.22 kJ mol-1, respectively. The predicted 

content of these two components is 11% and 19%, respectively. 

Table 2. Extracted kinetic data 
 

n = 1 n ≠ 1 

Sample 
 

A 
min-1 

Eo 
kJmol-1 

σ  
kJmol-1 

c Fit 

% 

A 
min-1 

Eo  
kJmol-1 

σ  
kJmol-1 

c n Fit 

% 

Napier  H 7.52E+06 100.64 18.04 0.20 98.70 4.91E+06 98.04 17.58 0.20 1.02 98.93 

grass C 2.78E+11 171.05 30.66 0.24 
 

2.79E+12 184.81 33.13 0.24 1.20 
 

 
L 2.75E+02 61.10 10.95 0.26 

 
4.47E+02 64.41 11.55 0.26 1.16 

 

 
Ld 1.15E+08 147.14 22.34 0.11 

 
1.57E+08 148.01 22.96 0.11 1.32 

 

 
P 4.75E+07 123.08 22.06 0.19 

 
5.94E+07 124.22 22.26 0.19 1.07 

 

Cassava  H 9.00E+10 166.61 29.86 0.32 98.41 1.11E+11 167.85 30.09 0.33 1.05 99.00 

stalk C 2.39E+11 187.02 32.57 0.44 
 

5.66E+10 176.21 31.24 0.43 1.06 
 

 
L 5.88E+00 31.60 5.68 0.24 

 
7.98E+00 33.24 5.97 0.24 1.18 

 

Rice  H 5.14E+09 149.21 26.32 0.29 98.85 7.33E+09 151.27 26.65 0.29 1.04 99.15 

Straw C 1.53E+13 223.37 36.95 0.48  1.60E+13 223.53 36.98 0.48 1.04  

 L 4.16E+01 41.57 9.13 0.23  9.63E+01 46.08 10.24 0.23 1.20  

In another study, it was reported that the activation energy of Napier grass pyrolysis within 87.8 to 289.2 kJ 
mol−1 for the conversion up to 70% (Phuakpunk et al. 2020). However, for the higher conversion, 80% and 90%, 
the reported values were 494.3 kJ mol−1 and 887.2 kJ mol−1, respectively. These values are unrealistic for 
lignocellulosic materials (Anca-Couce et al. 2020). From the present study, the activation energies for Napier 
grass are ranging from 61.10 to 184.81 kJ mol−1 for the higher conversion, 80% and 90%, which are more 
realistic. 

4. Conclusions 

Thermal pyrolysis of the three types of Thai biomass including Napier grass, cassava stalk and rice straw was 

studied by means of a thermogravimetric analyzer for bioenergy application in Thailand. The collected TG data 

was employed for kinetic analyses assuming the multiple DAEM (five pseudo-components for the Napier grass, 

but only three for the cassava stalk and rice straw), with reaction order n = 1 and n ≠ 1. The results showed that 

the multi DAEM model described well the experimental data with higher fitting quality. The assumption of multiple 

kinetic schemes appeared more reasonable than that of similar studies reported in the literature assuming a 

single kinetic scheme. Consequently, the kinetic parameters extracted from the present study are more realistic 

and within reasonable ranges.  

Overall, the activation energies are within 31.6–223.53 kJ mol−1. The activation energy of lignin is within 31.60–

64.41 kJ mol−1, followed by 98.40–167.85 kJ mol−1 and 171.05–223.53 kJ mol−1 for hemicellulose and cellulose, 

respectively. The reaction orders are within 1.02–1.32 for the assumption of n ≠ 1. In addition, the activation 

energy of lipid and protein component of the Napier grass is within 147.14-148.10 kJ mol−1 and 123.08-124.22 

kJ mol−1, respectively. The predicted content of these two components is 11% and 19%, respectively, which are 

also in good agreement with the literature. These data can be used as input data for modelling of energy systems 

as well as reactor and process design (Kempegowda et al. 2012). 
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