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In the present era, the spread of cyber-physical systems in the framework of the so-called Industry 4.0, is leading 

towards a complete automation of industrial processes, which are increasingly decentralized, smart, and require 

fewer and fewer frontline personnel. The risk assessment process is certainly not excluded from the revolution, 

and in perspective needs to be automatic, dynamic and linked with the conditions that emerge, moment by 

moment, in the life of a complex system. Analytical techniques can help in converting data in information and 

hence system knowledge to spot trends in operational performance, thus improving risk assessment quality. 

Even though the bow-tie approach is widely used within the context of complex systems, it still evidences several 

limitations, mainly connected to the actual assessment of likelihood and interdependencies in the fault and event 

trees. This paper shows how a bow tie analysis can be reframed as a Hierarchical Bayesian Network, where 

the probability distributions of the network nodes are updated with real time predictions during the operations. 

The proposed model was then applied to the risk assessment of a shore-to-ship LNG bunkering operation. 

1. Introduction 

Digitalization and industry 4.0 revolution is leading toward complete plant automation, with sensors and data 

streams allowing observations and machine learning and artificial intelligence-based methods allowing hidden 

abnormal features detectable. Sustainability issues drive towards integration of risk and LCA (Vianello et al., 

2022) and at the same time, transient operations behaviour is available for risk analysis and as shown by 

Osarogiagbon et al. (2021), big data can train artificial intelligence to develop models supporting decision-

making and effective risk assessment. In the design and implementation of reliable operational control systems, 

one of the critical issues to be addressed in the risk assessment is the coexistence of Boolean elements (e.g. 

failure of instruments) and analogical elements (deviation of process variables). In fact, the results of the risk 

analysis are conventionally obtained from logical concatenations of barrier failures and events and are 

characterized by a Boolean (true/ false) approach. What is not yet completely evaluated is the transition between 

a safe state and a risk state, considering that the transition between the states is reflected in the absence of 

required control barriers. The bow-tie method is a well-established risk assessment tool, widely used within the 

broad context of complex systems. It describes the effects of root causes on a top event and explains the 

resulting consequences, taking into account the effectiveness of barriers and the influence of the escalation 

factors. Bow-tie was approached by Ding et al. (2020) to assess the adequacy and efficacy of safety barriers in 

reducing storage fire risk, Alves et al. (2021) supported by it the management of onshore pipelines operational 

risk and Brown et al. (2021) investigated inherent safety options for emerging pandemic hazards. However, the 

bow-tie approach suffers several recognized, limitations, mainly connected to the actual assessment of 

likelihood and interdependencies in the fault and event trees. Additionally, management processes and possible 
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shortcomings modify probabilities of failure-on-demand of the safety barriers to different extents, depending on 

the type of safety barrier (passive, automated, or human action related). Some limitations of the tool were faced 

by, Badreddine and Amor (2013) who relying on a Bayesian approach constructed bow-tie diagrams from actual 

data implementation to evaluate appropriate preventive and protective barriers dynamically. This paper aims at 

providing a flexible framework towards bow-tie analysis transposition as a Hierarchical Bayesian Network 

(HBN), for a wide range of accident scenarios. In order to dynamically assess the system safety, the probability 

distributions linked with the nodes of the network are updated in real time while collecting evidences during the 

operations, giving the chance of intercepting the emerging risk path by identifying the precursor events. Starting 

from this observation, in the present paper, is presented a dynamic approach to the operational control through 

a hybrid system based on the prediction of critical variables, from one side, and the consequent automatic 

updating of the risk assessment parameters. As proof of concept, the framework was applied to the risk 

assessment of a shore-to-ship LNG bunkering operation. 

2. Theoretical background 

The approach incorporates several AI systems into a comprehensive and interconnected logic, namely soft 

sensors, which have a solid predictive capacity on process variables (Vairo et al., 2021a) and hierarchical 

inferential systems, which explore the interdependencies between system components in relation to the 

fluctuation of process variables. The soft sensors, based on deep neural networks, rely on the real-time 

monitoring network of the critical process variables and are able to predict the trend of the same variables on a 

suitable time scale (usually half an hour later) during the ongoing operations. Subsequently, the hierarchical 

Bayesian network, receiving as inputs the predicted trends of the critical variables, updates the bow-tie risk 

parameters, as quantified in the fault and event trees. Accordingly, dynamic probability distribution for the Top 

Events and the possible evolving scenarios are attained. Bayesian hierarchical modelling is a statistical model 

written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the 

Bayesian method. The sub-models combine to form the hierarchical model, and Bayes' theorem is used to 

integrate them with the observed data and account for all the uncertainty that is present. The result of this 

integration is the posterior distribution, also known as the updated probability estimate, as additional evidence 

on the prior distribution is acquired (Allenby et al., 2005).  An overview of the proposed method structured into 

five main steps and several sub-steps, is presented in Figure 1. 

 

Figure 1: Logical flowchart of the proposed method 

Hierarchical modelling is used when information is available on several different levels of observational units. In 

the outlined framework, we consider relevant sources of information the following ones:  prior probabilities 

obtained by Fault and Event Trees; boolean failures and predictions on critical variables values. As widely 

known, Bayesian hierarchical modelling makes use of two notable concepts in deriving the posterior distribution, 

namely Hyperparameter: parameters of the prior distribution and Hyperpriors: distributions of hyperparameters. 

Suppose a random variable Y follows a normal distribution with parameter θ as the mean and variance 1, i.e.: 

Y | θ ~ N(θ, 1)         (1) 

Suppose that the parameter θ has a distribution given by a normal distribution with mean μ and variance 1: 

θ | μ ~ N(μ, 1)         (2) 

Furthermore, μ follows another distribution given, for example, by the standard normal distribution, N(0, 1). The 

parameter μ is called the hyperparameter, while its distribution given by N(0, 1) is an example of a hyperprior 

distribution. The notation of the distribution of Y changes as another parameter is added, i.e.: 

Y | θ, μ ~ N(θ, 1)         (3) 
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Considering another stage, μ, characterized by normal distribution mean β and variance ε, meaning 

μ ~ N(β, ε)          (4) 

β and ε can be defined hyperparameters characterized by their hyperprior distributions as well (Lee et al., 2021). 

For a 3-stage hierarchical model, the posterior distribution is provided as follows: 

𝑃(𝜃, 𝜑, 𝑋 |𝑌) =  
𝑃(𝑌 | 𝜃) 𝑃(𝜃 |𝜑) 𝑃(𝜑 |𝑋) 𝑃(𝑋)

𝑃(𝑌)
       (5) 

The hierarchical modelling can easily fit the bow-tie structure, in which each stage can be represented with a 

hierarchical level of the Bayes net. The hierarchical network is turned in a predictive tool by incorporating, as 

evidences, the prediction of critical variables trend, obtained considering it a part of a Hidden Markov Model 

(HMM). A HMM is a generative probabilistic model, in which a sequence of observable X variables is generated 

by a sequence of internal hidden states Z. The hidden states are not observed directly. The transitions between 

hidden states are assumed to have the form of a first order Markov chain. They can be specified by the start 

probability vector π and a transition probability matrix A. The emission probability of an observable variable can 

be any distribution with parameters θ conditioned on the current hidden state. Consequently, the HMM is 

completely determined by π, A and θ. The predicted trend of critical variables is then affecting the risk 

parameters, which are updated in real time. 

3. Applicative Case Study 

Recently, ship propulsion considering LNG as a possible fuel (with dual fuel marine engines installed on board) 

has favoured important discussions about LNG supply chain and delivery on board to the ship power plant (Vairo 

et al., 2021b). On these grounds, in order to assess the capability of the approach, a LNG Shore-to-Ship 

bunkering operation was analysed considering in detail all the physical components, the structural elements and 

components along with their interactions. The transfer unit is equipped with following critical components, 

affecting barrier effectiveness: quick release hooks; fenders; dock monitoring system to check the ship's position 

and speed of approach, weather and sea conditions; pier control room. The quick release hooks will be installed 

on the dock. All hooks are capable of moving both vertically and horizontally and each is designed to be released 

independently of the other. The pier control room is equipped with controls for the emergency stop of the LNG 

transfer, for the release of the LNG transfer connection and equipment for the remote control of the fire 

extinguishing system. The Ship-to-Shore connection is used to reciprocally exchange Emergency Shut-Down 

(ESD) between the ship and the ground system. The connection between the ship and the plant takes place via 

a loading arm, with two independent lines: one for the liquid phase (LNG) discharged from the ship to the plant 

and a flexible line for the gas phase (steam return from the plant to the ship); vice versa, the steam to the plant 

and the LNG to the ship, during the bunkering of a barge. The critical safety devices of the loading arm are 

identified as follows: 

- a quick release system (Powered Emergency Release Coupling - PERC); 

- a PLC for the loading arm connected to the Basic Process Control System (BPCS) of the plant, integrated 

into the Hydraulic Processing Unit;  

- the arm connected to the ship by means of 2 flanged connections, one for the liquid and one for the vapor. 

The operations of connection/disconnection of the loading arm are continuously monitored through the control 

system (pressure gauges and thermometers). The critical lines are the liquid line (nominal diameter 10” and the 

vapour line (nominal diameter 8”).  

3.1 Bunkering operation Risk Assessment 

The main causes of loss of containment during bunkering reside in the coupling operation of the bunkering 

manifold to the receiving vessel and are due to damage to the connection pipe during normal operations and 

SIMOPS (simultaneous operations). During bunkering operations, loss of containment can occur in different 

parts of the process. In particular, the situations that can lead to a loss of containment concern failures of critical 

equipment and failures of the receiving vessel.  Figures 2, 3, 4 represent the logical development of the simplified  

risk assessment, including  respectively  Fault Tree, Event Tree and overall Bow-Tie. It is well worth noting that 

given the inherent hazard of handled material, a better and more detailed description of all the possible 

outcomes and of the relative probabilities should include a refined evaluation of the ignition taxonomy 

considering on a statistical basis, immediate, delayed local and remote ignition probability (Vairo et al., 2021c). 
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Figure 2: FTA for bunkering operation 

 
Figure 3: ETA for bunkering operation 

 

Figure 4: Bow-Tie for bunkering operation 

4. Results and discussion 

The bow-tie is transposed into a HBN by developing a specific .xml files, analogously to the approach by 
(Zurheide et al., (2021) introducing all logical dependencies and barriers. Table 1 refers to intermediate events.  

Table 1: First level dependencies: intermediate events 

ESD 

X1 (or gate) 

ESD (works – PD Tab.1)  

X1 (works - inference) 

ESD (works – PD Tab. 1) 

X1 (fails - inference) 

ESD (fails – marginal Tab.1) 

X1 (works - inference) 

ESD (fails – marginal Tab.1) 

X1 (fails - inference) 

 

LNG (works) 

 
 

1 
 

1 
 

1 
 

0 

 

LNG (fails) 

 

 
0 

 
0 

 
0 

 
1 
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According to the logic framework previously outlined, root failures (leaks from flanges, valves, breakage or 
detachment of the hose, etc.) are correlated with the trend of critical process variables (temperature, pressure, 
as monitored by the control system) through a hidden state Markov model (HMM). The sequences predicted by 
the HMM, are integrated in the form of evidences into the HBN, which consequently updates the risk parameters, 
as visualized in the Tables 2-3. 

Table 2: Root events probabilities update 

Stage Expected probability State PDF 

 

ESD (works) 

 

 

0.99998 

 

Safe 

 
 

Hose (works) 

 

 

1 

 

Safe 

 
 

S_Pipeline (works) 

 

 

0.99999 

 

Safe 

 
 

S_Flanges (works) 

 

 

0.99997 

 

Safe 

 
 

B_Pipeline (works) 

 

 

0.99989 

 

Safe 

 
 

B_Flanges (works) 

 

 

0.99982 

 

Safe 

 

Table 3: Second level dependencies: intermediate events 

Shore 

Bunker 

Hose 

Shore (w) 

Bunker (w) 

Hose (w) 

Shore (w) 

Bunker (w) 

Hose (f) 

Shore (w) 

Bunker (f) 

Hose (w) 

Shore (w) 

Bunker (f) 

Hose (f) 

Shore (f) 

Bunker (w) 

Hose (w) 

Shore (f) 

Bunker (w) 

Hose (f) 

Shore (f) 

Bunker (f) 

Hose (w) 

Shore (f) 

Bunker (f) 

Hose (f) 

X1 

(works) 
        

X1 

(fails) 
        

 

The procedure is similarly developed considering all the tree gates. In accordance with the real time update of 

the risk parameters, the probability distributions of the accident scenarios are updated as well. 

 

Figure 5: MCMC traces of Scenarios Probability Distributions 
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Figure 5 depicts in form of immediate readability the MCMC traces of the dynamic probability distributions for 
all the scenarios conceived for the given process according to the bow-tie development.  

5. Conclusions 

The proposed system is an application of Bayesian Hierarchical Inference to the bow-tie analysis, where the 

deviations are anticipated by a predictive model. The risk parameters and the accidental scenarios probabilities 

are inferred starting from the system states sequences and are represented in the form of probability distribution 

functions (PDF). The Bayesian approach allows to explore the interdependencies among the system 

components and their modification alongside with process variables fluctuation, thus capturing the changes in 

operational conditions and improving the dynamic facet of risk. The outcome is a dynamic update of the 

probabilities (root events, top events and accidental scenarios), which provide an extremely powerful indication 

on how the system is performing, if it is approaching an unsafe state and how far, or close, the system is to a 

hazardous deviation. Precise failure data of system components utilized to calculate the failure probability 

require advanced refinement, e.g. utilizing a Noisy-OR gate Bayesian network relying on intuitionistic fuzzy 

theory (Jianxing et al., 2021). So ongoing development of the approach are addressed to the improvement of 

Bayesian network in the bowtie configuration to tie results by refining uncertainty assessment of input data.  
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