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Hazardous events in process plants like the leakage of dangerous substances can result in severe damage, 
and such an event is often defined as the TOP event of a fault tree analysis (FTA) in a quantitative risk analysis. 
The TOP event probability can then be calculated if the basic events probabilities are provided. These 
probabilities are often determined based on generic reliability data which do not necessarily reflect the 
operational and environmental characteristics of a plant of interest. This paper presents an approach based on 
Bayesian network (BN) analysis to explicitly include experience data collected during the plant operation to 
make the generic probabilities more plant specific. The approach is illustrated via a pressure vessel containing 
a toxic substance in an Ammonia production plant. In this case study, the failure rate distribution in the BN is 
updated as the new information becomes available during plant operation. The results show that the suggested 
approach effectively reflects the operating experience of a specific plant.  

1. Introduction 
Process plants have the inherent potential to cause major accidents (Kletz, 2009). The release of toxic gas in 
Bhopal in 1984 (Kalelkar and Little, 1988), the explosion in Toulouse in 2001 (Dechy et al., 2004), and the 
explosion in Buncefield in 2005 (MIIB, 2008) are some examples of such accidents. Such accidents have been 
a driving force for the development of risk assessment in the process industry. This is reflected in the regulations 
related to major process accidents, like the Seveso directive of the European Union that is imposed on the 
operators of facilities handling dangerous substances. The directive requires  the operators of the Seveso site 
categorized as upper-tier sites to perform risk analysis and to implement all the necessary risk-reducing 
measures (EU, 2012). To meet this requirement, quantitative risk analyses (QRAs) is typically carried out in the 
design phase of a facility (Paltrinieri and Reniers, 2017).  
Conventional QRA studies focuses on the quantification of the risk related to major accident scenarios (Haugen, 
2018). A major accident scenario in the process industry generally involves a loss of containment (LOC) event 
like a leakage from a vessel, which can be referred to as a central event (bowtie), TOP event (fault tree) or 
hazardous event. To estimate the risk related to a specific hazardous event, the frequency or probability of this 
event should be obtained (Delvosalle et al., 2006). The frequency estimates for representative hazardous events 
in process plants can be found in the literature sources, for example the HSE UK failure rate and event data for 
land use planning (HSE, 2012) and the Dutch Purple book published as a guideline for QRA in the process 
industry (Uijt de Haag and Ale, 2005). Such frequency estimates are usually derived from historical data and 
various QRA studies for typical process systems, and are intended to be a default value that can be either a 
conservative or nonconservative approximation for the studied system (Beerens et al., 2006). It may therefore 
be necessary to calculate the probability/frequency of a specific hazardous event, for instance, using a fault tree 
analysis (FTA).  
FTA has been extensively applied in the QRAs of process systems (Khakzad et al., 2011; Pasman, 2015). 
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When the probability of the TOP event is to be calculated for a FTA, first the probability of each basic event in 
the FT must be determined, for example, failure probabilities for technical barriers and human error probabilities. 
An example of a basic event is a pressure relief valve that does not open upon demand. For such a technical 
component, the time to failure distribution is often assumed to be an exponential distribution with a constant 
failure rate. Then, the basic event probability is determined by the probability of failure on demand that is 
calculated from the failure rate and test interval (Vesely et al., 1981). Component test intervals are usually known 
from the maintenance system, while failure rates are uncertain parameters. Thus, to provide the failure rate 
vales, generic reliability data are often used in FTA. However, if possible and reasonable, plant-specific failure 
rates should ideally be used to reflect the plant characteristics (such as usage and environment), rather 
than generic failure rates representing the average data for a whole industry. In this respect, the use of generic 
reliability data in a FTA contributes to parameter uncertainty, which in turn may influence the validity of the 
frequency of the TOP event (Hauptmanns, 2008).  
Several approaches have been suggested to handle the parameter uncertainty in FTA, e.g. where a component 
failure rate is treated as a random variable with a probability distribution (Brissaud et al. (2010), Flage et al. 
(2013)). In addition, the failure rate distributions can be updated based on the actual performance of a 
component (Kaplan (1983), Siu and Kelly (1998), Vatn (2006), Khakzad et al.,(2014)). Based on these studies, 
this paper suggests an approach based on Bayesian network (BN) analysis where the barrier failure rates are 
updated based on operating experience. In the suggested approach, a FT model for a hazardous event is 
converted to a BN, and then this BN model is extended with a hierarchical Bayesian analysis where generic 
reliability data are used to define the prior distribution of the failure rate, and plant-specific data are used to 
update the failure rate distribution. A case study of a pressure vessel in an Ammonia production plant is used 
to demonstrate the approach. In this case study, the failure rate of an important barrier is updated based on the 
incidence reports and maintenance data.   

2. Theoretical background  
Bayesian network (BN) analysis is becoming increasingly popular in risk and reliability studies for process 
systems, and is used as an alternative to FTA (Khakzad et al., 2011). BN can overcome some of the limitations 
of FTA, and an advantage with a BN analysis is that the probabilities of the nodes in the BN can be updated as 
new information becomes available.    

2.1 Bayesian networks in relation to fault trees  

A BN is a directed acyclic graph built with nodes and arcs. Each node represents a random variable with a 
probability distribution that can be discrete or continuous (Charniak, 1991). An arc denotes the causal 
relationship between two variables, such that one variable is interpreted as a cause and another variable is 
interpreted as an effect. An effect variable is often referred to as a child and has a set of parent nodes that 
represent the cause variables. For any node with the parent(s), a conditional probability distribution needs to be 
specified to indicate the strength of the casual relationships between the variables (Kjærulff and Madsen, 2013). 
A node with no parents is called a root node, and for such nodes a marginal probability distribution needs to be 
specified. Any fault tree in a risk analysis can easily be converted to a BN where the basic events of a FT are 
represented by the root nodes. It should be noted that a basic event may appear more than once in a FT, but 
the same root node is presented only once in the BN (Rausand, 2011). The intermediate events and the TOP 
event of a FT are converted to non-root nodes, and the conditional probability table (CPT) of each non-root node 
should be specified such that it corresponds to the OR-gate and AND-gate, respectively, from the FT.  

2.2 Hierarchical Bayesian analysis  

The prior probabilities of the root nodes in the BN can be assigned in the same way as for the basic events in 
the fault tree, which means that parameter values (e.g. failure rates) are identified from available data. If generic 
data are applied, the BN analysis will give the same generic result for the leaf node as for the corresponding t 
TOP event in the FTA (Khakzad et al., 2011). The available data for a node may however be associated with 
uncertainty, and this uncertainty is described by using a prior distribution for the node (e.g. component). In this 
case, the component under consideration can be regarded as a sample of a population of similar components. 
Then, the failure rate λi of component i, is considered as a sample from a distribution, and this distribution is 
governed by uncertain hyperparameters (Kelly and Smith, 2009). Then, the prior distribution for each 
hyperparameter can be specified independently, and we can use vague prior distributions – e.g., uniform 
distribution – when no information exists. If there is available information such as expert opinion and relevant 
reliability data, these should be reflected in the prior distribution of the hyperparameters (Fenton and Neil, 2012). 
The prior distribution of a hyperparameter can be updated to a posterior distribution by using e.g., data from 
similar systems. As a result, an informative prior distribution for the failure rate can be determined, and this prior 
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distribution can be further updated to a posterior distribution in the light of the plant-specific data obtained during 
operation (Khakzad et al., 2014).  

3. Proposed approach 
This section presents the approach that is suited for establishing a BN model where the distribution of uncertain 
parameters (i.e., failure rates) can be updated by using Hierarchical Bayesian analysis. The approach consists 
of five steps as illustrated in Figure 1.  
- Step 1 Construct the fault tree: It is essential to identify relevant hazardous events in risk analysis of a system 
or process. The relevant hazardous events can be identified by taking into account the type of the system and 
the properties of the substances contained in the system (ARAMIS, 2004). Each hazardous event is defined as 
the TOP event of a FT, such that the FT is used to model the causal sequences to the event, including barrier 
failures.  
-Step 2 Convert the fault tree structure to a BN: The conversion is straight forward (see Section 2.1.)   
-Step 3 Evaluate the data sources for selecting prior distributions: As mentioned in Section 2.2, the prior 
probability for each node may be assigned in the same way as for the FTA. Then, we can carry out a sensitivity 
analysis to obtain the ranking of important nodes (variables) that  have significant influence on the hazardous 
event, and such variables require better quantification (Rausand, 2011). In this step, it is proposed to search for 
plant-specific data, at least for the important components. However, plant-specific data are usually sparse, and 
it is therefore suggested to use the performance data from similar systems by using Hierarchical Bayesian 
analysis.  
-Step 4 Hierarchical Bayesian analysis: Hierarchical Bayesian approach can be graphically represented in the 
BN by extending the BN with the nodes for the hyperparameters, and this requires that the prior distributions for 
the hyperparameters be determined. In cases where additional information about the hyperparameters is 
available, this information can be incorporated to obtain an informative prior distribution for the parameter of 
interest (see Section 2.2).  
-Step 5 Obtain a posterior distribution given the new plant-specific data: During the operation of the studied 
system, we can obtain new information (e.g. maintenance data) that can be used to update a prior distribution 
for the parameter of interest in the BN (Khakzad et al., 2014). Such information is referred to as evidence, and 
the BN is extended by adding the evidence nodes.  

  

Figure 1: The proposed procedure for hierarchical Bayesian analysis 

4. Case study  
4.1 Construction of the fault tree and Bayesian network 

The proposed approach is demonstrated by a simple case study of a pressure vessel containing a toxic material, 
installed in an Ammonia production plant. The documentation and the drawing of the vessel is provided by the 
operator of an anonymous Ammonia production plant. The vessel is used to vaporize Anhydrous ammonia 
(NH3) coming from a separator where NH3 is in a liquid state. At start-up, the level of liquid NH3 in the separator 
is controlled by a level control valve (LCV) that is operated manually by the human operator. If a large amount 
of NH3 fluid enter the vessel, the pressure in the vessel will increase quickly, which can lead to the overpressure. 
The overpressure may in turn result in a rupture of the vessel. The hazardous event to be analyzed is specified 
as ‘overpressure in the expansion vessel due to the loss of liquid in the separator’.  
The FT for the specified hazardous event is constructed as shown in Figure 2a, using the software CARA 
FaultTree (Sydvest, 1999). In the FT, the failures of the barrier elements (components) installed to prevent the 
overpressure are defined as basic events. A pressure relief valve (PSV) is a key barrier to relieve the excessive 

Step 1: Construct the fault tree

Step 3: Evaluate if sufficient data are 
available for assigning prior probabilities 

Step 2: Convert the fault tree into a
Bayesian network

Step 4: If yes, use prior probabilities, if not:
Hierarchical Bayesian analysis

Step 5: Obtain posterior distributions based 
on plant-specific data
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pressure when the vessel pressure reaches the PSV set pressure. A flow orifice (FO) is used to regulate the 
pressure, such that the relief load on PSV will not increase over its relieving capacity. The PSV is designed as 
a 2 out of 2 system with the flow orifice. The level alarm called level alarm low (LAL) is sounded if the liquid level 
is too low in the separator, which will lead to the increase of the pressure in the expansion vessel. The operator 
should respond to LALs by operating the LCV manually. There are two redundant level alarms, denoted LAL1 
and LAL2. There is also a pressure alarm, called pressure alarm high (PAH) that is redundant to the level alarms. 
PAH will be activated when the vessel pressure increases beyond a specified high pressure, and the operator 
should respond operating the LCV manually. However, the LCV with mechanical failures cannot perform 
correctly, even if the operator response is proper.  Each node in the BN has two states, i) The component has 
failed ii) The component is functioning. It is noted that all the components included in the BN are barriers,. A 
barrier can fail in different ways or have several failure modes. For this case study, only the failure modes of a 
barrier that can impede the required safety function are considered. For PSVs, fail to open on demand (FTO) is 
the failure mode that includes the inability of a PSV to open at the set pressure, and thus the two states for PSV 
are specified as follows: i) FTO, ii) Functioning on demand. 

 

 

Figure 2a: The fault tree for the overpressure in the expansion vessel. Figure 2b: The BN extended by including 
hierarchical Bayesian analysis  

4.2 Informative prior distribution  

The FT model established in Step 1 is converted to a BN, and the prior probabilities for the nodes in the BN are 
determined. The failure probabilities of components assumed based on both generic reliability data from the 
Offshore and Onshore Reliability Data (OREDA) (OREDA, 2009), as well as the company database. For the 
human error probabilities, are based on the risk analyses by the company. A sensitive analysis revealed that 
the PSV is the most critical among the technical components, and therefore a hierarchical Bayesian analysis is 
carried out for the PSV.  
For this case study, historical performance data from three other PSVs installed in a similar Ammonia plant are 
used to generate an informative prior distribution for the failure rate of the PSV. The three other PSVs are 
denoted as PSV1 PSV2 and PSV3 respectively, and the given PSV is denoted as PSV4. These PSVs are used in 
similar operating conditions with PSV4 and are deemed to have similar failure characteristic. Therefore, λi of 
PSVi is considered as a sample of the random variable Λ that is Gamma distributed with α and β. The time to 
failure Ti of PSVi is assumed to be exponentially distributed with the failure rate λi. As shown in Figure 2b, the 
BN is extended with the hyper parameter nodes for α and β (the nodes named Alpha and Beta), which is 
connected to the nodes for λi. To choose the prior distributions for the hyperparameters α and β, we use PSV 
data obtained from OREDA. The PSV data from OREDA are relevant for PSV4, because it reflects the industry-
average failure rate for PSVs. The lower, mean, and upper values for the estimate of the failure rate (per 106 
hours) for the conventional PSVs are 0.02, 1.17, and 3.69 per 106 hours respectively (OREDA, 2009). To reflect 
this information, a Triangular distribution (0, 1, 4) is selected for the hyperparameter α, where 1 is the most likely 
value, and 0 and 4 are the minimum and maximum values, respectively. The interpretation can be that the modal 
value for the number of failures within the accumulated time in service is 1. On the other hand, the exponent of 
hyperparameter β, log10 β is assumed to have a triangular distribution (-8, -7, -6), which may be interpreted as 
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the accumulated time in service is 106 to 108 hours. This method for defining hyper priors using Triangular 
distributions is suggested by Fenton and Neil (2012), to utilize observed performance of similar components or 
to use expert opinions, instead of using vague prior distributions for the hyper parameters.  
The prior distribution is then updated to the informative prior distribution for the PSV in the BN, denoted PSV4, 
using the performance data from the similar PSVs. This requires addition of evidence nodes for λi in BN 
representation. The evidence is the number of failures of PSVi within the time interval [tj, tj +ν], nij, which is 
assumed to be Poisson distributed with mean λiν. In the BN, the arc is directed from the node λi (named as the 
failure rate node PSVi) toward the evidence nodes. The construction and the calculation of the BN is carried out 
by using the software AgenaRisk (Agenarisk, 2018). According to the plant data collected from 2000-2008, 
PSVs opened on demand (i.e. at set pressure) during operation. A successful opening of a PSV indicates that 
the PSV is in a functioning state when a demand occurs. PSV1 opened on demand twice, in 2000 and in 2008. 
PSV2 also opened twice, in 2004 and 2007. PSV3 opened once in 2007. To be able to use this information, it is 
assumed that the three PSVs are taken out of service every 4th year for testing, which means that the length of 
observation period is 4 years for each PSV. If a demand occur within 4 years and the PSV is in FTO state, the 
PSV will not open successfully. It is therefore considered that the number of failures in the period 2000-2004 
and the period 2004-2008 for these three PSVs is 0, which are entered as evidence, as shown in Figure 2b.  

 

Figure 3a: Prior distribution, Figure 3b: informative distribution, Figure 3c: posterior distribution  

4.3 Posterior distribution 

The informative prior distribution of λ4 is updated to a posterior distribution by using plant-specific data for PSV4, 
that is the maintenance data from 2007 to 2016. The maintenance record shows that PSV4 is subject to an 
inspection/overhaul, and pressure testing every 4th year, and no failure of PSV4 was detected. Therefore, 
number of failures = 0 is entered as evidence in period 2004-2008, 2008-2012, 2008-2016. FTO can only be 
detected by pressure testing or real demands, thus it can be classified as dangerous undetected (DU) failures. 
The mean downtime of a DU failure within a test interval is approximately the half of the test interval, given that 
a DU failure has occurred (Rausand, 2014). For this reason, PSV4 is considered in failed state if its time to failure 
is less than 2 years (17520 hours). By this logic, the probability distribution of PSV4 node is defined by 
implementing the expression ‘if (T>17520, “Functioning”, “FTO”) ‘in AgenaRisk software. The prior distribution, 
informative prior distribution, and posterior distribution of λ4 are shown in Figures 3a, 3b, and 3c, respectively, 
and the mean and standard deviation of these distributions are reported in Table 1. The result shows that the 
mean value of the posterior distribution determined based on generic data is lower than the mean of the prior 
distribution, which may imply that the generic failure rate estimates for PSVs may be conservative values for 
the given plant. 

Table 1: The updated mean and standard deviation (SD) of the failure rate distributions  

  Prior distribution Informative prior distribution Posterior distribution   
Mean 4.35 ∙10-6 4.29 ∙10-6 2.97 ∙10-6  
SD 2.68∙10-6 2.52∙10-6 2.02 ∙10-6  

5.  Conclusions 
The suggested approach is based on BN analysis where the BN model for a specified hazardous event is 
extended with hierarchical Bayesian analysis for updating the failure rate distributions. The case study 
demonstrates how the failure rate distribution of a key barrier, a PSV, can be updated based on operating 
experience. The performance data from the similar PSVs are incorporated to obtain the informative prior 
distribution, and then experience data from the given plant are used to obtain the posterior distribution. This 
approach is directed at practical application of hierarchical Bayesian analysis to handle parameter uncertainty 
in a risk analysis.  
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