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It is a well-established fact that activated sludge Wastewater Treatment Plants (WWTP) are placed among the 
most significant contributors of Greenhouse Gas (GHG) emissions. The task of intelligent emission control of 
such plants is a great challenge, mainly due to the highly nonlinear dynamics and associated uncertainty of its 
constituent bioprocesses. The need for more efficient and environmentally conscious control is ever 
increasing, due to the upsurge of industrial and urban water usage. In the current work, a nonlinear Model 
Predictive Control (MPC) scheme that considers an activated sludge model is developed for pulp and paper 
industry. The nonlinear MPC employs a flexible controller input structure through a process superstructure 
formulation that enables the adaptive utilisation of the most suitable set of manipulated variables based on the 
prevailing operating conditions. A generalised framework of this flexible controller type along with a nonlinear 
dynamic model for the plant accounting for the simultaneous satisfaction of stringent control objectives on the 
effluent quality and the GHG minimisation is developed. The proposed controller incorporates manipulated 
variables for all admissible aeration intensities, internal flow recirculation streams, external carbon sources, 
influent flow distribution in each bioprocessing unit, unit volume variations and recirculation flow percentage. 
Accurate simulations indicate the achievement of a superior emission reduction performance compared to 
state-of-the-art MPC implementations in WWTP. Every consideration of a manipulated variable set is 
associated with respect to its contribution to the total GHG reduction for each mode of operation. 

1. Introduction

Due to the constantly increasing demand in water usage for industrial and urban operations, WWTP are 
targeted to operate under more stringent operating specifications. To successfully biometabolise the 
wastewater and achieve acceptable effluent water quality, the WWTP system needs to be constantly 
monitored and efficiently controlled. The biochemical reactions as contributors of GHG emissions have been 
properly named as "On-Site" Emissions. Additionally, process equipment that are being deployed to control 
the plant also contribute to a significant degree to the overall GHG emissions. Those are called the "Off-Site" 
emissions, which result mainly from the aerator and pump operations. 
The main challenges associated with the efficient control of WWTPs are: 
• High variability of the operating conditions and the external inputs in the system (e.g., influent load

variation due to abrupt weather changes). 
• Nonlinearity of the process system dynamics.
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• An abundance of unmeasured state variables that are important to describe the system behaviour (1).
• Uncertainty of model parameters, especially those related to the growth rate of microorganisms and

indicated in the work of Henze et al. (1987) and later enhanced by Alex et al. (2008).
Current state-of-the-art literature is limited to control approaches that use specific manipulated variables. A 
common choice is the manipulation of the aeration intensity and recirculation flow in the aerator. Vega et al. 
(2014) considered such a choice for the manipulated variables and employed a simplified plant configuration 
consisted of two-units chamber. Zeng and Liu (2015) used a similar approach with the Benchmark Simulation 
Model 1 (BSM1) plant configuration suggested by Alex et al. (2008). In Han and Qiao (2014) a similar input 
controller structure is utilised in a MPC, which is complemented by a neural network structure that performs 
online approximation of the system's states. In Stentoft et al. (2021), the on-off durations of aerator operation 
are controlled. In Huang et al. (2020), the manipulated variables are the aeration intensities of chambers 3, 4 
and 5 (Figure 1). In Sweetapple et al. (2014a), the input variables involved the internal recirculation flow, 
wastage flow, aeration intensities of chambers 1 and 2, and the external carbon sources of chambers 1, 2 and 
5. To the best of the authors’ knowledge, there is no published work that addresses WWTP control through a
flexible approach that allows the potential use of all available degrees of freedom in the process system. 
There is, however, a study wherein the sensitivity of the available manipulated variables is investigated 
(Sweetapple et al., 2014b), that identified the aeration intensities as the most influential factors with regards to 
GHG emissions, a conclusion that agrees with observations made in the scope of this work. In the current 
study, the deployment of all feasible manipulated variables is considered to enable the greatest possible 
flexibility in the control scheme at every time instance. The main control objective is the minimisation of the 
GHG emissions and operating costs, while maintaining the effluent quality within allowable limits. 
Due to the constant increase in computing power, it is now possible to use complex optimisation algorithms in 
industrial settings. Especially in the case of WWTPs, where time constants are in the order of magnitude of 
approximately 15 min, it is realistic to efficiently use conventional non-linear optimisation algorithms in real-
time. In addition, high stiffness of the model differential equations, as WWTP systems encompass process 
dynamics that are characterised by a large range of temporal scales, result in the need of efficient temporal 
decomposition techniques. For instance, the control of Dissolved Oxygen (DO) requires a different time scale 
than the control of ammonia and nitrate in the sludge (Weijers, 2000). There have been significant efforts 
towards temporal decomposition of the WWTP dynamics over the past two decades. The proposed approach 
aims also to provide a highly performing NMPC (Nonlinear MPC) leveraging the multiple control objectives. 

2. Process system and manipulated variables’ configuration description

In this work, the objective function is consisted of a term for the generated GHG emissions, terms for the 
manipulated variable variations, terms for state tracking errors between different levels of controller operation, 
and a term for the Effluent Quality Index (EQI), which is a weighted average of effluent component loads that 
have significant influence on the quality of effluent flow water and are usually considered to satisfy regional 
regulations (Alex et al., 2008). As far as the relative importance between each optimisation term is concerned, 
an extensive analysis in multi-objective optimal control is provided in Stentoft et al. (2021). 
As an accelerator of nature’s processes, WWTP goal of operation is to achieve fast and effective elimination 
of toxic nutrients in wastewater. Among the different biological treatment methods, Activated Sludge Process 
(ASP) is usually selected. Inside the unit chambers of the WWTP (Figure 1), oxidation of the inserted biomass 
and denitrification occur in aerated and anoxic conditions. 

 
 
 

The plant configuration is described by two anoxic and three aerobic chambers, followed by a 10-layer non-
reactive secondary clarifier as shown in Figure 1. A generally preferred model that provides a good 
compromise between dynamics accuracy and computational effort is the BSM1 model (Alex et al., 2008) and 

Figure 1: Network diagram depicting the flow inputs, outputs and recirculations (arrows). Right-most 
shape of Figure: notation for unit chamber k. Qk and Vask

 refer to the flow rate and volume of the k-th 

chamber. Qin is the influent flow rate, which can split to the fQi
 fractions 
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is used in this work. The manipulated variables shown in Eq(1) involve the flow rates, aeration intensities and 
unit chamber volumes. 

uT = ൤u
KLa
T , u

fQi

T , u
fQint

T , u
QEC

T , u
Vas

T , u
fQr

T , Qw൨ (1)

where: u
vari
T  = ቂvari1,…,varinu

ቃ , var = {KLa, fQi
, QEC, Vas, fQr

}, u
fQint

T  = ቂfQint1,1
,…, fQint1,nanox

 ,…, fQintnaer,nanox
ቃ 

KLa denotes the aerator-actuated aeration intensities or oxygen transfer (i.e., the oxygen flow rate that is 
transferred to the microbial cultures to be biometabilised) applied to each unit chamber. Variables fQi, fQr

,  fQint
 

and Qw represent the influent flow rate, external recycle rate, internal recycle rates and wastage flow, 
respectively (Figure 1). QEC,k represents the pump actuated supplementary biodegradable external carbon 
source flow for the k-th unit chamber which facilitates denitrification. The time-dependent state vector (x(t) ≡ x

t
)

is defined as: 

xT = ቂx
1
T,…,x

nu

T ,  x
stll
T ቃ (Time index is omitted for simplicity)

The state vector (x
k
) that describes the k-th unit chamber is given below.

x
k
T = ൣSIk, SSk

, XIk, XSk
, XBHk

, XBAk
, XPk

, SOk
, SNOk

, SNHk
, SNDk

, XNDk
, SALKk

൧, 1 ≤ k ≤ nu (2)

In the above-given vector, the elements that start with “S” represent the soluble components, whereas those 
with “X” represent the insoluble components. For example, SO represents the soluble oxygen concentration in 
the flow of the k-th chamber. A similar structure is used for the influent flow x

in
 (Figure 1). The state vector

(xstll) that describes the settler is given below. 

x
stll
T  = ቂx

XTSS

T , x
SI

T , x
SS

T , x
SO

T , x
SNO

T , x
SNH

T , x
SND

T , x
SALK

T , x
solidsu

T ቃ 
where: x

var
T  = [var1,…,varnL

], var = {"XTSS", "SI", "SS", "SO", "SNO", "SNH", "SND", "SALK"}

and  x
solidsu

T  = ൣXIu, XSu
, XBHu

, XBAu
, XPu

, XNDu
൧, u: refers to underflow: Qu = Qf - Qe (Figure 1). XTSSl

 is the total 

solid concentration in the i-th settler layer which is equal to 0.75·(XI+ XS+ XBH+ XBA+ XP). 

BSM1 (Alex et al., 2008) is the basis for the formulations of the nonlinear differential state equations, derived 
from mass flow balance equations for the five unit chambers, i.e. 13 equations for each chamber, and the 10-
layered non-reactive settler (the number of settler equations is equal to three related to the first three elements 
of x

stll
T  of Eq(2).The mass balance equations also include terms that represent the growth and decay of

biochemical components that take place inside the unit chamber due to reaction kinetics, as per Activated 
Sludge Model 1 (ASM1) (Henze et al., 1987). Certain additions to the state equations of the BSM1 model are 
considered, to account for the added flexibility of the controller, which include extra flow inputs and outputs to 
unit chambers that arise from the potential flow recirculations (Figure 1). Each arrow in Figure 1 that points to 
and from a chamber essentially represents a mass flow that has to be added in the state equations. No 
modification is required for the settler equations that can be found in Alex et al. (2008). All the biochemical 
components in the state vectors will be considered as known (i.e., perfectly estimated). 

Table 1: Relationship between measurable variables and state variables in a unit chamber (table obtained 
from Yin and Liu, 2018). T1 = XS+XI+XBA+XBH, conc.: concentration 

Measurement  State expression Measurement States’ expression 
Oxygen Conc. SO Alkalinity Conc. S஺௅௄ 
Conc. of NH4

+ & NH3 Sேு COD BOD+T1 
Conc. of nitrate & nitrite oxygen Sேை BOD SS+SI 
Conc. of suspended solids T1+XP+XND 

3. Methods

The nonlinear features of the BSM1 are fully included in the MPC, since linearisation of the model equations 
results in significant performance deterioration (Vega et al., 2014). To calculate the GHG emissions a 
combination of the BSM1, ASM1 and Bridle’s model is implemented, a choice that is also considered in Huang 
et al. (2020). An analytic representation of the calculations can be found in Snip (2010).  
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The employed optimisation package is the open-source symbolic-numerical solver CasADi (Andersson et al., 
2019). The discretisation method used is the direct collocation method. The MPC related parameters are 
given in Figure 2. The external disturbance is the influent flow load (i.e., flow rates) and component 
concentrations of the components that correspond the chamber’s state vector x

k
 in Eq(2). A premeasured

influent dataset in Alex et al. (2008) was utilised that corresponds to stormy weather conditions 
(“STORMINFLUENT” dataset of Alex et al. (2008)). For this work, it is assumed that the influent flow signals 
are correctly identified and forecasted. Similarly, to Huang et al. (2020), this work considers the following 
sources of GHG emissions: endogenous decay, BOD removal, nitrification, denitrification, sludge disposal, 
aeration, pumping and chemical usage. Other researchers such as Stentoft et al. (2021) consider as GHG 
sources those attributed to nitrous oxide emissions and electricity consumption.  

3.1 Temporal Decomposition 

The temporal decomposition problem is not yet solved by any closed-loop method and has been tackled by 
several authors in a heuristic manner. The timescale properties of the reaction kinetics model (ASM1) are not 
very well understood (Weijers, 2000). A representation of the dynamics in different time scales is presented in 
Weijers (2000). The proposed controller structure is a two-staged NMPC, as depicted in Figure 2. 

 
 

The supervisory NMPC solves the state equations in steady state and minimises the GHG emissions. The 
reactions can be assumed as static for large time scales and this module further utilises weather data 
forecasts that are in essence generated by a sliding window of the initial premeasured raw weather data for a 
time window of 0.5 d. For the scope of this work, it will be assumed that the influent signal is correctly 
predicted, by applying the aforementioned smooth signal and incorporating measurement disturbances in the 
future. The process level NMPC aims to implement the outcome of the supervisory level controller and further 
satisfy the quality specification of the effluent stream. 

3.2 Objective Functions 

The generic form of the MPC objective function is given below. 

Jt = ෍ ቆ൬x
t+j,t

 - x
reft+j,t

൰T

M ൬x
t+j,t

 - x
reft+j,t

 ൰  + u
t+j,t

TQ u
t+j,t

+ fGHG ቀx
t+j,t
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t+j,t
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t+j,t

, u
t+j,t
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, u

t+j,t
)ቇH-1

j=0

   (3)

The supervisory NMPC does not contain a state-tracking error penalty, first term of Eq   (3), whereas the 
process level NMPC considers it, because it is dictated by the supervisory controller. Eq(4) represents the 
penalty of exceeding the legislation-mandated effluent index (or discharge) limits, see Eq(5). 

feffl_Qual_viol(x, u) = ෍ ቐ 0, ቀx
eff

ቁ
i
 ≤ ቀx

eff,lim
ቁ

i

weffi, ቀx
eff

ቁ
i
 > ቀx

eff,lim
ቁ

i

5

i=1

(4)

x
eff
T  = ൣNtoteff

,CODeff,SNH,eff, XTSSeff
,BOD5eff൧ < x

eff,lim
T = [18, 120, 4, 30, 10] g/m3 (5)

4. Results and discussion

The simulations yielded GHG emissions (Figure 3b, wherein kg CO2 eq. represents the equivalent CO2 yield 
from the various generated greenhouse gases) that are low for WWTP standards, given the specific discharge 
limits in Eq(5)(4). The only manipulated variables that the supervisory MPC optimises are the unit chamber 
volumes, since it is not realistic to variate them with the rate dictated by the process level MPC’s sampling rate 
(Figure 2). By observing Figure 4 it becomes apparent that the controller indeed chooses to variate the 
available manipulated variables at different time instances. For presentation simplicity, only the aeration 
intensities for the chambers 4 and 5 are shown. The variables that experience the largest levels of utilisation 
by the controller are the aeration intensities and the external carbon sources (Figure 4). For the influent flow 

x
plant

Figure 2: Simplified outline of the controller - System architecture. The sampling time of each NMPC
controller is denoted as T and the prediction and control horizons as Np and Nc 

x
ref

Supervisory 
NMPC 

Process Level NMPC Plant

T=15 min, Np = 5, Nc = 2 T = 0.5 days, Np = 4, Nc = 1 
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split it was assumed that fQi1
=1 and fQik

= 0 for k >1, since toxic influent compound concentrations such as SNH 

need to be biodegraded so that the respective concentrations in the effluent flow remain below discharge 
limits. By observing Figure 5d, it becomes apparent that the consideration of all aeration intensities as 
manipulated variables leads to an increase in the aeration energy. This is expected since additional aeration 
energy is required to variate the aeration intensities. The effluent quality related components are depicted in 
Figure 5. Effluent indexes are mostly kept below limits and BOD5eff

 exceeds the limit at time periods that 

correspond to the most severe influent load peaks. Compared to Huang et al. (2020), all values of effluent 
quality indexes computed in the present work are lower, except for BOD5eff

. The GHG emissions are reduced 

to a factor of 2.6 in the present work compared to the ones in Huang et al. (2020) and to a factor of 5 
compared to the ones in Kim et al. (2015). However, the effluent indexes in Kim et al. (2015) are maintained at 
lower levels (specifically SNHeff

, which is kept around 2 g/m3). This observation indicates that minimisation of

GHG emissions can compromise the minimisation of the values in x
eff

 (Eq.(5)). In Stentoft et al. (2021), the

lowest GHG emissions were around 65 kg/day, which are generated from N2O production and electricity 
consumption and are approximately 15 times smaller than the corresponding ones computed in the present 
work. However, direct comparison of GHG emissions in this case is difficult, since the plant configuration in 
Stentoft et al. (2021) is very different in terms of number of unit chambers and corresponding volumes. As 
stated in Fighir et al. (2019) expert user knowledge is required when comparing output data between different 
WWTPs. 

Figure 3: Optimal unit chamber volumes (a) and total GHG concentrations (in kg CO2-eq./h) (b) 

Figure 4: (a) Optimal aeration intensities (units 4 and 5), (b) Optimal external carbon source flows (units 1 and 
2)  

Figure 5: Effluent Quality signals (a-c) and Aeration and Pumping Energies (d)  

5. Conclusions

The consideration of a flexible WWTP model with regards to the manipulated variables provides superior 
results compared to schemes that employ a limited number of manipulated variables and similar plant 
configurations found in recent literature. The proposed approach is computationally efficient and allows for the 
implementation of the control system under real-time conditions, through the utilisation of conventional non-
linear optimisation packages. 

Nomenclature

BOD5eff – Effluent biochemical oxygen demand, 
g/m3 
CODeff – Effluent chemical oxygen demand, g/m3 
fQint

 – Internal recirculation fraction, m3/d

fQr
 – External recirculation fraction 

KLa – Aeration intensity, 1/d  
naer – Number of aerated chambers 
nanox – Number of anoxic chambers 
NH3 – Ammonia 
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NH4
+ – Ammonium 

Ntot – Total nitrogen concentration, g/m3 
nu – Number of unit chambers 
QEC – External carbon source flow rate, m3/d 
Qw – Wastage flow rate, m3/d 
SALK – Alkalinity concentration, g/m3 
SI – Soluble inert organic matter, g/m3 
SND – Soluble biodegradable organic nitrogen 
concentration, g/m3 
SNH – NH4

+ & NH3 nitrogen concentration, g/m3 
SNH,eff  – Effluent SNH, g/m3  
SON – Nitrate and nitrite nitrogen concentration, 
g/m3 
SO – Soluble oxygen concentration, g/m3 
SO,sat – Saturation SO 
SS – Readily biodegradable substrate 
concentration, g/m3 
u – Vector of manipulated variables 

Vas – Activated sludge unit chamber volume, m3 
XBA - Active autotrophic biomass concentration, 
g/m3 
XBH – Active heterotrophic biomass concentration, 
g/m3 
XI – Particulate inert solid matter concentration, 
g/m3 
XND – Particulate biodegradable organic nitrogen 
concentration, g/m3 
XP – Particulate products arising from biomass 
decay concentration, g/m3 
XS – Slowly biodegradable substrate 
concentration, g/m3 
XTSSeff

 – Total effluent solid concentration, g/m3(∎)eff – Variable that refers to the effluent flow (∎) – Vector variable (∎)i – i-th element of vector 
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