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In this work, a machine-learning based optimisation framework is proposed for optimal design of solar steam 
methane reforming using molten salt (SSMR-MS) through machine learning techniques. The artificial neural 
network (ANN) is employed to establish relationships between total annualised cost (TAC), hydrogen production 
rate and molten salt duty, and independent input variables in SSMR-MS. A hybrid global optimisation algorithm 
is adopted to solve the developed surrogate model and generate the optimal design. The computational results 
demonstrate that a significant reduction in TAC by around 15 % can be achieved than the existing SSMR-MS. 
The lowest Levelised cost of Hydrogen Production (LCHP) is 2.43 $ kg-1 which is reduced by around 15 % 
compared to the existing process with LCHP of 2.85 $ kg-1. 

1. Introduction

Hydrogen is an important energy carrier in the transportation sector and essential industrial feedstock for 
petroleum refineries, methanol, and ammonia production. It is anticipated that hydrogen global demand will 
increase 10-fold by 2050 (Hydrogen Council., 2017). Conventional hydrogen production mainly uses natural 
gas and oil-based feedstock for steam reforming, which results in considerable greenhouse gas emissions, and 
consequently contributes to global warming (Voldsund et al., 2016). Therefore, investigation of clean and 
affordable hydrogen production process using renewable energy sources is crucial (Turner et al., 2008). 
Solar energy for hydrogen production has received significant attention in recent years due to its primary 
abundance as an energy source (Koumi Ngoh et al., 2012). It can be utilised for hydrogen production in three 
ways: photochemically, thermochemically and electrochemically (Liu et al., 2019). However, the low solar to 
hydrogen efficiency and instability of solar systems indicate the solar hydrogen production rate is inferior to that 
of the industrial scale (Liu et al., 2019). To effectively use solar energy for large-scale hydrogen production, 
solar steam methane reforming using a volumetric receiver reactor (SSMR-VRR), SSMR-MS and solar thermal 
power generation coupled with water electrolysis (STP-WE) have been developed and evaluated (
Likkasit, 2015). The SSMR-MS shows greatest potential due to its unlimited operation hours and lower TAC. 
However, no effort has been made for optimal design of SSMR-MS process to reduce TAC and CO2 emission. 
This is the main novelty of this work. In this work, an optimisation framework from (Ibrahim et al., 2018) is 
extended for such optimal design using machine learning techniques. The ANN models are established to 
predict TAC, hydrogen production rate and molten salt heat duty in SSMR-MS. A linear regression model is also 
developed to describe the relationship between solar equipment cost and molten salt duty using System Advisor 
Model (SAM) (NREL., 2015). Based on these, a surrogate model-based optimisation problem incorporating the 
proposed ANN models and linear regression model for integration of the entire SSMR-MS and the solar cost is 
developed. A hybrid global optimisation algorithm is employed to solve the developed optimisation problem and 
generate the optimal design, which is then validated in Aspen Plus V8.8 and SAM. Besides the process option 
from (Likkasit, 2015), three novel options in the SSMR-MS are proposed and investigated. The computational 
results demonstrate that when the pre-reformer is an adiabatic reactor, the best TAC can be generated. As a 
result, a significant reduction in TAC by 14.90 % ~ 15.10 % and CO2 emissions by 4.36 % ~ 5.23 % can be 
achieved compared to the existing SSMR-MS. The molten salt duty is reduced from 20 MW to 10.20 ~ 10.32 
MW, resulting in a decrease of the solar field equipment cost by approximately 28.64 %. 
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2. Problem description

Figure 1 illustrates a schematic diagram of the SSMR-MS process for large-scale hydrogen production. Treated 
natural gas and steam is heated to approximately 400 oC and fed into a pre-reformer where the reactions of 
steam methane reforming take place. The pre-reformer can be adiabatic or non-adiabatic. If non-adiabatic, 
molten salt transfers concentrated solar energy in heat to pre-reformer. The flow scheme in the pre-reformer 
can be co-current or counter-current. The pre-reformer effluent goes into a reformer where the reactions of 
steam methane reforming occur at high temperature (e.g., 900 oC). The energy required in the reformer is 
provided through combustion of natural gas with air. The syngas produced in the reformer is cooled down and 
fed into water gas shift reactors in series. In these two shift reactors, water-gas shift reaction takes place which 
converts carbon monoxide into hydrogen to improve the productivity of hydrogen. After that, the hydrogen-rich 
syngas stream is sent for water and CO2 removal. A pressure swing adsorption (PSA) unit is then used to purify 
the hydrogen product stream. The off-gas from PSA containing unreacted CH4, CO, and leftover H2, is recycled 
back as a fuel for providing heat to the reformer. The process is to produce 𝐹𝐻2

 hydrogen with 𝜂𝐻2
 purity to

satisfy hydrogen demand in an oil refinery. 
The reactions occurring in the pre-reformer and reformer reactors are shown in Eqs(1)-(3). An Ni-based catalyst 
is normally used for steam methane reforming. The reaction occurring in the two water gas shift reactors is 
Eq(2). 

𝐶𝐻4 + 𝐻2𝑂 ⇌ 3𝐻2 + 𝐶𝑂 (1) 

𝐶𝑂 + 𝐻2𝑂 ⇌ 𝐻2 + 𝐶𝑂2 (2) 

𝐶𝐻4 + 2𝐻2𝑂 ⇌ 4𝐻2 + 𝐶𝑂2 (3) 

Figure 1: Block diagram of the SSMR-MS process (Modified from Likkasit, 2015) 

Given the necessary data including production requirements, reactor types, flow scheme, reaction kinetics, 
thermodynamic data and economic correlations, the entire problem is to determine optimal operating conditions 
including stream flowrates, temperature, steam to methane (S/C) ratio, reactor sizes including tube length and 
tube number as well as optimal heat exchanger network. The objective is to minimise TAC. 

3. Mathematical formulation

The SSMR-MS process can be modelled using rigorous models in Aspen Plus V8.8. Such rigorous models 
include mass and energy balance equations, thermodynamic relations, and properties equations, which are 
often highly complex. The optimisation problem using these rigorous models is denoted as P. To reduce the 
complexity of the problem P, a surrogate model based on machine learning techniques is developed for the 
entire SSMR-MS through extending the optimisation framework of Ibrahim et al. (2018). In other words, the 
whole SSMR-MS process is considered as a black box. There are usually three steps for the development of a 
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surrogate model, including data generation (i.e., sampling), construction of the surrogate model and construction 
of feasibility constraints using a support vector machine (Ibrahim et al., 2018). 

3.1 Data generation 

To develop a surrogate model, the first step is data generation because the prediction accuracy of the surrogate 
model strongly relies on the quality of the data used in the training stage. In this work, input variables including 
molar flowrate of natural gas into pre-reformer 𝐹𝑁𝐺 , steam to methane ratio 𝛾𝑆/𝐶 , operating temperature of 
reformer 𝑇𝑅, high-temperature water gas shift (HWGS) reactor 𝑇𝐻𝑊𝐺𝑆, low-temperature water gas shift (LWGS) 
reactor 𝑇𝐿𝑊𝐺𝑆, tube length of pre-reformer 𝐿𝑃𝑅, reformer 𝐿𝑅, HWGS reactor 𝐿𝐻𝑊𝐺𝑆 and LWGS reactor 𝐿𝐿𝑊𝐺𝑆, 
tube number in pre-reformer 𝑁𝑃𝑅, reformer 𝑁𝑅, HWGS reactor 𝑁𝐻𝑊𝐺𝑆 and LWGS reactor 𝑁𝐿𝑊𝐺𝑆 vary between 
lower and upper bounds. A vector 𝐱  is used to denote all these variables. In other words, 𝐱 =

[𝐹𝑁𝐺 , 𝛾𝑆 𝐶⁄ , 𝑇𝑅, 𝑇𝐻𝑊𝐺𝑆, 𝑇𝐿𝑊𝐺𝑆, 𝐿𝑃𝑅, 𝐿𝑅, 𝐿𝐻𝑊𝐺𝑆, 𝐿𝐿𝑊𝐺𝑆, 𝑁𝑃𝑅, 𝑁𝑅, 𝑁𝐻𝑊𝐺𝑆, 𝑁𝐿𝑊𝐺𝑆]. Then: 

𝑥𝐿 ≤ 𝐱 ≤ 𝑥𝑈 (4) 

The output variables include TAC, hydrogen production rate 𝐹𝐻2
 and molten salt duty 𝑄𝑀𝑆. Samples generated

using the Latin hypercube sampling method are used as input in Aspen Plus V8.8 to get values for the 
corresponding output variables.  

3.2 Construction of surrogate models 

ANN is used to create a surrogate model of the entire process. A major advantage of ANN over other statistical 
techniques is the ability to correlate multiple inputs to multiple outputs, leading to compact models that can be 
implemented in an optimisation environment with ease (Ibrahim et al., 2018). While TAC, 𝐹𝐻2

 and 𝑄𝑀𝑆  are
correlated with all independent variables using ANN, the relationship of solar-related equipment cost, and molten 
salt duty is described using algebraic linear function. The 𝐹𝐻2

 and purity 𝜂𝐻2
 are considered as constraints which

are indicated below, 

𝐹𝐻2

𝐿 ≤ 𝐹𝐻2
(5) 

𝜂𝐻2

𝐿 ≤ 𝜂𝐻2
(6) 

The objective function is to minimise TAC, which can be calculated as follows, 

𝑇𝐴𝐶 =   𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙 ∙ 𝐴𝐶𝐶𝑅 + 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (7) 

where 𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙  is total capital investment. 𝐴𝐶𝐶𝑅  is annual capital charge ratio. 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  is the total 
production cost per year. 𝐴𝐶𝐶𝑅 is calculated using Eq(8) below, 

𝐴𝐶𝐶𝑅 =  [𝑖 × (1 + 𝑖)𝑛]/[(1 + 𝑖)𝑛 − 1] (8) 

where 𝑖 is the interest rate per year and 𝑛 is the plant lifetime. 
The optimisation problem using the surrogate models is stated as follows, 

(PS)       Min   𝑇𝐴𝐶 = 𝑇𝐴𝐶1 + 𝑇𝐴𝐶𝑠𝑜𝑙𝑎𝑟 

s.t.  𝑇𝐴𝐶1 = 𝐴𝑁𝑁1(𝑥𝐼)

𝑇𝐴𝐶𝑠𝑜𝑙𝑎𝑟 = 𝑓(𝑄𝑀𝑆)

𝐹𝐻2
= 𝐴𝑁𝑁2(𝑥𝐼)

𝑄𝑀𝑆 = 𝐴𝑁𝑁3(𝑥𝐼)

Eqs (4)-(8) 

where 𝑇𝐴𝐶1  is non-solar related cost, 𝑇𝐴𝐶𝑠𝑜𝑙𝑎𝑟  is the solar related cost, 𝑥𝐼  is the set of independent 
variables, 𝑄𝑀𝑆  is molten salt duty. The surrogate model comprises 3 artificial neural networks 
(𝐴𝑁𝑁1(𝑥𝐼), 𝐴𝑁𝑁2(𝑥𝐼), 𝐴𝑁𝑁3(𝑥𝐼)) and a linear regression model 𝑓(𝑄𝑀𝑆).
Levelised cost of Hydrogen Production is applied to evaluate the cost for producing one kilogram of hydrogen 
for one technology within the plant lifetime, as shown in Eq(9) below, 

𝐿𝐶𝐻𝑃($ 𝑘𝑔−1) = [∑
(𝐶capital + 𝐶production )

(1 + 𝑟)𝑦−1

𝑛

𝑦=1
] /(𝑚𝐻2

∙ 8,000 ∙ 𝑛) (9) 

where 𝑚𝐻2
 is mass flow rate of hydrogen per hour.
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4. Solution algorithm

A hybrid optimisation algorithm similar to that of (Al Jamri et al., 2020) is employed to solve the optimisation 
problem PS. This hybrid algorithm combines the advantages of the stochastic optimisation algorithm and the 
deterministic optimisation method. Stochastic optimisation method genetic algorithm (GA) is an evolution-based 
optimisation method, and it can search the solution space with multiple initial points which increases the 
possibility to get solution nearby global optimal. Therefore, GA is used to obtain a good feasible initial solution 
for the problem PS. Then, a deterministic method namely Successive Quadratic Programming (SQP) is used to 
improve the quality of the feasible solution obtained by GA. The whole optimisation methodology is illustrated 
in Figure 2. The hybrid solution algorithm is implemented in MatLab R2019a. GA available in the global 
optimisation toolbox in MatLab R2019a (‘ga’) is employed. 

Figure 2: Flowchart of the extended design methodology 

5. Computational studies

The extended optimisation approach is used to generate the optimal design of the SSMR-MS process. The 
hydrogen production rate is 2,577 kmol h–1. The desired hydrogen purity is 99.9 vol%. As discussed in the 
problem statement, there are four options that should be investigated in the SSMR-MS. In the first option, the 
pre-reformer is considered as a non-adiabatic reactor. Its energy is supplied by molten salt with a co-current 
flow regime. The process with this option is denoted as SSMR-MS-1. This SSMR-MS-1 process is exactly the 
same as that in (Likkasit, 2015). In the second option, the pre-reformer is considered as a non-adiabatic reactor 
whose energy supplied by molten salt with a counter-current flow scheme. The resulting process is denoted as 
SSMR-MS-2. In the third option, the pre-reformer is considered as an adiabatic reactor. Molten salt is used to 
heat the inlet streams natural gas and steam. The resulting process is defined as SSMR-MS-3. In the last option, 
the pre-reformer and two water gas shift reactors are considered as adiabatic reactors where molten salt 
provides heat to the process similar in SSMR-MS-3. This option is denoted as SSMR-MS-4. 
Four process options are modelled using Aspen Plus V8.8 and a ‘base case’ simulation of each SSMR-MS 
process is developed based on data from Likkasit (2015). The thermodynamic property method PENG-ROB is 
selected due to its suitability to organic products and hydrogen gas (Özcan et al., 2019). The results obtained 
from the ‘base case’ simulation of SSMR-MS-1 indicate that the TAC is 143.8 M$ yr–1, which is quite close to 
the TAC of 144.0 M$ yr–1 in (Likkasit, 2015) with the deviation within 0.13 %. 
The optimisation problem PS is solved for each SSMR-MS process option using the hybrid optimisation 
algorithm. The results are given in Table 1. The optimal values of independent variables in Table 1 are used as 
input in Aspen Plus V8.8 to generate values of all dependent variables and update 𝑄𝑀𝑆, 𝐹𝐻2

 and TAC. The
updated results are provided in Table 2. From Table 1 and Table 2, it can be seen that the largest difference 
between actual results and prediction results from the ANN surrogate model is within 1 %. The largest difference 
for molten salt heat duty is only 0.05 %. For instance, actual optimal TAC in SSMR-MS-2 is 136.55 M$ yr–1, 
which is only 0.58 % difference compared to the predicted TAC of 135.76 M$ yr–1. These demonstrate that the 
ANN surrogate model has high prediction accuracy. The results obtained from the extended optimisation 
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framework are also validated using the hybrid feasible path optimisation algorithm from (Ma et al., 2020) and 
(Ma et al., 2021), which is employed to solve the original problem P directly. The largest difference is 0.30 %, 
which further demonstrates the effectiveness of the extended optimisation-based framework. 

Table 1: Optimisation results for SSMR-MS-1, SSMR-MS-2, SSMR-MS-3, SSMR-MS-4 from surrogate models 

Item Initial value SSMR-MS-1 SSMR-MS-2 SSMR-MS-3 SSMR-MS-4 
𝛾𝑆/𝐶 4 2.0 2.0 2.0 2.0 
𝑇𝑅 (oC) 900 995.9 991.6 993.3 996.9 
𝑇𝐻𝑊𝐺𝑆 (oC) 400 352.1 372.1 446.1 401.7 
𝑇𝐿𝑊𝐺𝑆 (oC) 200 209.4 197.5 206.7 208.3 
𝐿𝑃𝑅 (m) 6.1 11.0 11.1 11.1 11.1 
𝐿𝑅 (m) 10 10.1 10.3 11.4 11.5 
𝐿𝐻𝑊𝐺𝑆 (m) 6.1 4.5 4.6 4.7 4.7 
𝐿𝐿𝑊𝐺𝑆 (m) 6.1 3.8 3.9 3.9 3.9 
𝑁𝑃𝑅 12,500 4,006 4,010 4,000 4,000 
𝑁𝑅 135 51 56 50 50 
𝑁𝐻𝑊𝐺𝑆 2,000 1,002 1,221 3,000 1,000 
𝑁𝐿𝑊𝐺𝑆 3,250 2,282 2,214 2,000 4,000 
𝐹𝑁𝐺 (kmol h–1) 778.3 799.7 803.7 803.3 812.9 
𝑄𝑀𝑆 (MW) 20 12.37 12.89 10.25 10.34 
𝐹𝐻2

 (kmol h–1) 2,577 2,577 2,577 2,577 2,577 
TAC (M$ yr–1) 159.37 134.88 135.76 131.86 131.96 

Table 2: Updated results for SSMR-MS-1, SSMR-MS-2, SSMR-MS-3, SSMR-MS-4 using Aspen Plus V8.8 

Item SSMR-MS-1 SSMR-MS-2 SSMR-MS-3 SSMR-MS-4 
Base 
Case 

Optimal 
Case 

Base 
Case 

Optimal 
Case 

Base 
Case 

Optimal 
Case 

Base 
Case 

Optimal 
Case 

𝑄𝑀𝑆 (MW) 20 12.35 21 12.84 17 10.20 19 10.32 
𝐹𝐻2

 (kmol h–1) 2,577 2,577.1 2,577 2,578.3 2,577 2,577.3 2,577 2,577.1 
TAC (M$ yr–1) 144.0 136.21 148.6 136.55 141.9 133.11 145.8 131.95 
TAC with heat integration (M$ yr–1) 144.0 128.4 148.6 125.7 141.9 122.2 145.8 122.5 
LCHP ($ kg-1) 2.85 2.52 2.90 2.45 2.81 2.43 2.87 2.43 

Table 3: Optimal design of the solar field for SSMR-MS-1, SSMR-MS-2, SSMR-MS-3 and SSMR-MS-4 

Item SSMR-MS-1 SSMR-MS-2 SSMR-MS-3 SSMR-MS-4 
Base 
Case 

Optimal 
Case 

Base 
Case 

Optimal 
Case 

Base 
Case 

Optimal 
Case 

Base 
Case 

Optimal 
Case 

𝑄𝑀𝑆 (MW) 20 12.35 21 12.84 17 10.20 19 10.32 
Solar tower height (m) 98.08 69.49 90.80 71.71 95.23 90.15 86.53 67.39 
Heliostat reflective area (m2) 83,303 52,333 88,688 53,859 71,094 42,369 78,096 43,895 
Receiver area (m2) 130.49 121.28 154.43 117.52 121.23 99.84 141.69 95.95 
Receiver thermal capacity (MW) 50.00 30.87 52.50 32.09 42.50 25.00 47.50 25.80 
Storage capacity (MW) 300.00 185.23 315.00 192.54 255.00 150.00 285.00 154.79 
Land area (acres) 121 107 135 107 109 81 127 93 

To further reduce the operation cost, heat integration is conducted for the optimal SSMR-MS-1, SSMR-MS-2, 
SSMR-MS-3 and SSMR-MS-4, respectively. The results are illustrated in Table 2. From Table 2, it can be seen 
that after heat integration, the TAC is reduced by 10.80 %, 15.45 %, 13.85 %, and 15.86 % for SSMR-MS-1, 
SSMR-MS-2, SSMR-MS-3 and SSMR-MS-4, respectively. SSMR-MS-3 and SSMR-MS-4 have the lowest 
LCHP of 2.43 $ kg-1, which is reduced by around 14.74 % compared to that of the existing process. SSMR-MS-
2 with LCHP at 2.45 $ kg-1 is only slightly higher than those two optimal designs. With the price of per unit 
hydrogen cost decrease, SSMR-MS process has a greater potential to be applied to large-scale hydrogen 
production. Optimal molten salt duty is sent as an input in SAM to generate the optimal design of the solar field. 
The results are provided in Table 3. With a significant reduction in molten salt heat duty, heliostat reflective area, 
receiver area, receiver thermal capacity, storage capacity and land area also decrease significantly. 
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Table 4 provides comparative results of SSMR-MS-3 and SSMR-MS-4 with those of conventional steam 
reforming of natural gas (SMR) from (Likkasit, 2015). From Table 4, it can be seen that, with around 12 % 
reduction in natural gas consumption and over 60 % reduction in electricity consumption in SSMR-MS-3 and 
SSMR-MS-4 than that in SMR, the energy efficiency is improved by around 12.08 % and 14.18 % in SSMR-MS-
3 and SSMR-MS-4. CO2 emission in SSMR-MS-3 and SSMR-MS-4 reduces around 80 kt yr–1, compared to that 
in SMR. Although TAC of SSMR-MS-3 and SSMR-MS-4 is significantly reduced after optimisation, compared 
to the existing SSMR-MS, their TAC is still higher than that of SMR due to high solar-related equipment cost. 
As a result, the LCHP of SSMR-MS-3 and SSMR-MS-4 is still 0.41 $ kg-1 higher than that of SMR. If carbon tax 
and additional credit can be supplied for the use of solar energy from the government, the optimal SSMR-MS-3 
and SSMR-MS-4 could be competitive to SMR for large-scale hydrogen production. 

Table 4:  Comparative results for SMR, SSMR-MS-3 and SSMR-MS-4 

SMR SSMR-MS-3 SSMR-MS-4 
Natural gas consumption (kt yr–1) 150.25 132.85 132.12 
Water consumption (kt yr–1) 453.17 552.13 555.15 
Electricity consumption (GWh yr–1) 93.51 33.39 29.64 
CO2 emissions (kt yr–1) 502.93 423.85 420.00 
Energy efficiency (%) 62.99 70.60 71.92 
TAC (M$ yr–1) 90.9 122.2 122.5 
LCHP ($ kg-1) 2.02 2.43 2.43 

6. Conclusions

In this paper, the optimisation-based framework using machine learning techniques is extended for optimal 
design of SSMR-MS for large-scale hydrogen production. Four different process options in SSMR-MS have 
been investigated. The computational results show that TAC was reduced by up to 15 % compared to the 
existing SSMR-MS process. The molten salt heat duty was reduced from 20 MW to 10.20 MW. Although the 
extended framework can be used to generate the optimal design, it cannot theoretically guarantee global 
optimality. In addition, the lowest LCHP of SSMR-MS-3 and SSMR-MS-4 is still 0.41 $ kg-1 higher than that of 
SMR. Therefore, the future work is to investigate different carbon utilization methods to further reduce TAC and 
LCHP. 
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