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This work aims to propose a general data-driven plastic waste categorisation procedure that defines their 
recyclability based on classification into material recycling classes. The contamination in plastics, such as metal 
fillers or additives, is accumulated during the entire Life Cycle, which can be harmful to either mechanical or 
chemical recycling. The plastic polymers can also degrade during recycling due to weakened chemical bonds 
in the polymers. The diversity of plastic material types and products makes it necessary to use a data-driven 
quality-based definition of plastic waste properties to facilitate proper waste recycling and mitigation. This study 
demonstrates the use of Machine Learning tools that enable automated classification to analyse the plastic 
waste data and derive the indicators for plastic waste recyclability. Tree-based models such as the Decision 
Tree Model and Random Forest Algorithm are used as they produce interpretable if-then rules for plastic waste 
categorisation. The proposed method allows an analysis of the metal contamination and degradation data in a 
collection of plastic material samples or batches to derive a general categorisation rule for a polymer type – PE. 
The data-driven plastic categorisation could help in understanding the current waste practices and determining 
a proper recycling plan for local or even global plastic waste. 

1. Introduction

The global annual production of plastics reached approximately 400 Mt by 2015 (Ritchie and Roser, 2018), and 
the trend is accelerating. Solving the issues of plastics recycling is of paramount importance for minimising the 
use of fossil fuel resources, the related Greenhouse Gas Footprint (Ritchie and Roser, 2017), and Plastic Waste 
Footprint (Klemeš et al., 2020). The overall recycling workflow is complex, and the decisions (Williams et al., 
2018) depend on the simultaneous consideration of several factors – including mixing of plastics in the waste, 
the presence of contaminants (e.g. food, oils), and the condition of the base polymer of the plastic material. 
There are several possible routes of plastic waste processing: product reuse, material reuse (mechanical 
recycling), chemical recycling, and final treatment/disposal. The degrees to which each of these options is 
applied depend on the batch composition, condition, and danger to the ecosystems and human health. 
Geyer et al. (2017) have shown that in 2017, only approximately 18 % of the global plastic waste was recycled, 
24 % - incinerated, and 58 % were disposed of. The major concern regarding plastic waste is the contamination 
of water bodies – rivers, lakes, oceans. A forecast (Jambeck et al., 2015) projects the amount of ocean plastic 
waste to reach about 150 Mt by the year 2025. It has been shown by Klemeš et al. (2020b) that during the 
COVID pandemic, plastic consumption has surged. They noted the increase of both packaging and medical 
waste. A further analysis (Klemeš et al., 2020a) has stressed the need for a proper recyclability evaluation 
method to enable the discourse on legislation and regulations that implement waste management. 
Efficient plastic waste recycling practices are required to counter the high rate of plastic waste disposal. The 
concept of Circular Economy is developed to focus on recirculation of the materials and subsequently 
emphasising waste recycling (EC, 2015). 
In terms of plastic waste categorisation, Huysman et al. (2017) have analysed the compatibility between 
polymers by studying the interfacial tension between the polymers. They defined the substitution ratio of 
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recycled plastic, which is correlated to compatibility and derived a quality indicator. Eriksen et al. (2018) have 
explored various scenarios of the efficiencies of plastic recycling processes and qualitatively defined the plastic 
waste categorisation based on EU standards. They assessed the polymeric composition and other general 
polymer residues. Brouwer et al. (2019) studied plastic packaging waste in a Dutch recycling plant between 
2014 and 2017. They reported that most of the recycled plastics are suited only for open-loop applications due 
to contamination. Vollmer et al. (2020) have comprehensively reviewed the routes for the chemical recycling of 
plastic waste. They analysed the scientific development in this area along with better recycling policy and 
platforms with all stakeholders are needed. Brouwer et al. (2020) proposed a categorisation of plastic package 
waste based on the degradation properties, chemical contaminations as well as physical strength values. The 
categorisation is intuitive, but it is qualitative in nature. It is ambiguous for policymakers to define a proper 
threshold for plastic waste categorisation. 
Based on the above literature review, the following research gaps can be identified: 
(i)  There is a lack of data-driven and quantitative plastic waste classification methods for proper recycling. 
(ii)  Various properties, including chemical contaminations, metals or additive accumulations and degradation 

properties, are not considered in the plastic waste categorisation. 
This work addresses the mentioned gaps by proposing a systematic plastic waste classification procedure 
based on several waste properties. This paper applies the well-known tree-based classification models, i.e. 
Decision Tree analysis and Random Forest algorithm (VanderPlas, 2016), to derive a set of interpretable 'if-
then rules for quality patterns determination of the various plastic waste streams. This paper focuses on 
formulating a criterion for materials recyclability for a given batch of plastic material based on its condition. The 
criterion formulation is based on the evaluation of the rate of polymer degradation and the rate of leakage of 
fragments to the environment. The guiding principle for the decision is to prevent significant leakage that would 
damage ecosystems and humans. The paper is divided into Section 2 that defines the classes of material 
sources. Section 3 explains the data collection framework. Section 4 describes the example dataset used in the 
demonstration and the interpretation of the results. 

 

Figure 1: Plastic material flows, adapted from Eriksen et al. (2018) 

2. Material sinks and classes of separation 

The concept in this work stems from the general life cycle of plastic materials, as well as the established 
separation and recycling practices. A typical network of material flows for plastic products is shown in Figure 1, 
which is an adaptation of the flow diagram presented by Eriksen et al. (2018). The flow network starts the 
consideration from the extraction of primary resources and then includes the stages for raw material preparation, 
forming products, distribution/use of the products, waste separation and processing, recycling and landfilling. 
In addition to that general flow pattern, it is also known that there are different applications for plastic materials 
(Grigore, 2017) – e.g. food and drink, household items, gardening items, building and interior items. Those 
applications define a set of material classes, which impose different quality and cleanliness requirements on the 
material sources. Taking a batch or a sample of waste plastics (termed a Source) and determining its future fate 
presents a classification problem. That can be modelled as a mapping of the source to a set of alternative sinks, 
as illustrated in Figure 2. In that figure, a set of sinks, which pose sufficiently close quality requirements, form a 
class of materials. Following that logic, the potential applications determine the classes of materials, and the 
potential source of secondary raw material has to be classified within one of those classes. 
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Figure 2: Sinks and classes of recycled materials 

An important property of these classes is that they form a cascading hierarchy. Materials of a higher-quality 
class can be used as substitutes for the materials of any lower-quality classes, i.e. cascaded. For example, 
food-grade virgin plastic is perfectly safe for producing household or interior décor items, or even industrial 
plastic products, while industrial-grade plastic is typically not upgradable or usable as food-grade. 

3. Data collection framework 

It is first required to determine a data collection site to gather the properties data of the plastic waste streams. 
The quality data of the plastic waste streams can be collected from the entire plastic value chain (Figure 1). 
Based on Eriksen et al. (2018), the data on the plastic polymer types can be measured and collected from 
different origins- virgin plastics, industrial and household plastic wastes or reprocessed plastic waste streams. 
If necessary, the waste samples can be further divided into food-grade or non-food grade plastics as the 
chemicals added to the plastics are different and should comply with stricter legislation. Other plastic products 
can be more lenient in chemical contamination as long as they are within the utilisation standards. 

Table 1: Properties to be measured and collected from the plastics value chain 

Types Properties Description 
Chemical  Polymeric composition The composition of the targeted and non-targeted polymers in the 

waste stream 
 Metals Concentrations Amount of metals accumulated during wastes recycling 
 Additive Concentrations Amount of additives accumulated during wastes recycling 
… Residues Concentrations Other non-plastic waste mixed with the plastic streams, e.g. paper, 

cardboard and etc. 
Degradation  Melt flow index Viscosity measures for the melted polymers (PE, PP, PS, etc.) 
 Intrinsic viscosity (PET) Viscosity measures for the melted polymers (PET) 
Mechanical  Tensile strength (MPa) Mechanical strength of the plastic wastes 
Others Colours The colours in the plastic wastes affect its reusability 

Depending on the treatment processes, the plastic polymers samples can be collected either before the pre-
treatment or after the pre-treatment, such as washing. If the demands posed to the plastic polymers in the waste 
are not as strict, the plastic waste, even without pre-treatment, can be recycled, and its recyclability can be high. 
The collected data on the plastic waste streams tells a lot of information for the recyclability of the plastic waste 
streams. By investigating the data patterns on the plastic waste streams from different origins, the threshold of 
the properties can be determined so that the plastic waste streams can be distinguished from different origin 
classes. For example, by investigating the virgin plastic properties, one can determine the certain thresholds or 
limits of some properties, such as contamination levels, and it can be known whether the plastic streams are of 
high or low recyclability. Table 1 presents the example plastic wastes data that can be collected from the plastics 
value chain in Figure 1. Depending on the location or types of the plastic production processes, the collected 
properties of the plastic streams may differ but should not deviate significantly. 

4. Case study demonstration 

A case study is used to demonstrate how the Machine Learning-based classification method can define plastic 
waste recyclability. This study considers the metal concentrations of aluminium (Al) and the degradation 
properties of plastic polymers. The polymers degradation can be determined by measuring the viscosity of the 
melted plastic wastes. A degraded plastic waste is assumed to have a lower viscosity value due to its weakened 
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chemical bonding in the polymers. The melt flow index for the polymers is in the range of 3 – 19 g/10 min – 
based on the samples in Danish plastic recycling plants (Eriksen et al., 2018). 

Table 2: Dataset containing the properties of the plastic wastes streams in this case study. The metals 

contamination is obtained from Eriksen et al. (2018), and the degradation properties are estimated using the 

ranges of measured data from Eriksen et al. (2019). rIW: Reprocessed Industrial waste, rHHW: Reprocessed 

Household waste 

Type Polymer Al Metal Concentration 
(ppm) 

Degradation properties 
Melt flow index 
(g/10 min) 

rHHW PE 80.8 5.16 
rHHW PE 224 2.39 
waste PE 444 4.03 
waste PE 290 1.75 
waste PE 183 1.29 
waste PE 354 1.75 
waste PE 160 4.52 
waste PE 178 5.17 
waste PE 241 5.05 
waste PE 237 0.18 
waste PE 59.3 6.74 
waste PE 273 7.66 
virgin PE 28.4 8.12 
virgin PE 28.4 8.03 
virgin PE 28.4 8.77 
rIW PE 28.4 4.78 
rIW PE 12 1.08 
rIW PE 213 3.67 
rIW PE 122 1.72 
rIW PE 470 5.70 
rIW PE 145 1.94 
rHHW PE 345 5.26 
virgin PE 75.5 8.78 
rIW PE 118 5.68 
rIW PE 117 6.32 
rIW PE 28.4 0.49 
virgin PE 32.5 8.47 
virgin PE 85.4 7.90 
virgin PE 133 8.87 
virgin PE 108 8.92 
rIW PE 91.3 4.46 
rIW PE 147 5.15 
rHHW PE 195 4.22 
rHHW PE 272 5.51 

Table 2 presents the illustrative dataset for PE polymer types that can be sampled from the plastic recycling 
system shown in Figure 1. The origins of the polymer are assumed to directly reflect the recyclability of the 
polymers. The virgin polymer samples have the highest recyclability, and the reprocessed streams are assumed 
to have medium recyclability, while the waste polymers streams have the lowest recyclability.  
The open-source Python software (VanderPlas, 2016) with scikit-learn packages was used to apply the 
classification models to the dataset. The classification is obtained for each polymer type. For PE polymers, the 
Random Forest algorithm yields better accuracy than the Decision Tree method. Figure 3 illustrates the decision 
process with resulting 85.7 % accuracy. The confusion matrix is presented in Table 3. It shows the testing 
dataset is mostly correctly classified to the correct class, which only 1 ‘Household’ sample is classified to ‘Waste’ 

class. The top block represents the root node that has the split that yields the highest information gain, i.e. MFI 
≤ 7.11 g/10 min. The left-branching (arrow) indicates this condition is fulfilled, while the right-branching (arrow) 
indicates the condition is not met. The blocks with no branching represent the leaf nodes and are the final 

682



classification results that have zero entropies. For example, if a data sample has MFI ≥ 7.11 g/10 min, then the 
sample is classified as ‘Virgin’, which belongs to the highest recyclability class. 

    

Figure 3: Decision tree obtained for PE polymers using Random Forest Algorithm (Test size = 0.2, random state 

=25, number of trees = 100). Accuracy is 85.7 % 

Table 3: Confusion matrix of the classification model 

Classes Virgin Industrial Household Waste 

Virgin 2 0 0 0 
Industrial 0 1 0 0 
Household 0 0 0 0 
Waste 0 0 1 3 

Interpreting the decision rules from Figure 3, it seems that MFI is the key property that dominates the plastic 
waste categorisation. Higher MFI indicates the plastic wastes have better recyclability. It also can be observed 
in the dataset that metal contamination in virgin plastics is generally lower than the other types. ‘Industrial’ waste 

has lower MFI that classify them directly to the correct class (MFI ≤ 4.49 g/10 min), and compared to ‘Household’ 

waste, it has higher Al metal concentration (98.9 ppm ≤Metals ≤ 218.5 ppm, when MFI ≤ 4.49 g/10 min). 
However, only one sample in each ‘Industrial’ and ‘Household’ class are classified to this rule, and this rule 
requires further validation. 
When the condition (Metals ≤ 218.5 ppm and 5.15 g/10 min ≤MFI ≤ 7.11 g/10 min) is met, the waste samples 
are directly assigned to the class ‘Household’. This suggests that the degradation in household plastic waste is 

milder as compared to industrial waste. This might be due to the thermal degradation of the industrial wastes 
during reprocessing. For ‘Waste’ samples, they have been classified when MFI ≤ 1.29 g/10 min and Metals ≥ 
218.5 ppm, which indicates the waste streams that are highly contaminated with Al metal and degraded. When 
MFI ≥  1.29 g/10 min, the data samples also show that ‘Household’ plastic wastes have lower metals 

concentration than ‘Waste’ (218.5 ppm ≤ Metals ≤ 232.5 ppm). 

5. Conclusion 

This work has presented a possible quantitative framework for defining the recyclability of the plastic waste 
streams that could facilitate a more accurate and informed recycling planning. The data for various polymers 
types can be sampled from different origins in the plastic value chain, including the virgin plastic stream, 
industrial or household wastes or landfilled wastes. The measurable data on the plastic waste properties can 
be used as the plastic waste categorisation using interpretable Machine Learning methods, which are 
responsible for identifying the threshold values for each property. An illustrative case study on PE polymer is 
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used to demonstrate how the plastic waste can be categorised using the proposed method, and considerable 
high accuracy (85.7 %) is achieved. However, the main limitation is that the available data sample is too low 
(only 34 samples), for which the final categorisation rules could not be generalised for any PE polymer waste. 
This suggests that more data is needed, and the problem of a low dataset should be solved. Future works could 
include practical issues such as imbalanced class dataset, data uncertainties, more properties and 
heterogeneity of the polymers streams should be incorporated as well. 
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