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A multi-objective optimisation method to quantitatively identify retired points of electric vehicle (EV) batteries is 

proposed to minimise the life cycle cost (LCC) of EV batteries and the total annual cost (TAC) of energy storage 

systems (ESS). It features comprehensive considerations of battery capacity degradation characteristics and 

energy storage capacity optimisation. The effectiveness of the proposed method is demonstrated by a case 

study. The influence of the purchase cost and the profit of batteries in the second life are analysed. The Pareto 

front of LCC and TAC is given. The trade-off point is obtained when SOHre is 0.855 and the corresponding LCC 

and TAC are 28,742.2 USD and 7,905.5 USD. Results indicate that retired points are intensively dependent 

upon the optimal capacity, LCC and TAC. Both LCC and TAC can be reduced by decreasing the purchase cost 

and increasing the profit without changing the retired points. 

1. Introduction 

In order to maximise economic and environmental benefits of batteries during the entire life, the electric vehicle 

(EV) batteries are usually reused for the energy storage applications after they are used as the traction batteries 

(Assunção et al., 2016). It is crucial to accurately identify the retired points of the EV batteries for the second 

life applications (Ahmadi et al., 2017). In recent, significant efforts have been made to evaluate the economic 

and environmental impacts of reusing EV batteries and identify the retired points. Although the retired point of 

EV battery is an important parameter that determine the economic and environmental benefits of batteries, they 

are usually considered constants (Casals et al., 2017) or discrete points (Viswanathan et al., 2012) by empirical 

experiences. Battery capacity degradation is one of key factors to determine the retired point (Sathre et al., 

2015). The optimal battery capacity for different energy storage applications varies (Liu et al., 2018) because 

batteries present different capacity fading rates under different load profiles (Jiang et al., 2018). Batteries have 

different degradation characteristics in the second life (Wang, 2018), and the history of battery ageing in the first 

life strongly influence the performance of the second life of batteries (Martinez-Laserna et al., 2018). However, 

little attention is paid to the quantitative determination of the retired points of the EV batteries and the influence 

of energy storage applications on the identification of the retired points. The major objective of this work is to 

quantitatively identify the retired points of EV batteries by a multi-objective optimisation method in order to 

minimise the life cycle cost (LCC) of EV batteries and the total annual cost (TAC) of energy storage system 

(ESS). It features comprehensive considerations of battery capacity degradation characteristics and energy 

storage capacity optimisation. 

2. Problem statement 

The life cycle of EV batteries with second life applications generally includes five stages, i.e. manufacturing or 

purchase, first use in EV, repurposing, second use in ESS and recycling, as shown in Figure 1. The batteries 

deteriorate gradually, which can be depicted by the state of health (SOH) that is a ratio of battery residual 

capacity to battery initial capacity. The retired point for the second use is defined as the SOH when the battery 

ends its first life in the EV application. The multi-objective optimisation problem to quantitatively identify the 

retired points of EV batteries can be posed as follows. 

 
 
 
 
 
 
 
 
 
 
                                                                                                                                                                 DOI: 10.3303/CET1976155 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Paper Received: 21/03/2019; Revised: 13/04/2019; Accepted: 15/04/2019 
Please cite this article as: Wang T., Kang L., Liu Y., 2019, Multi-Objective Optimisation Method for Identifying Retired Points of Electric 
Vehicle Batteries, Chemical Engineering Transactions, 76, 925-930  DOI:10.3303/CET1976155 
  

925



Given are (1) battery discharge rates and battery temperature, (2) unit price of battery, commercial electricity 

price, unit price of battery repurposing, profit in the second life and recycling profit, (3) battery capacity 

degradation characteristics. The problem is to obtain the SOH at the retired point and the optimal battery 

capacity in ESS when the LCC of reused batteries and the TAC of ESS are minimised. 

 

 

Figure 1: Life cycle of batteries used in electric vehicles and energy storage 

3. Multi-objective optimisation model for identifying the retired points of EV batteries 

3.1 Objective functions 

The LCC of EV batteries is the sum of the cost and profit of the five stages in Figure 1, including the purchase 

cost of new batteries, the operation cost of EV, the repurposing cost of batteries, the profit in the second life and 

the recycling profit. 

min FL SL
pur n g ch rep n pro dc rec n

LCC c Q c TE c Q c TE c Q= + + + +   (1) 

where cpur is the unit price of new battery; Qn is the capacity of new battery; cg is the commercial electricity price; 
FL

ch
TE  is the total electricity charged into the batteries in the first life in EV; crep is the unit repurposing price of 

battery; cpro is the unit price of electricity delivered in the second life; 
SL

dc
TE  is the total electricity delivered by the 

batteries in the second life; crec is the unit recycling profit of batteries. 

The TAC of the ESS includes the annualised investment cost of the retired batteries and the operational cost of 

the ESS. The operational cost is simply the cost of purchasing commercial electricity. 

( )
( )

( )

1
min 1

1 1

m

ESS
re re g impm

r r
TAC z c Q c TE

r

+
= +    +

+ −
  (2) 

where z is the replacement times of battery; cre is the unit price of the retired batteries that depends on its 

residual capacity, cre=cpur·SOHre (Lih et al., 2012); SOHre is the battery SOH at the retired point; Qre is the retired 

batteries capacity in ESS; r is a fractional interest rate; m is the second lifespan of batteries for energy storage; 
ESS
imp

TE  is the total commercial electricity imported within one year. 

3.2 Constraints 

The transshipment model (Chen et al., 2014) is used to describe the operating constraints of the batteries in the 

second use stage. There are I available sources for supplying renewable electricity and J power demands in 

the ESS. The operating duration of the ESS in a day is divided into K time intervals. 

Constraint of energy balance is expressed as follows. 

( ) ( ) ( ) ( ) ( )1 ,  sp de
i imp j

i I j J

E k E k S k E k G k k K
 

+ + − = +      (3) 

where ( )sp
i

E k  is the generated electricity from renewable electricity resources; ( )de
j

E k  is the electricity 

consumed by demands; S(k-1) is the available electricity supply from battery; G(k) is the remaining electricity 

without considering the battery charge and discharge; Eimp(k) is the commercial electricity imported. 

Constraint of battery capacity can be expressed as  

( ) ( ) ( ) ( )1 ,  
b b dc dc ch ch

Q k Q k E k E k k K = − − +     (4) 
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where Qb(k) is the battery capacity; Edc(k) is the electricity discharged from battery; Ech(k) is the electricity 

charged into battery; 
dc

 and 
ch

 are the discharge and charge efficiencies. Whether the battery is charged or 

discharged depends on the relative value of S(k-1) and G(k). If S(k-1) is greater than G(k), the battery is 

discharged, and Edc(k)=S(k-1)-G(k); otherwise, the battery is charged and Ec(k)=G(k)-S(k-1). The relationship 

between the occurrence of battery charging or discharging can be established by binary variables and logic 

constraints. These details can be found in Chen’s work (Chen et al., 2014). 

Constraint of state of charge (SOC) of battery is expressed as  

( ) ( ) ( )min maxbr b br
Q k SOC Q k Q k SOC      (5) 

where Qbr(k) is the battery residual capacity; SOCmin and SOCmax are the lower and upper bounds of SOC. 

According to the constraint of SOC and discharge efficiency, S(k) can be expressed as S(k)=(Qb(k)-

Qbr(k)·SOCmin) dc
 . 

SL
dc

TE  is the sum of Edc(k) in m years and ESS
imp

TE  is the sum of Eimp(k) in a year. 

3.3 Battery capacity degradation model 

A semi-empirical model is used to describe the capacity degradation characteristics in both the first and the 

second life of batteries. That is (Song et al., 2015) 

( )
0.82415,162 1,516

0.0032 exp
CR

q AH
R T

  −
=  −  

  
  (6) 

where q is the percentage of battery capacity loss; CR is the battery discharge rate; R is the gas constant; T is 

temperature; AH is the Ah-throughput. 

The battery capacity loss in the first life is (1-SOHre). The Ah-throughput in the first life AHEV can be expressed 

as =  /EV EV EV
dc day

AH E N V , where 
EV
dc

E  is the electricity discharged from the EV battery in one day; Nday is the 

EV battery lifespan; VEV is the voltage of the EV battery. 

The battery capacity degradation characteristics in the second life can be expressed as 

( ) ( ) ( )
1.2136 1.2136 1.2136 15,162 1,516

1 0.0032 exp
0.824

ESS ESS CR
q k q k AH k

R T

  − 
+ − =  −    

   
  (7) 

where qESS(k) is the accumulated capacity loss of battery in ESS; ( )AH k  is the Ah-throughput from the time 

interval k to k+1, ( ) ( ) = / ESS
dc

AH k E k V ; VESS is the voltage of battery in the ESS.  

The battery need to be recycled when the minimum SOH is reached, denoted as SOHmin. In the ESS, the 

relationship among the capacity of new batteries Qn, the capacity of retired batteries Qre and the EV battery 

pack capacity Q0 can be expressed as 
0

/EV
b n re re

Q N Q Q SOH = = . Then, the total electricity charged to the 

batteries in the first life 
FL

ch
TE  can be expressed as /FL EV EV

ch dc EV day b
TE E N N=   , where 

EV  represents the 

energy efficiency of EV battery. 

4. Multi-objective optimisation on LCC and TAC 

4.1 ε-constraint method 

The ε-constraint method is adopted to obtain a Pareto front of the two objectives, and the AUGMECON method 

(Mavrotas, 2009) is adopted in this work. LCC is chosen as the main objective, whereas TAC is taken as a 

constraint. 

min 

. 

     , 0,1,
SN U

SN

LCC s

st TAC s

TAC TAC
TAC x x p

p







+ 

− =

 −
= −  =  

 

  

(8) 

where   is an adequate small number; s is an appropriate slack variable; TACSN is the worst value over the 

efficient set; TACU is the best value; p represents that the range of TAC is divided into p equal intervals. The 

details for calculating TACSN and TACU can be found in Mavrotas’ work (Mavrotas, 2009). 
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4.2 Evaluation function method 

The evaluation function method is also adopted to determine a relatively better solution among all of the optimal 

solutions. The evaluation function can be constructed as (Kang et al., 2015) 

1

1 2
min 

U U

SN U SN U

LCC LCC TAC TAC

LCC LCC TAC TAC

  

  
    − −
 = +       − −    

  (9) 

where  = 2  and  + =
1 2

1. The calculations of LCCSN and LCCTAC are similar to those of TACSN and TACU. 

5. Case study 

5.1 Fundamental data 

The example case of the energy storage system is adopted from Chen and his co-workers’ work (Chen et al., 

2014). The lifespan of the ESS is 20 years, and the second lifespan of the batteries is ten years. The upper 

bound of SOHre is set to be 0.9. The BYD battery electric vehicle Model e6 is selected for analysis of the EV 

battery. The battery pack capacity, voltage and energy consumption rate are 82 kWh, 316.8 V and 19.5 kWh/100 

km (Diao et al., 2016). The average annual distance traveled by the vehicle is approximately 12,000 km (Diao 

et al., 2016). Assuming that the EV runs for an average of 300 days in one year. Then EV
dc

E  equals to 19.5 kWh. 

The battery discharge rate is 2C. The temperature of battery is 318.15 K. The battery discharge rate, 

temperature and voltage in the ESS are 0.5 C, 298.15 K and 300 V. The discharge efficiency, the charge 

efficiency and energy efficiency are all 0.9. The SOCmin, SOCmax and SOHmin are 0.1, 0.9 and 0.4. 

The unit price of new battery and the unit recycling profit are 300 USD/kWh and -8.2 USD/kWh (Liu et al., 2018). 

The commercial electricity price is 0.1176 USD/kWh (Diao et al., 2016), and the unit repurposing price of battery 

is estimated to be 24 % of cpur (Foster et al., 2014). The unit price of energy delivered in the second life is 

estimated to be 95% of cg, assuming that users would not use the electricity at a higher price than the commercial 

electricity (Thomas et al., 2018). All calculations are carried out on GAMS 24.1.3 with DICOPT as the global 

solver and CPLEX and CPNOPT as the local solvers for the mixed integer programming and nonlinear 

programming sub-problems. The allowed maximum relative errors of all calculations are 5 %. 

5.2 Pareto front and trade-off point 

A Pareto front of LCC and TAC is obtained by the ε-constraint method with p = 4. The trade-off strategy is 

implemented by the evaluation function method with  =
1

0.8  and  =
2

0.2 . 
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Figure 2: Pareto front of LCC and TAC and the trade-off point 

Table 1: Comparison of the result obtained by minimum LCC point, minimum TAC point and trade-off point 

Objectives  SOHre Qre (kWh) Qn (kWh) LCC (USD) TAC (USD) 

min LCC 0.9 104.3 115.9 25,266.9 8,169.2 

min  0.855 105.8 123.8 28,742.2 7,905.5 

min TAC 0.742 112.7 151.9 41,135.0 7,373.3 

 

Figure 2 shows the Pareto front of the two objectives. All points on the Pareto front are the optimal solutions. 

The minimum LCC and the minimum TAC locate at the lowest and highest points of the Pareto front. The trade-

off point marked in the figure is obtained by the evaluation function method. A comparison of the result obtained 

by minimum LCC point, minimum TAC point and trade-off point is presented in Table 1. 
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The results indicate that the optimal capacity of the retired battery in the ESS and the relevant new battery vary 

with the retired point due to the requirement of ESS and battery capacity degradation characteristic. Qn reaches 

its minimum 115.9 kWh when the SOHre is 0.9, where the LCC reaches its minimum 25,266.9 USD. However, 

the TAC reaches its minimum 7,373.3 USD when the SOHre is 0.742, and Qre reaches its maximum 112.7 kWh, 

as a result of Qre varying slightly with the retired point and cre varying intensively with SOHre. A comparison of 

the LCC of batteries in five stages is shown in Figure 3. 

-20,000

-10,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

 

min  min TAC

L
if
e

 c
y
c
le

 c
o

s
t 

o
f 

b
a

tt
e

ry
 (

U
S

D
)

 Purchase cost

 Operation cost

 Repurposing cost

 Profit in second life

 Recycling profit

min LCC  

Figure 3: Comparison of LCC of batteries in five stages 

Because of Qn increasing, the LCC of batteries increases significantly with the increase of the purchase cost 

and the repurposing cost increase. The operation cost also increases due to the increase of operation duration. 

However, the profit rarely changes in the second life of batteries. The purchase cost and the profit in the second 

life play major parts in the LCC. It will be further discussed in the next section. 

5.3 Further discussion on the purchase cost and the profit during battery reuse 

The effects of the purchase cost and the profit on the battery reuse process are discussed. Figure 4a gives the 

relationship between LCC and TAC when cpur are increased and decreased by 20 %, amd Figure 4b gives the 

relationship between LCC and TAC when cpro are increased and decreased by 20 %. 
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(a) The effect of cpur (b) The effect of cpro 

Figure 4: Effects of cpur and cpro on the battery reuse process 

In Figure 4a, both LCC and TAC change significantly with the change of cpur, but SOHre does not change. 

Likewise, as shown in Figure 4b, SOHre remains constant as cpro changes. The reason is that cpro only influence 

the LCC instead of the TAC. As the discharging behaviour of the batteries in the ESS is determined by the input 

and output, the electricity discharged in the second life is constant. Therefore, the LCC varies with cpro, and the 

retired points do no change. The decrease of cpur and the increase of cpro lead to the reduction both in LCC and 

TAC. Nevertheless, the corresponding retired points remain unchanged. 

6. Conclusions 

Based on the comprehensive considerations of battery capacity fade characteristics and energy storage 

optimisation, a multi-objective optimisation method to quantitatively identify the retired points of EV batteries is 

proposed to minimise the LCC of reused EV batteries and the TAC of ESS. The influence of the battery purchase 

cost and the profit in the second life on the battery reuse process is analysed. In this work, the LCC reaches its 
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minimum 25,266.9 USD when SOHre is 0.9. The TAC reaches its minimum 7,373.3 USD when SOHre is 0.742. 

The trade-off point is obtained when SOHre is 0.855. The results indicate that the optimal battery capacity, LCC 

and TAC vary with the retired point due to the requirement of ESS and capacity degradation characteristics. 

The profit in the second life and the electricity discharged in the second life are constants as the discharging 

behaviour of the battery in the ESS is determined by the electricity supply and load demand. The decrease of 

cpur and the increase of cpro lead to the reduction both in LCC and TAC, but the corresponding retired points 

remain unchanged. The identification of the retired points in different scenarios for energy storage applications 

deserve further efforts in the future. 
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