

Citation: N. Atazadeh, M. Sheidai, F. Attar, F. Koohdar (2020) Species delimitation in the genus *Cousinia* Cass. (Family Asteraceae), sections *Cynaroideae* Bunge and *Platyacanthae* Rech. f.: morphometry and molecular analysis. *Caryologia* 73(3): 3-12. doi: 10.13128/ caryologia-275

Received: May 30, 2019

Accepted: April 05, 2020

Published: December 31, 2020

Copyright: © 2020 N. Atazadeh, M. Sheidai, F. Attar, F. Koohdar. This is an open access, peer-reviewed article published by Firenze University Press (http://www.fupress.com/caryologia) and distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

Species delimitation in the genus *Cousinia* Cass. (Family Asteraceae), sections *Cynaroideae* Bunge and *Platyacanthae* Rech. f.: morphometry and molecular analysis

Neda Atazadeh^{1,*}, Masoud Sheidai¹, Farideh Attar², Fahimeh Koohdar¹

¹ Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran ² Central Herbarium of Tehran University, School of Biology, College of Science, University of Tehran, P.O. Box: 14155, Tehran, Iran

* Corresponding author: Email: Atazadeh_neda@yahoo.com

Abstract. The genus Cousinia of the tribe Cardueae with about 700 species is one of the most diverse genera in Central and southwest Asia. The section Cynaroides with 89 species is the largest section of the genus. Due to the controversy in the number of Cousinia species and their delineation, the first step in studying the genus is to identify and delimit presumed species. Species delimitation is usually difficult in the species with overlaps in their morphological features. Therefore, we used a combination of morphological and molecular markers (ISSRs) to carry out delimitation in 204 taxa of 68 Cousinia species whitin the Cynaroideae and Platyacanthae sections. The species delineation based on morphometry and ISSR data were done by UPGMA clustering. The samples of each species were placed close to each other and formed a single sub-cluster, separated from the other studied Cousinia species. In the present study the studied Cousinia species within Cynaroideae and Platyacanthae sections could be delimited from each other based on ISSR and morphological data. Therefore, using ISSR and morphological data can be useful in identifying and delineating crucial species. The Mantel test performed between morphological distance and Nei genetic distance produced non-significant correlation. This result also supports distance analyses of the trees and reveals that the two dendrograms are not correlated. Some possible reasons for this incongruence are proposed: the high number of taxa in the genus Cousinia, morphological traits homoplasious, convergent evolution and incomplete lineage sorting.

Keywords: Cousinia, Cynaroideae, ISSR, morphometry.

INTRODUCTION

The genus *Cousinia* Cass. of the tribe Cardueae (Family Asteraceae) with about 700 species is one of the most diverse genera in Central and southwest (SW) Asia After *Senecio* L. (c. 1500 species) and *Vernonia* Schreb. (c. 1000 species) (Tscherneva 1962; Rechinger 1972, 1979; Frodin 2004; Attar and

Ghahreman 2006; Susanna and Garcia-Jacas 2006; Attar and Djavadi 2010; Mehregan and Assadi 2016; Minaeifar et al. 2016; Rastegar et al. 2017, 2018). Due to the extensive morphological variability in the genus, Cousinia taxonomy is complicated and controversial (Mabberley 1990; Haffner 2000; Susanna et al. 2003). The genus Cousinia contains more than 400 species in SW Asia, with the highest number of species in the Flora Iranica area, out of which 379 are endemic. These species are distributed in mountainous regions of Iran, Afghanistan and Turkmenistan (Rechinger 1986; Knapp 1987). Although the exact number of Cousinia species in Iran is still unknown, about 270 species have been reported till now (Assadi 2009; Attar and Djavadi 2010). Out of these, nearly 200 endemic Cousinia species occur in Iran (Djavadi et al. 2007; Zare et al. 2013). The Cousinia species are distributed in 70 sections (Rechinger 1986). The section Cynaroideae Bunge with 89 species is the largest section of the genus and contains Irano-Turkestanian elements (Tscherneva 1962; Rechinger 1972, 1979; Huber- Morath 1975; Attar and Djavadi 2010; Rastegar et al. 2017, 2018). This sect. includes those species consisting of decurrent leaves and appendiculate bracts (Tscherneva 1962; Rechinger 1972, 1979; Huber- Morath 1975). Iran with 77 taxa, of which 66 are endemic, seems to be the centre of diversity of the section Cynaroideae (Attar and Ghahreman 2006). The section Platyacanthae Rech. f. has 6 species in Flora Iranica of which 5 species are endemic in Iran (Rechinger 1972).

Due to the controversy in the number of *Cousinia* species and their delineation, the first step in studying the genus is to identify and delimit presumed species. Species delimitation is usually difficult in the species with overlaps in their morphological features (Wiens 2007). In such cases, combined morphological and molecular data have been used to delimit these taxonomic identities (Duminil and Di Michele 2009; Minaeifar *et al.* 2016; Hassanpour *et al.* 2018; Eftekharian *et al.* 2018).

Different molecular markers have been used in plant taxonomy and phylogeny, but some of them such as intersimple sequence repeats (ISSRs) seems to be very efficient in delineating species, varieties, ecotype and even genotypes of a single species (See for example, Sheidai *et al.* 2012, 2013; Safaei *et al.* 2016; Eftekharian *et al.* 2018). Therefore, we used a combination of morphological and molecular markers (ISSRs) to carry out *Cousinia* species delimitation in sections *Cynaroideae* and *Platyacanthae*.

MATERIALS AND METHODS

Plant material

The data investigated and discussed in the present study are based on 204 samples of 68 species in of the sections *Cynaroideae* and *Platyacanthae*. Sixty-three species (189 specimens) of *Cynaroideae* and five species (15 specimens) of *Platyacanthae* were selected. The plant samples were collected from Iran (Table 1). The vouch-

No	Taxa	Section	Locality	Voucher no.
1	C. keredjensis Bornm. & Gauba	Cynaroides Bunge	Tehran	21807(TUH)
2	C. elwendensis Bornm.	Cynaroides Bunge	Hamadan-Alvand Mountains	20566(TUH)
3	C. grandis C. A. Mey.	Cynaroides Bunge	Azarbaijan	21343(TUH)
4	C. disfulensis Bornm.	Cynaroides Bunge	Lorestan- Khorram Abad	27589(TUH)
5	C. bornmulleri C. Winkl.	Cynaroides Bunge	Esfahan	22532(TUH)
6	C. behboudiana Rech. f. & Esfand.	Cynaroides Bunge	Ghazvin	27629(TUH)
7	C. inflata Boiss. & Hausskn.	Cynaroides Bunge	Kurdestan	39552(TUH)
8	C. eriocephala Boiss. & Hausskn.	Cynaroides Bunge	Azarbaijan	22442(TUH)
9	C. calocephala Jaub. & Spach	Cynaroides Bunge	Azarbaijan-Mianeh	46276(TUH)
10	C. farsistanica Bornm.	Cynaroides Bunge	Kerman	28636(TUH)
11	C. jaccobsii Rech. f.	Cynaroides Bunge	Ilam	22370(TUH)
12	C. denaensis Attar & Djavadi	Cynaroides Bunge	Boyer-Ahmad	22495(TUH)
13	C. concinna Boiss. & Hausskn.	Cynaroides Bunge	Kurdestan	20562(TUH)
14	C. grantii Rech. f.	Cynaroides Bunge	Azarbaijan	22490(TUH)
15	C. bobeckii Rech. f.	Cynaroides Bunge	Ardabil	46221(TUH)
16	C. barbeyi C. Winkl.	Cynaroides Bunge	Boyer-Ahmad	22494(TUH)
17	C. kirrindica Bornm. & Rech. f.	Cynaroides Bunge	Ilam	19711(TUH)

Table 1. Investigated Cousinia species and their voucher information.

No	Taxa	Section	Locality	Voucher no.
18	C. khorramabadensis Bornm.	Cynaroides Bunge	Lorestan	21851(TUH)
19	C. lactiflora Rech. f.	Cynaroides Bunge	Lorestan	46299(TUH)
20	C. phyllocephala Bornm. & Gauba	Cynaroides Bunge	Lorestan- Khorram Abad	46292(TUH)
21	C. lurorum Bornm.	Cynaroides Bunge	Kermanshah- Mahidasht	20568(TUH)
22	C. verbascifolia Bunge	Cynaroides Bunge	Khorasan-Mashhad	43013(TUH)
23	C. monocephala Bunge	Cynaroides Bunge	Khorasan- Ghouchan	21931(TUH)
24	C. shebliensis Ghahreman	Cynaroides Bunge	Azarbaijan- Tabriz	20580(TUH)
25	C. millefontana Rech. f.	Cynaroides Bunge	Kurdestan-Marivan	20227(TUH)
26	C. sanandajensis Rech. f.	Cynaroides Bunge	Hamadan	46287(TUH)
27	C. zardkuhensis Attar & Ghahreman	Cynaroides Bunge	Chahar Mahal& Bakhtiari	21887(TUH)
28	C. pergamacea Boiss. & Hausskn.	Cynaroides Bunge	Kurdestan	22571(TUH)
29	<i>C. macrocephala</i> C. A. Mey.	<i>Cynaroides</i> Bunge	Ardebil- Meshkin shahr	42925(TUH)
30	C. onopordioides Ledeb.	Cynaroides Bunge	Khorasan: Kashmar	28685(TUH)
31	C. aligudarzensis Attar & Ghahreman	<i>Cynaroides</i> Bunge	Lorestan-Aligudarz	27613(TUH)
32	<i>C. dalahuensis</i> Attar & Ghahreman	<i>Cynaroides</i> Bunge	Kermanshah- Mahidasht	19929(TUH)
33	C. carolihenrici Attar & Ghahreman	Cynaroides Bunge	Kurdestan	22455 (TUH)
34	C. khansarica Attar & Ghahreman	Cynaroides Bunge	Esfahan: Khansar	20037(TUH)
35	C. lurestanica Attar & Djavadi	Cynaroides Bunge	Lorestan	21824(TUH)
36	C. parsana Ghahreman	Cvnaroides Bunge	Hamadan	20553(TUH)
37	C. <i>pasargadensis</i> Attar	Cynaroides Bunge	Fars: Dashte Arjan	36294(TUH)
38	C. perspolitana Attar & Ghahreman	Cvnaroides Bunge	Fars: Abadeh	22509(TUH)
39	C. silvanica Attar	<i>Cynaroides</i> Bunge	W Azarbaijan: Urmie	24064(TUH)
40	<i>C. shulabadensis</i> Attar & Ghahreman	Cynaroides Bunge	Lorestan- Shul Abad	21874(TUH)
41	<i>C. algurdina</i> Rech. f.	<i>Cynaroides</i> Bunge	Azarbaijan- Tabriz	30533(TUH)
42	C. mohavenii Ghahreman & Attar	Cynaroides Bunge	Kermanshah- Eslamabad	20569(TUH)
43	C sabalanica Attar	<i>Cynaroides</i> Bunge	Ardebil	22570(TUH)
44	C. kurdistanica Attar	Cynaroides Bunge	Kurdestan- Marvyan	3232(TUH)
45	C. <i>gaharensis</i> Attar & Diavadi	<i>Cynaroides</i> Bunge	Lorestan- Shulabad	38259(TUH)
46	C. kermanshahensis Attar	Cynaroides Bunge	Kermanshah: Eslam-Abad	19810(TUH)
47	<i>C. fursei</i> Rech f	Cynaroides Bunge	Kurdestan-Mariyan	18314(TUH)
48	<i>C</i> chlorosthaera Bornm	Cynaroides Bunge	Chahar Mahal& Bakhtiari: Soreshian	26244(TUH)
10 49	C cynaroides C A Mey	Cynaroides Bunge	Ardebil	20211(TUH)
50	<i>C ailliatii</i> Rech f	Cynaroides Bunge	Azərbaijan	21967(TUH)
51	<i>C</i> iranica C Winkl & Strauss	Cynaroidas Bunge	Aral	21907(TUH)
52	C katschvi Boiss	Cynaroides Bunge	Azərbajian	46244(TUH)
52	C. kotikaradaahansis Bech f	Cynaroides Bunge	Kurdestan: Sagaez	40244(1011) (TUH)
55 54	C. sogittata C. Winkl. & Strauss	Cynaroides Bunge	A rak	(1011) 21822(TUH)
55	C. sugniture C. White, & Strauss.	Cynaroidas Bungo	Arak	14247(TUU)
55	C. nunu Attai	Cynaroides Bunge	Arak	14347(1011) 46272(TUH)
50 57	C. sananaica Attai & Djavadi	Cynaroides Bunge	Azarbaijan Chahar Mahal & Palahtiani	$462/2(10\Pi)$
57	C. toruegunensis Mennegan	Cynarolaes Bullge		40301(1UH)
58 50	C. namadanensis Rech. I.	Cynaroiaes Bunge	Hamadan- Malayer	46290(10H)
59 60	C. suomjuuu Bornm.	Cynarolaes Bunge	Kermansnan	(IUH)
60	C. kornhuberi Heimerl	Cynaroides Bunge	Hamadan	22372(TUH)
61	C. sardashtensis Rech. f.	Cynaroides Bunge	Chahar Mahal& Bakhtiari	200/3(TUH)
62	C. septatana Rech. f.	Cynaroides Bunge	Lorestan	21861(TUH)
63	C. <i>platyacantha</i> Bunge	Platyacanthae Rech. f.	Khorasan	43212(TUH)
64 65	C. <i>freynu</i> Bornm.	Platyacanthae Rech. f.	Semnan- Shahrud	27675(TUH)
65	C. reshingerorum Bornm.	Platyacanthae Rech. f.	Khorasan-Torbate Jam	39729(TUH)
66	C. bienerti Bunge	Platyacanthae Rech. f.	Khorasan-Neyshabur	28682(TUH)
67	C. trachyphyllaria Bornm. & Rech. f.	Platyacanthae Rech. f.	Khorasan- Ghouchan	21932(TUH)
68	C. ecbatanensis Bornm.	Cynaroides Bunge	Hamadan	22371(TUH)

er specimens have been deposited in The Herbarium of Tehran University (TUH) (Table 1).

DNA extraction and PCR amplification

Total genomic DNA was extracted from leaf tissue using protocol of the CTAB-activated charcoal and Polyvenyl Pyrrolidone (PVP) method (Murray and Thompson 1980). Quality of extracted DNA was examined by running on 0.8% Agarose gels. Each 20 ml PCR mixture contained 10 ml of 2_ PCR buffer, 0.5 mM of each primer, 200 mM of each dNTP, 1 Unit of Taq DNA polymerase (Bioron, Ludwigschafen, Germany), and 1 ml of template genomic DNA at 20 ng mle1. The PCR amplification program was performed in a Techne thermocycler (Germany) with the following program: 5 min at 94 °C, followed by 45 cycles of 30 s at 94 °C, 30 s at 54.6 °C, and 2 min at 72 °C, with a final extension step of 10 min at 72 C. The amplification products were visualized by running on 2% agarose gel, followed by ethidium bromide staining. The fragments size was estimated by using a 100-bp molecular size ladder (Fermentas, Germany). The experiment was replicated 3 times and constant ISSR bands were used for further analyses. Ten ISSR primers, UBC 807, UBC 810, UBC 811, UBC 834, CAG(GA)7, (CA)7AC, (CA)7AT, (CA)7GT (GA)9A, and (GA)9T, commercialized by the University of British Columbia, were used (Godwin *et al.* 1997).

Morphological analysis

In total, 19 morphological characters (quantitative and qualitative) were studied (Table 2). Morphological characters were coded accordingly. Data were standardized (mean = 0, variance = 1) and used for multivariate analyses. UPGMA (Unweighted paired group using average), and Ward (Minimum spherical variance) clustering based on Euclidean distance and Gower distances as well as principal coordinate analysis (PCoA) and multidimensional scaling (MDS) methods were used for grouping of the species. Principal components analysis (PCA) was used to identify the most variable morphological characters. (Podani 2000; Safaei *et al.* 2016). Data analyses were performed by PAST ver. 2.17 (Hammer *et al.* 2012).

Molecular analysis

The obtained ISSR bands were treated as binary characters (presence = 1, absence = 0). The number of

Table 2. Morphological characters and their code.

Character		Code			
Head diameter	x<3	3≤x≤6	x>6		
Flower number	x<80	80≤x≤150	x>150		
Bracts number	x<80	80≤x≤120	x>120		
Appendages length of median bracts	x<9	9≤x≤15	x>15		
Appendages width of median bracts	x< 5	5≤x≤15	x>15		
Crolla length	x< 20	20≤x≤25	x>25		
Habitate	Woodland	Alpine	Stepp		
Leaves indumentum	Present	Absent			
Stem leaves	Interruptedly decurrent	Countinuously decurrent	Undecurrent		
Uppermost leaves	Distant from the head	Close to the head	Surrounding the head		
Appendages	Present	Absent			
Inner bracts indumentum	Smooth	Scabrous			
Position of median bracts	Imbricated	Spreading	Recurved	Spreading-recurved	Imbricated- spreading
Appendages shape of median bracts	Sagitate	Triangular	Rhombic	Ovate	Lanceolate
Appendages margin of median bracts	Smooth	1-2 spins	Spinose		
Receptacle bristles	Smooth	Scabrous			
Corolla color	Yellow	Pink	Purple	White	
Ratio limb to Anther tube	Longer	Shorter	As long as		
Anther tube color	Yellow	Pink	Purple	White	

private bands versus common bands was determined. The genetic diversity parameters like Nei's gene diversity (H), Shannon information index (I), number of effective alleles, and percentage of polymorphism (Freeland et al. 2011) were determined for each population. Nei's genetic distance was used for clustering (Weising et al. 2005). Neighbor Joining (NJ) and UPG-MA (Unweighted paired group using average) clustering were used for the species grouping after 100 times bootstrapping/permutations (Freeland et al. 2011). The consensus tree was constructed from the obtained morphological and ISSR trees. Similarly, tree distance was estimated accordingly. The Mantel test between dendrograms was performed to check their agreement. PAST ver. 2.17 (Hammer et al. 2012) and DARwin ver. 5 (Perrier & Jacquemoud-Collet 2006) programs were used for these analyses. AMOVA (analysis of molecular variance) (with 1000 permutations) as implemented in GenAlex 6.4 (Peakall and Smouse 2006) was used to determine species genetic differentiation. Gene flow was determined by: (1) calculating Nm an estimate of gene flow from Gst by PopGene ver. 1.32 (1997) as: Nm 1/4 0.5(1 e Gst)/Gst, (2) reticulation analysis that is based on the least square method as performed in T-REX (Boc et al. 2012).

RESULTS

Morphometry

UPGMA dendrogram of the studied *Cousinia* species based on morphological characters (Figure 1) placed the studied samples of most of the species together and in a separate sub-cluster. This indicates that *Cousinia* species can be differentiated by the used morphological features. UPGMA dendrogram also separated *Cousinia* species of the two sections *Cynaroideae* and *Platyacanthae*.Therefore, the morphological characters studied can delimit these sections too.

PCA analysis of morphological characters revealed that the first two PCA components comprised about 79% of total variation. Morphological characters like shape and length of the appendages of the median bracts, diameter of the heads, the No. of flowers and length of the corolla had the highest value of correlation with these components and are the most variable morphological features among the studied plants. In fact, these morphological features are of taxonomic value in the two sections *Cynaroideae* and *Platyacanthae*.

ISSR assay

The used ISSR primers produced 36 reproducible bands/loci, out of which only 1 band was monomorphic, while the others were polymorphic bands. The highest number of ISSR bands occurred in *C. keredjen*sis Bornm. & Gauba (20), while *C. cynaroides* C. A. Mey had the lowest number of bands (5). A single private ISSR band occurred in *C. keredjensis*, while the other bands were common among the *Cousinia* species.

Discriminating power of ISSR loci as determined by Gst against Nm (migration) analysis (Table 3), revealed that almost all ISSR loci have excellent discriminating power (>0.95). Therefore, ISSR markers are efficient in differentiating *Cousinia* species studied.

The highest value for Nei genetic distance (0.87) occurred between *C. bienerti* Bunge and *C. elwendensis* Bornm., followed by *C. freynii* Bornm. and *C. elwendensis* (0.81). Similarly, the lowest value for the same (0.02) was observed between *C. reshingerorum* Bornm. and *C. bienerti*.

UPGMA dendrogram of the studied *Cousinia* species based on ISSR data (Figure 2) separated these species in distinct sub-clusters. Therefore, ISSR molecular markers can be used in taxonomy of the genus. These molecular markers can also differentiate two sections of *Cynaroideae* and *Platyacanthae*.

AMOVA produced significant genetic difference among the studied *Cousinia* species (P = 0.001), which indicates that the studied species are genetically differentiated. AMOVA revealed that 99% of total genetic difference was due to among species genetic differentiation, while 1% was due to within species genetic variability.

The species relationship illustrated by UPGMA dendrograms based on morphological features and molecular data were not congruent. It was also illustrated in the consensus tree of these dendrograms (Figure 3). This tree revealed that only in some cases the studied Cousinia species show the same relationship in both morphological and molecular trees. For instance, C. zardkuhensis Attar & Ghahreman (No. 27 in Figure 3) and C. chlorosphaera Bornm. (No. 48 in Figure 3) were placed close to each other. The same applied for for C. platyacantha Bunge (No. 63 in Figure 3) and C. freynii (No. 64 in Figure 3). Similarly, three species of C. reshingerorum, C. bienerti and C. trachyphyllaria Bornm. & Rech. f. (No. 65-67 in Figure 3) formed a distinct cluster in the obtained consensus tree. The rest of Cousinia species studied were placed together in an unresolved cluster. This means that, their relationship is differently pictured in the obtained morphological and molecular dendrograms. Tree distance between the obtained morpho-

Figure 1. UPGMA dendrogram of the studied Cousinia species based on morphological data. (The specie 1-68 are according to Table 1).

logical and ISSR dendrograms after adjusting the edges in each dendrogram was 0.36. Similarly, comparison of these two dendrograms based on Quartet tree distance method, produced 0.64 difference. Both these results indicate that morphological relationship of the studied *Cousinia* species, differed in great extent with ISSR based species relationship.

The performed Mantel test between morphological distance and Nei genetic distance produced non-significant correlation (Correlation R = 0.06, p = 0.113). This

indicates that morphological divergence in the studied species is not correlated with genetic distance.

DISCUSSION

As mentioned by the authors, taxonomy and molecular phylogeny of the genus *Cousinia* is complicated and unresolved mainly due to disagreement between the morphological and molecular phylogenetic studies (See

 Table 3. Discrimination power of ISSR loci in studied Cousinia species.

Locus	Sample Size	Ht	Hs	Gst	Nm*
Locus1	204	0.1107	0.0000	1.0000	0.0000
Locus2	204	0.4027	0.0000	1.0000	0.0000
Locus3	204	0.4931	0.0000	1.0000	0.0000
Locus4	204	0.2712	0.0000	1.0000	0.0000
Locus5	204	0.3893	0.0000	1.0000	0.0000
Locus6	204	0.0843	0.0000	1.0000	0.0000
Locus7	204	0.0571	0.0000	1.0000	0.0000
Locus8	204	0.3599	0.0000	1.0000	0.0000
Locus9	204	0.3270	0.0000	1.0000	0.0000
Locus10	204	0.4961	0.0000	1.0000	0.0000
Locus11	204	0.3655	0.0088	0.9759	0.0124
Locus12	204	0.2297	0.0000	1.0000	0.0000
Locus13	204	0.4650	0.0000	1.0000	0.0000
Locus14	204	0.2297	0.0000	1.0000	0.0000
Locus15	204	0.3270	0.0000	1.0000	0.0000
Locus16	204	0.1454	0.0088	0.9394	0.0323
Locus17	204	0.2712	0.0000	1.0000	0.0000
Locus18	204	0.1499	0.0132	0.9118	0.0484
Locus19	204	0.0394	0.0088	0.7763	0.1441
Locus20	204	0.0107	0.0088	0.1791	2.2922
Locus21	204	0.0571	0.0000	1.0000	0.0000
Locus22	204	0.1107	0.0000	1.0000	0.0000
Locus23	204	0.2712	0.0000	1.0000	0.0000
Locus24	204	0.4377	0.0000	1.0000	0.0000
Locus25	204	0.4983	0.0000	1.0000	0.0000
Locus26	204	0.1609	0.0000	1.0000	0.0000
Locus27	204	0.2297	0.0000	1.0000	0.0000
Locus28	204	0.2712	0.0000	1.0000	0.0000
Locus29	204	0.0843	0.0000	1.0000	0.0000
Locus30	204	0.2297	0.0000	1.0000	0.0000
Locus31	204	0.2076	0.0000	1.0000	0.0000
Locus32	204	0.0843	0.0000	1.0000	0.0000
Locus33	204	0.0290	0.0000	1.0000	0.0000
Locus34	204	0.0571	0.0000	1.0000	0.0000
Locus35	204	0.1609	0.0000	1.0000	0.0000
Locus36	204	0.0571	0.0000	1.0000	0.0000
Mean	204	0.2270	0.0013	0.9941	0.0030

Nm = estimate of gene flow from Gst or Gcs. E.g., Nm = 0.5(1 - Gst)/Gst.

for example, Sausana *et al.* 2003; Lopez-Vinyallonga *et al.* 2009). Moreover, several overlapping morphological characteristics at the species level makes the species identification and delineation difficult (Attar and Djavadi 2010). In the present study, we could delimit the studied *Cousinia* species based on both the used morphological and molecular data. We suggest that certain

morphological characters like shape and the length of the appendages of the median bracts, diameter of the heads, the No. of flowers and the length of the corolla are taxonomically useful at the species level.

Interesting enough, the both sections *Cynaroideae* and *Platyacanthae* are separated from each other due to the difference in traits such as stem leaves and appendages of median bracts. Therefore, these characters are of more practical utility, particularly in sectional level classification in the genus *Cousinia*.

The obtained species relationship based on morphological features are in agreement with previous studies. For example, within the section *Platyacanthae*; *C. Platyacanthae* and *C. freynii* were placed close each other due to the similarity in all features except color of corolla. Their close affinity to each other was also noticed by Asaadi and Mehregan (Flora of Iran 2017). Similarly, *C. reshingerorum*, *C. bienerti* and *C. trachyphyllaria* showed morphological resemblance due to the traits such as No. of the flowers, the length of the corolla, the color of the anther tube, inner bracts, receptacle bristles, diameter of head, ratio of limb/tube. Close morphological affinity among these species was also illustrated by Asaadi and Mehregan (Flora of Iran 2017).

In the section Cynaroideae, ISSR data showed genetic affinity between C. grantii Rech. f. and C.grandis C. A. Mey., and also between C. verbascifolia Bunge and C. monocephala Bunge. These species also showed morphological similarities. The same holded true for C. pergamaceae Boiss. & Hausskn., C. millefontana Rech. f., and C. carolihenrici Attar & Ghahreman; as well as for C. zardkuhensis and C. chlorosphaera. ISSR data revealed close affinity between C. disfulensis Bornm., C. jaccobsii Rech. f. and C.kermanshahensis Attar; which is almost in agreement with the morphological data. The same applied for C. nana Attar and C. kotschyi Boiss. These results are almost in agreement with the taxonomic treatment of the section Cynaroideae (Attar and Djavadi 2010). The other studied Cousinia species in the section Cynaroideae differed in their affinity in genetic tree versus morphological tree. This is in agreement with results of Lopez-Vinyallonga et al. (2009), as they also indicated that morphological traits are highly incongruent with molecular data in Arctium-Cousinia complex and considered morphological characters homoplasious.

In general, various reasons were suggested for this incongruence between molecular and morphological analyses: the high number of taxa in the genus *Cousinia*, homoplasious of the morphological traits, convergent evolution (Susanna *et al.* 2003; Lopez-Vinyallonga *et al.* 2009), incomplete lineage sorting (Zhang *et al.* 2015); as well as the occurrence of intermediate forms and

Figure 2. UPGMA dendrogram of the studied Cousinia species based on ISSR data.

homoploid hybrid speciation, which there is little proof to prove them (Mehregan & Kadereit 2009; Lopez-Vinyallonga *et al.* 2009). Furthermore, the genus *Cousinia* with its relatively young geological age (ca. 8.7 mya) and high number of taxa is thoroughly unusually exposed to speciation (Lopez-Vinyallong *et al.* 2009). This is entirely consistent with the results reported by Lopez-Vinyallonga *et al.* (2009), as they also revealed that the dominant factor in speciation of the genus *Cousinia* is allopatric geographic speciation. These may partly justify the complexity and incongruence of the relationships in the studied species of the genus *Cousinia*.

In conclusion, along with confirmation by the published literature, the current study proved that the morphological characters and ISSR molecular data are useful for the correct identification and species delimitation within the *Cynaroideae* and *Platyacanthae* sections. Both quantitative and qualitative morphological characteristics are important and suitable for the identification of species of the genus *Cousinia*.

Fig. 3. Consensus tree based on morphological and ISSR dendrograms in studied Cousinia species.

REFERENCES

- Assadi M. 2009. Four new species of the genus *Cousinia* Cass. (Asteraceae) from Iran. Iranian Journal of Botany 15(1): 36-44.
- Asaadi M, Mehregan I. 2017. Flora of Iran. No. 125: (Asteraceae: *Cousinia*).
- Attar F, Ghahreman A. 2006. A synopsis of sect. *Cynaroides* (*Cousinia*, Compositae), distribution patterns and diversity centers. Rostaniha 7 (Supplement 2): 315-342.
- Attar F, Djavadi SB. 2010. A taxonomic revision of *Cousinia*, sect. *Cynaroides* (Asteraceae, Cardueae) in the flora of Iran. Iranian Journal of Botany 16(1): 130-184.
- Boc A, Diallo AB, Makarenkov V. 2012. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acid. Res. 40: 573-579
- Djavadi SB, Attar F, Eskandari M. 2007. *Cousinia papilosa*, A new species from eastern Iran, Including chromosome count and palynological studies. Rostaniha 8(2): 63-73.
- Duminil J, Di Michele M. 2009. Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosyst. 143: 528-542.
- Eftekharian R, Sheidai M, Attar F, Noormohammadi Z. 2018. Molecular and morphological study of the genus *Senecio* L. (Asteraceae: Senecioneae) in Iran. Genetika 50(2): 403-419.

- Freeland JR, Kirk H, Peterson SD. 2011. Molecular Ecology, second ed. Wiley-Blackwell, UK, p. 449.
- Frodin DG. 2004. History and concepts of big plant genera. Taxon. 53(3): 753-776.
- Godwin ID, Aitken EAB, Smith LW. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis.18: 1524-1528. doi:10.1002/ elps.1150180906.
- Haffner E. 2000. On the phylogeny of the subtribe Carduinae (tribe Cardueae, Compositae). Englera 21.
- Hammer Ø, Harper DAT, Ryan PD. 2012. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.
- Hassanpour H, Zare-Marivan H, Sonboli A, Kazempour-osaloo S, Wagner F, Tomasello S, Oberprieler C. 2018. Phylogenetic species delimitation unravels a new species in the genus Sclerorhachis (Rech.f.) Rech.f. (Compositae, Anthemideae). Plant Systematics and Evolution 344(2): 185-203. doi: 10.1007/ s00606-017-1461-4.
- Huber-Morath A. 1975. *Cousinia* in: P. H. Davis (ed.), Flora of Turkey and the East Aegean Islands 5: 329-353.
- Knapp HD. 1987. On the distribution of the genus Cousinia (Compositae). Plant Systematics and Evolution 155: 15-25.
- Lopez-Vinyallonga S, Mehregan I, Garcia-Jacas N, Tscherneva O, Susanna A, Kadereit JW. 2009. Phylogeny and evolution of the *Arctium-cousinia* complex (compositae, cardueae-caruinae). Taxon. 58: 153-171.

- Mabberley DJ. 1990. The plant book. Cambridge, UK: Cambridge University.
- Mehregan I, Assadi M. 2016. A synopsis of *Cousinia* sect. *Pseudactinia* (Cardueae, Asteraceae) including a new species from NE Iran. Phytotaxa. 257(3): 271. doi: 10.11646/phytotaxa.257.3.5
- Mehregan I, Kadereit JW. 2009. The role of hybridization in the evolution of *Cousinia* s.str. (Asteraceae, Cardueae). Willdenowia. 39(1): 35-47.
- Minaeifar A, Sheidai M, Attar F, Noormohammadi Z, Ghasemzadeh- Baraki S. 2016. Biosystematic study in the genus *Cousinia* Cass. (Asteraceae), section *Cousinia*. Biochemical Systematics and Ecology 69: 252-260.
- Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acid. Res. 8: 4321-4325.
- Peakall R, Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.
- Perrier X and Jacquemoud-Collet JP. (2006). DARwin Software. http://darwin.cirad.fr/darwin.
- Podani J. 2000. Introduction to the Exploration of Multivariate Data. Backhuyes: Leiden, p. 407.
- Rastegar A, Ahmad SA, Attar F. 2017. *Cousinia azmarensis* (Asteraceae, Cardueae), a New Species from Kurdistan, Iraq. Harv. Pap. Bot. 22(1): 71-73.
- Rastegar A, Attar F, Mirtadzadini M. 2018. Novelties in Iranian *Cousinia* sect. *Cynaroideae* (Asteraceae, Cardueae): new taxa and taxonomic notes. Phytotaxa. 343(3): 227-239. doi: 10.11646/phytotaxa.343.3.3.
- Rechinger KH. 1972. Compositae-Cynareae I. *Cousinia* in K. H. Rechinger (ed.). Flora Iranica, no. 90. Graz, Austria.
- Rechinger KH. 1979. Compositae III-Cynareae. Cousinia in K. H. Rechinger (ed.). Flora Iranica, no. 139A: 108-153. Graz, Austria.
- Rechinger KH. 1986. *Cousinia*: morphology, taxonomy, distribution and phytogeographical implication. Proceedings of the Royal Society of Edinburgh 89B: 45-58.
- Safaei M, Sheidai M, Alijanpoor B, Noormohammadi Z. 2016. Species delimitation and genetic diversity analysis in Salvia with the use of ISSR molecular markers. Acta Bot. Croat. 75: 45-52.
- Sheidai M, Seif E, Nouroozi M, Noormohammadi Z. 2012. Cytogenetic and molecular diversity of *Cirsium* arvense (Asteraceae) populations in Iran. J. Jap. Bot. 87: 193-205.
- Sheidai M, Zanganeh S, Haji- Ramezanali R, Nouroozi M, Noormohammadi Z, Ghasemzadeh- Baraki S. 2013. Genetic diversity and population structure in

four *Cirsium* (Asteraceae) species. Biologia 68: 384-397.

- Susanna A, Garcia-Jacas N, Vilatersana R, Garnatje T. 2003. Generic boundaries and evolution of characters in the Arctium group: a nuclear and chloroplast DNA analysis. Collectanea Botanica, Barcelona. 26: 101-118.
- Susanna A, Garcia-Jacas N. 2006 [2007]. Tribe Cardueae Cass. (1819) Pp. 123-147 in Kadereit J. W. & Jeffrey C. (volume ed.), the families and genera of vascular plants 8. - Berlin, etc.
- Tscherneva OV [Cherneva OV]. 1962. Compositae-Cousinia in Shishkin BK, Bobrov EG (ed.), Flora SSSR. 27: 108-357. Moscow and Leningrad [English translation: Enfield. 1993].
- Weising K, Nybom H, Wolff K, Kahl G. 2005. DNA Fingerprinting in Plants. Principles, Methods, and Applications, second ed. 472. CRC Press, Boca Rayton, Fl., USA, pp. 1-17. 37.
- Wiens JJ. 2007. Species delimitation: new approaches for discovering diversity. Syst. Biol. 56: 875-878.
- Zare M, Khosravi AR, Joharchi MR. 2013. Distribution patterns of the genus *Cousinia* (Asteraceae) in Iran. Iranian Journal of Botany 19(1): 127-141.
- Zhang Q, Feild TS, Antonelli A. 2015. Assessing the impact of phylogenetic incongruence on taxonomy, floral evolution, biogeographical history, and phylogenetic diversity. American Journal of Botany 102(4): 566-580.