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Abstract. Methomyl is a carbamate pesticide that is frequently applied to crops all 
over the world. This research aims to evaluate the Pisum sativum L mitotic process and 
potential genotoxicity. The Cell Proliferation Kinetics (CPK) frequencies demonstrated 
changes in kinetics of mitotic process, and study of Mitotic Index (MI) demonstrated 
that methomyl had cytotoxic properties. In fact, the telophases ratio dropped at 0.1% 
to 0.5% methomyl treatment, while there was an increase in prophases, metaphases, 
and anaphases from 0.1% to 0.5% in a dose dependent manner. In terms of genotoxic-
ity, methomyl cause an increase in the frequency of clastogenic and aneugenic chromo-
somal abnormalities at metaphase-anaphase at 0.1% to 0.5%. The effects on the mitotic 
spindle were further confirmed by an increase in the frequencies of c-mitosis from 0.1 
to 0.5% methomyl treatment. The outcome of the current analysis indicates that regu-
larly used insecticides methomyl has a considerable cytotoxic effect on mitotic cells of 
Pisum sativum L. 

Keywords: methomyl, mitotic index, clastogenic, aneugenic, C- mitosis Pisum sati-
vum L.

INTRODUCTION

In public areas, agricultural lands and gardens, pesticides are extensively 
used to eradicate weeds, undesirable pests, and diseases transmitted by vec-
tors. Nevertheless, the prolonged usage of pesticides may leave behind toxic 
remains that, through surface drains, spray drift, runoff, spray leftovers, and 
leaching may pollute nearby surface water and ground natural water bodies 
(Mojiri et al. 2020; Chandra et al. 2021). The accumulation of residual pesti-
cides in aquatic and marine organisms food chains can pose a risk to human 
health and have a detrimental effect on ecological systems (Lukaszewicz et al. 
2019; Jing et al. 2022a; Abdel-Wahab et al. 2021). 

From many decades, pesticides have been a crucial component in reduc-
ing crop loss and increasing output. Due to these advantages, farmers are 
spraying pesticides on crops more frequently and using modern techniques 
like drones (Nie et al. 2020). However, the propensity of pesticides to bio 
accumulate in edible goods may have an undesirable impact on human 
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health (Yu et al. 2016; Ramadan et al. 2020). Beyond 
their maximum residue limits (MRLs), pesticides in 
water and agricultural products have the potential to 
cause both acute and chronic illnesses in people (Li and 
Jennings 2018; Amaç and Liman 2021). 

Carbamates are a diverse group of chemicals that 
are used as insecticides. The acetylcholinesterase (AChE) 
enzyme is selectively affected by carbamates, which 
results in a buildup of acetylcholine and overstimulation 
of the nervous system in both target and non-target spe-
cies, including human beings (Eddleston et al. 2004). In 
the areas where onions, cucumbers, cabbage, and chili 
peppers are grown, methomyl, a carbamate insecticide, 
is frequently used (Ramadan et al. 2020). Acute poison-
ing may result from methomyl consumption by using 
contaminated agrifoods and water via occupational or 
non-occupational ways (Jing et al. 2022 b). 

Due to its highly effective biological action in con-
trolling pests and safeguarding the crops, methomyl 
(C5H10N2O2S), S-methyl-1-N- [(methyl carbamoyl)-
oxy]-thioacetimidate, belongs to carbamate pesticide 
group that is commonly applied in various countries 
(Laicher et al. 2022; Pietrini et al. 2022). Several pesti-
cides are designed to strike a particular group of targets, 
although their noxious constituents will affect the whole 
organism, both target and non-target (Castellanos et al. 
2022). According to a study, methomyl causes genotoxic 
effects in fish (Afaf et al. 2022). Fish and aquatic crea-
tures including Danio rerio, coastal aquatic system and 
water spinach have also shown toxicity to methomyl 
(Jablonski et al. 2022; Camilo-Cotrim et al. 2022). 

DNA damage is a preliminary biotic phenomenon 
which could disrupt biological developments and struc-
tures and produce genotoxic disorders associated with 
carcinogenic complications (Acar et al. 2022; Siddiqui 
and Sulaiman 2022 a and b; El-Houseiny et al. 2022). As 
per a recent report, numerous species undergo carcino-
genic progressions due to various causes, such as DNA 
damage instigated by chemical contaminants (Pesaven-
to et al. 2018; Velázquez et al. 2022; Liman et al. 2022). 
This study aims to analyze the potential adverse effects 
of methomyl on mitotic processes and DNA integrity in 
the terrestrial plant Pisum sativum L. 

MATERIAL AND METHODS

Purchasing of chemicals and seeds 

Methomyl insecticide were bought from Sigma 
Chemicals Ltd., United States (CAS No. 16752-77-5). 
Pisum sativum L (Pea) seeds were procured from a 
licensed trader at a community market in Abha, Saudi 

Arabia.

Exposure conditions

Even sized P. sativum L seeds were chosen, pre-
soaked for 12 hours in distilled water and then divided 
into various groups of 30 seeds each. After that, the 
seeds were exposed to various methomyl concentrations 
(0.1, 0.2, 0.3, 0.4, and 0.5%) for 1 h by soaking in 250 mL 
solutions of methomyl. Double-distilled water was used 
to soak the seeds in the control group. Throughout the 
treatment time, the containers were shaken repeatedly 
to make available ample aeration to the seeds. Following 
treatment, seeds were extensively rinsed with double dis-
tilled water (DDW) to eliminate any remaining traces of 
adhering methomyl and were placed in Petri dishes on 
moisturized Whatman Filter Paper. For the following 
72 hours, the Petri dishes were kept in dark in a plant 
growth cabinet at 25±2°C. The experiment was conduct-
ed on newly emerging roots that were 1-2 cm long. The 
complete experiment was conducted thrice in identical 
conditions.

Evaluation of mitotic kinetics and genotoxicity

One to two cm long roots were collected between 8 
to 10 am, soaked for 24 h in a fixation solution (ethanol: 
glacial acetic acid, 3:1), then transferred to 70% ethanol, 
maintained at 5°C till microscopic examination. For 
each sample, 10 roots were hydrolyzed in 1N HCl for 10 
minutes, and with 2% acetocarmine solution, root tips 
were dyed for 10 minutes for preparing each slide. Chro-
mosome preparation was done from root tips as stated 
by Qian et al. 1998 with minor modifications (Siddiqui 
and Suleiman 2022b). To calculate the MI, which is a 
proportion of dividing cells, 1000 cells from each sample 
were evaluated. The no. of cells in each division phase 
to all mitotic cells was used to compute CPK frequen-
cies. All mitotic cells were studied in a light microscope 
under oil immersion (100 x). All slides were examined 
blind and coded. 

Ratio of aberrant cells over 500 metaphase/anaphase 
cells per root tips were used to calculate the frequency 
of chromosomal aberrations. Chromosomal aberra-
tions were categorized as per their origin in clastogenic 
(resulting in chromosomal breakage) or aneugenic (dis-
rupting spindle function and leading to asynchronic 
chromosomal migration). Laggards and vagrants chro-
mosomes have been scored with regards to aneugenic 
abnormalities. Single bridges, fragments, double bridges, 
and sticky chromosomes were taken into considera-
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tion in clastogenic aberrations. C-mitosis as defined by 
Grant (1978) is an inactivation of spindle ensued by 
a haphazard scattering of chromosomes over the cell 
and is quantified and scored by assessing the frequency 
over 100 metaphases per root tips. All the aberrant and 
c-mitosis cells were studied in a light microscope under 
oil immersion (100x). All slides were examined blind 
and coded.

Statistical analysis

A one-way ANOVA test using GPIS 1.13 software 
(GRAPHPAD, California, USA) was applied to find sig-
nificance of differences in variables. All results were 
articulated as mean ± standard error.

RESULTS

It is clear from the results that methomyl is toxic to 
MI, CPK, c- mitosis, aneugenic and clastogeneic aberra-
tions. The observed MI, CPK, c-mitosis, aneugenic and 
clastogeneic aberrations are well represented in (Fig. 1, 
Table 1, Fig. 2, Fig. 3 and Fig. 4). The clastogenic abnor-
malities observed were single bridges, fragments, double 
bridges, sticky chromosome and aneugenic abnormali-
ties were laggards and vagrants.

Effect of methomyl treatment on mitotic index of P. sati-
vum L. 

Fig. 1 shows how methomyl affected the MI of root 
tip cells in P. sativum. In control group, seeds treated 
with DDW for 1 hour had a MI of 9.3%. From 0.1 to 
0.2% methomyl treated seeds, a non-significant decline 
(p>0.05) in MI was observed and at 0.3% concentration, 
there was a significant decrease (p< 0.05) in MI and at 
0.4 to 0.5%, a very significant decrease (p< 0.01) in MI 
was reported in comparison to control for 1 hour. Over-
all, MI decreases dose dependently in all concentrations 
from 0.1 to 0.5%.

Effect of methomyl in Cell Proliferation Kinetics (CPK) of 
P. sativum L

Cell proliferation kinetics (CPK), assessed as the 
ratio of prophases, metaphases, anaphases and telo-
phases revealed a rise in prophase, metaphase and ana-
phase from (0.1 to 0.5%) and a decrease in telophase at 
0.1 to 0.5% of methomyl treated root tips in comparison 
to control (Table 1).

A significant increase (p<0.05) was reported in 
prophase at 0.4 % (58.34±1.2); metaphase at 0.2% 
(27.3±3.8), and anaphase at 0.2% (21.3±1.9) but a sig-
nificant decrease (p<0.05) was observed in telophase at 
0.3% (19.12 ±3.6) in comparison to control. Prophase at 
0.5% (60.12±2.6); metaphase from 0.3 to 0.5% (27.4±3.5; 
28.45±3.6; 29.40±1.2 respectively) and anaphase from 0.3 
to 0.5% (23.1±1.7; 24.5±1.9; 25.5±1.6 respectively) result-
ed in a very significant increase (p<0.01) and telophase 
from 0.4 to 0.5% (17.6±2.5; 16.80±3.6) showed a very sig-
nificant decrease (p<0.01) in comparison to control.

Effect of methomyl treatment on C-mitosis of P. sativum L 

Fig. 2 demonstrates how methomyl affects c-mitosis 
in P. sativum root tips cells. Seedlings treated for 1h with 

Figure 1. Effect of methomyl on mitotic index of P. sativum for 1 h. 
*p<0.05; compared to control group. Data are mean of three repli-
cates ±SE, 0.0 = Control group.

Table 1. Effect of methomyl on cell proliferation kinetics in P. sati-
vum L. 

Concentration 
(%) Prophases Metaphases Anaphases Telophases 

0.0 52.5±4.8 21.7± 2.7 18.5±3.4 23.12.8±2.3
0.1 50.7±4.6 23.5±1.7 20.4±2.4 21.5.6±3.0
0.2 50.4±2.4 27.4±3.5* 21.3±1.9* 20.9±1.30
0.3 55.7± 2.2 27.3.3±3.8** 23.1±1.7 ** 19.12±3.6*
0.4 58.34±1.2* 28.45±3.6** 24.5±1.9 ** 17.6±2.5**
0.5 60.12±2.6 ** 29.40±1.2** 25.5± 1.6 ** 16.80±3.6**

*p<0.05; **p<0.01 compared to control group. Data are mean of 
three replicates ±SE, 0.0 = Control group.
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DDW in the control group exhibited 0% c-mitosis. A 
significant increase (p<0.05) in the number of c-mitosis 
cells were seen in seeds treated with 0.1% methomyl for 
1 hour and from 0.2 to 0.5%, there was a very significant 
increase (p<0.01) in c-mitosis cells in comparison to con-
trol for 1 hour. Overall, c-mitosis increases dose depend-
ently in all concentrations ranging from 0.1 to 0.5%.

Effect of methomyl on aneugenic and clastogeneic aberra-
tion cells in P. sativum L

The incidence of aneugenic aberrations (laggards and 
vagrants) in metaphase-anaphase plates in the control 
group was zero. Percentage of aneugenic aberrations (lag-
gards and vagrants) in the metaphase-anaphase plate dose 
dependently increased with methomyl treatment (Fig. 3 
and Fig. 5). Seeds treatment with 0.1% methomyl resulted 
in a 1-fold increase and 0.2% treatment resulted in a 1.37-
fold increase which was not significant and 0.3% metho-
myl treated seeds resulted in a 2.4-fold increase which 
was significant (p<0.05) in comparison to control. Fur-
ther increase in concentration from 0.4 to 0.5% methomyl 
treated seeds resulted in a rise in incidence of aneugenic 
aberrations, 5.9-fold, and 9.56-fold respectively, which was 
very significant (p<0.01) in comparison to control.

The incidence of clastogeneic aberrations (single 
bridges, fragments, double bridges and sticky chromo-
some) at metaphase-anaphase plates in control group 
was zero (Fig. 4, and Fig. 5). Percentage of root tip cells 
with clastogeneic aberrations (single bridges, fragments, 

double bridges and sticky chromosomes) at metaphase-
anaphase plate increased dose dependently with metho-
myl treatment (Fig. 4). Treatment of seeds with 0.1% 
methomyl resulted in 1.81-fold increase which was non-
significant as compared to control. However, from 0.2 
to 0.5 % methomyl treated seeds resulted in 6.25-fold, 
12.19-fold, 18.92-fold and 21.28-fold increase in clastoge-
neic aberrations respectively which was very significant 
(p<0.01) in comparison to control.
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Figure 2. Effect of methomyl on c-mitosis in P. sativum for 1 h. 
*p<0.05; **p<0.01 compared to control group. Data are mean of 
three replicates ±SE, 0.0 = Control group.
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Figure 3. Effect of methomyl on total aneugenic aberrations in P. 
sativum for 1 h. *p<0.05; **p<0.01 compared to control group. Data 
are mean of three replicates ±SE, 0.0 = Control group.
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Figure 4. Effect of methomyl on total clastogenic aberrations in P. 
sativum for 1 h. *p<0.05; **p<0.01 compared to control group. Data 
are mean of three replicates ±SE, 0.0 = Control group.
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DISCUSSION

This study shows that reduction in cell division indi-
cates that tested methomyl have a mitodepressive poten-
tial. When mitotic activity is reduced, the amount of 
DNA also declines. This could be due to the blockage of 
cell cycle in the G2 phase or DNA synthesis inhibition 
or stopping the cell from starting mitosis (Siddiqui et al. 
2007; Siddiqui et al. 2012; Siddiqui and Alrumman 2020 a 
and b). The significant decrease in mitotic index observed 
in this study might be the effect of methomyl interfering 
with the cell cycle by blocking G2 phase of cell cycle or 
DNA synthesis inhibition, or it could be the outcome of 
a rise in the frequency of chromosomal anomalies with 
analogous increase in methomyl concentration. These 
findings are also consistent with the outcomes of several 
research teams which have stated the cytotoxic effects of 
ethephon (Ayşe and Kılıç 2017; Bonciu et al. 2022), vari-
ous synthetic plant growth regulators (Singh et al. 2022; 
Asif et al. 2022), and various pesticides (Lukaszewicz et al. 
2019; Siddiqui and Alrumman 2022 a and b; Omeiri et al. 
2022; Hafez et al. 2022; Bandopadhyay et al. 2022).

In this study, Methomyl raised the percentage of 
metaphase, prophase and anaphase and reduced the 
percentage of telophase in all concentrations in a dose 
dependent manner, as per the outcomes of proportions 
of distribution of specific mitotic stages. There is an 
increase at all concentrations of metaphase, prophase 
and anaphase phases. The outcomes are consistent with 
the findings of Liman et al. (2010), Priya et al. (2014), 
and Ozkul et al. 2016). Furthermore, the percentage 
of telophase stage decreased in comparison to control. 
These findings suggest that decline in telophase stag-
es and henceforth MI might be due to arrest of one or 
more mitotic stages or due to a slowdown in the rate of 
cell development during mitosis (Ping et al. 2012). 

 C-mitosis was found in the present study. C-mito-
sis was created by unstable microtubules (Odeigah et al. 
1997) or disruptions in the development of spindle fib-
ers (Shimoi et al. 2019; Haliem 1990). The incidence of 
c-mitosis in root tip cells of Pisum sativum shows that 
spindle formation was harmfully affected (El-Ghamery 
et al. 2000). Considerable numbers of c-mitosis detected 
in this study implies that methomyl is a strong spindle 

Figure 5. Clastogenic and aneugenic aberrations in methomyl treated P. sativum L root tip cells. Clastogenic aberrations A to F: A) Bridge 
in anaphase; B) Single bridge in telophase; C-D) Chromosome fragment in metaphase; E) Double bridge at anaphase; F) Sticky chromo-
some at metaphase. Aneugenic aberrations G to J: G-H-I) Chromosome vagrant at metaphase; J) Vagrant chromosome at anaphase; K –L) 
C-mitosis in metaphase; Bar - 10 μm.
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inhibitor. C-mitosis is also an indication of spindle poi-
soning, as per Rank (2003). The cause of the generation 
of c-mitosis might be due to disruptions in spindle for-
mation, affected by methomyl. 

In relation to genotoxicity, methomyl enhanced the 
incidence of clastogenic as well as aneugenic anomalies 
at the metaphase-anaphase plate. Single bridges, frag-
ments, double bridges and stickiness, were the clasto-
genic anomalies whereas vagrants and laggards were the 
aneugenic anomalies observed in the present study. In 
treated seeds, a number of bridges were created in ana-
phases I and II plate. Bridges were most likely formed by 
breakage and combining of chromosomal bridges, which 
got enhanced with methomyl treatment. Chromosome 
stickiness and subsequent failure of free anaphase divi-
sion or irregular translocation or inversion of chromo-
somal fragments can all lead to the creation of chromo-
somal bridges (Jing et al. 2022a; Honles et al. 2022). The 
fusion of broken chromosomes was the primary cause 
of the formation of bridges as per Rosculet et al (2019; 
Honles et al. 2022). 

Increases in methomyl concentrations were associ-
ated with stickiness. Stickiness may result from partial 
detachment of nuclear proteins and alterations in their 
association design or from partial detachment of nucle-
oproteins and alterations in their association design 
or due to nucleic acid depolymerization activated by 
methomyl treatment. Disruptions in cytochemical bal-
ance reaction may lead to stickness (Dewitte et al. 2010; 
Rosculet et al. 2019). Nucleic acid depolymerization 
because of herbicidal treatment or by partial detachment 
of nucleoproteins (Kaufman et al. 1955) or by incomplete 
separation of nucleoprotein variation in their organiza-
tion design (Evans 1962) might cause stickness. 

The fragments formed from chromatid and chromo-
somal break imply its mutagenic events within the cell. 
In a previous study, Siddiqui et al. (2020 a,b) had report-
ed that pesticides cause various chromosomal anomalies. 
Generation of giant cells having diverse chromosomal 
anomalies had been reported in a previous study by food 
colorants (Prajitha and Thoppil 2016).

The laggards observed during the current study may 
result from failure of chromosome movement or from 
deferred ending of stickiness of ends of chromosomes. 
At metaphase I, chromosome lagging could result from 
disturbances in bivalents motion to equatorial plate. 
Single univalent lagging was the most common inci-
dence (Zeyad et al. 2019). Laggards and bridges could 
be created due to deferred ending of stickiness of ends 
of chromosomes (Kaur and Grover 1985). Laggards are 
responsible for the formation of micronuclei at telophase 
I. Acentric fragments or laggards are liable for micro-

nuclei generation at telophase II and hence it leads to 
the changes in size and number of pollen grains arising 
from mother cells. 

The other frequent aneugenic form of anomaly 
observed in dividing cells was vagrant chromosomes. As 
per Rank (2003), vagrant chromosomes are pointers of 
spindle poisoning. These aberrations might have devel-
oped as a result of the disruption in spindle formation, 
which was affected by methomyl treatment.

Genotoxic stress or genomic instability caused by 
DNA damage may result in illnesses, senescence, altera-
tions in gene expression or cellular aging (Bonciu et al. 
2018; Iturburu et al. 2018; Shabbir et al. 2021; Omeiri et 
al. 2022; Castellanos et al. 2022). In both plants and ani-
mals, a rise in genomic instability has been advocated as 
a basis for the decline in population fitness. Genotoxic-
ity biomarkers must be taken into consideration when 
assessing potential noxious effects in aquatic organisms 
since genotoxic substances have the potential to cause 
damage that extends beyond the individual and can be 
seen over several generations (Frenzilli et al. 2009; Fiore-
si et al. 2020; Ergin et al. 2020 Amac and Liman 2021; 
Menzyanova et al. 2022).

CONCLUSION

According to the findings of the current study, 
methomyl can alter kinetics of mitotic cell process in 
root tip cells and can have genotoxic effects on P. sati-
vum L through aneugenic and clastogenic processes. 
These findings raise concern about noxious effects of 
pesticides on non-target organisms. For the benefit of 
human welfare, additional genotoxicological and risk 
assessment studies needs to be conducted on various 
eukaryotic test systems. 
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