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Abstract. The scarce information regarding ant diversity in the state of Amapá and 
lack of cytogenetic data of species from the Amazon region can hide ant biodiversi-
ty information that may be detectable with affordable cytogenetic techniques. In this 
study, we describe the karyotypes of eight ant taxa collected from Amazonian localities 
in French Guiana and Brazil. Chromosome numbers ranged from 2n = 18 to 2n = 68. 
The following chromosome numbers were observed for each species: Azteca sp. group 
chartifex 2n = 28; Dolichoderus bidens (Linnaeus, 1758) 2n = 18; Gnamptogenys tortu-
olosa (Smith, 1858) 2n = 44; Camponotus renggeri Emery, 1894 n = 20; Pseudomyrmex 
unicolor (Smith, 1855) 2n = 68 and n = 34; Apterostigma sp. pilosum complex 2n = 46; 
Odontomachus bauri Emery, 1892 2n = 44, and Wasmannia auropunctata (Roger, 1863) 
2n = 32. The karyotypes of P. unicolor, G. tortuolosa, and O. bauri are reported here for 
the first time. Our data enabled comparisons between chromosomal data of some spe-
cies from Amazon and Atlantic rainforests. We also highlight the methods used for the 
ant chromosome classification.

Keywords: karyotype, chromosome evolution, biodiversity, Formicidae, Neotropics, 
taxonomy. 

INTRODUCTION

The classical cytogenetic approach utilizes a single dye, orcein or Giemsa 
(Liehr 2017), without previous trypsin-treatment, for the study of chromo-
somes and has also been denoted as beta karyology by White (reviewed by 
Petitpierre 2009). The low cost of classical cytogenetics allows more extensive 
sampling and plays a vital role in the discovery and understanding of diver-
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sity in different organisms (Zacharopoulou et al. 2017; 
Di-Nizo et al. 2017; Cioffi et al. 2018). 

In hymenopteran cytogenetics, chromosomes can 
be obtained from live larvae using a stereomicroscope 
and chemicals, even from distant localities such as those 
in Amazonia. The technique provided by Imai et al. 
(1988) enables the use of artisanal procedures with rus-
tic material such as empty pill packs to keep the ganglia 
in hypotonic solution and syringes for their dissocia-
tion on the slides. Important taxonomic insights may be 
achieved from karyotype information and, according 
to Schubert (2011), efforts must be made to avoid los-
ing such data. The resolution of sampling issues is par-
ticularly important in population-level approaches for 
understanding taxonomic problems (Petitpierre 2011; 
Cioffi et al. 2018; Chèvre et al. 2018). To date, classical 
cytogenetic studies are routinely performed for many 
organisms (Petitpierre 2009; Liehr 2017), thus support-
ing the accuracy and validity of their results.

Karyotype configuration can be useful for spe-
cies delimitation, as karyotypes with structural and/
or numerical differences may not pair properly during 
meiosis (King 1993). This kind of chromosomal variation 
can affect fertility in heterozygotes and, in extreme cases, 
lead to sterility caused by gamete aneuploidy. Remarkable 
examples of chromosome number distinctness in close-
ly related species or within the same species have been 
reported. For instance, in the Cervidae species Muntia-
cus muntjak (Zimmermann, 1780), females possess 2n = 
6 chromosomes and males possess 2n = 7, and Muntiacus 
reevesi (Ogilby, 1839) has a distinct chromosomal organi-
zation of 2n = 46 (Wurster and Benirschke 1970). Recent 
examples of intraspecific chromosomal variations in ants 
have been observed from different populations within the 
species. For instance, different cytotypes have been found 
in Holcoponera striatula (Mayr, 1884) (as Gnamptogenys 
striatula) (2n = 32, 34), Holcoponera moelleri Forel, 1912 
(as Gnamptogenys moelleri) (2n = 34, 44) (Teixeira et al. 
2020), and Mycetophylax morschi (Emery, 1888) (2n = 26, 
28, 30) (Micolino et al. 2019).

Karyological information is currently available for 
approximately 800 species of ants distributed across the 
world (reviewed by Lorite and Palomeque 2010; Car-
doso et al. 2018; Mariano et al. 2019). Neotropical ant 
species have been targeted for cytogenetic studies since 
the first surveys conducted by Crozier (1970) in South 
America, including Brazil, and by Goñi et al. (1983) in 
Uruguay. Pioneering studies in ant cytogenetics in Bra-
zil were performed by Fadini and Pompolo (1996) and 
Mariano et al. (2000) and, since then, there has been a 
steady increase in the number of cytogenetic researches 
in ants using different approaches. Thus far, more than 

180 ant taxa have been cytogenetically studied in the 
Neotropics, most of them from the Atlantic rainforest in 
Brazil (reviewed by Mariano et al. 2019). In the Amazo-
nian region, karyological information is limited to that 
obtained from species restricted to French Guiana and 
Brazil (reviewed by Aguiar et al. 2020).

In this study, we describe the karyotypes of eight ant 
species from the Amazon rainforest using a comparative 
approach with available population data, as our contri-
bution toward understanding the evolutionary pattern of 
ant diversity in the Neotropics.

MATERIALS AND METHODS

Ant colonies were collected by active search in French 
Guiana at Kourou and Sinnamary, and in Brazil at 
Oiapoque, state of Amapá and Açailândia, state of Mara-
nhão (Table 1). Adult voucher specimens were deposited 
into the ant collection at the Laboratório de Mirmecologia 
do Centro de Pesquisas do Cacau (CPDC/Brazil) in Bahia, 
Brazil, under records #5802, #5803, and #5816.

Mitotic chromosomes were obtained from the cer-
ebral ganglia of the larvae after meconium elimination, 
as described by Imai et al. (1988). The chromosome 
number and morphology of metaphases were analyzed 
using conventional 4% Giemsa staining. Chromosomes 
were arranged in order of decreasing size and based on 
the ratio of the chromosome arm lengths (r = long arm/
short arm), i.e., on the centromeric position, accord-
ing to the classification proposed by Levan et al. (1964). 
The chromosomes were measured and classified as m = 
metacentric (r = 1–1.7), sm = submetacentric (r = 1.7–3), 
st = subtelocentric (r = 3–7), and a = acrocentric (r > 7). 
Chromosomes were organized using Corel Photopaint 
X3 and measured using Image Pro Plus. 

Reflexions on the nomenclature used to classify ant chro-
mosomes

Imai (1991) proposed a detailed chromosomal 
nomenclature based on heterochromatin location; how-
ever, a classification based on this type of chromatin is 
impractical because large (detectable) heterochromatic 
blocks are not present in many ant groups. Addition-
ally, the use of chromosome measurements diminishes 
subjectivity and enables karyotype comparisons between 
populations or species. 

Analysis of the karyotypes of Acromyrmex spp. 
(reviewed by Barros et al. 2021) using the nomencla-
ture of Levan et al. (1964) allowed for the detection of 
dissimilarities in the karyotypic formula caused by the 
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variations in short arm size due to differential hetero-
chromatin growth. Among the Atta spp., differences 
were not detected even with chromosome classification 
using chromosomal measurements (Barros et al. 2014), 
but variations could be identified by karyomorphomet-
ric comparison with the leaf-cutting ant Amoimyrmex 
striatus (Roger, 1863) (Cristiano et al. 2013). Amoimyr-
mex striatus, in addition to two other species, currently 
belongs to the new genus Amoimyrmex (Cristiano et al. 
2020). 

The nomenclature of Levan et al. (1964) is typically 
used for chromosomal classification of different organ-
isms such as plants (Winterfeld et al. 2018; Sadeghian et 
al. 2019), spiders (Araújo et al. 2020), beetles (Şendoğan 
and Alpagut-Keskin 2016), bees (Lopes et al. 2021), wasps 
(Tavares and Teixeira 2021), velvet worms (reviewed 
by Duarte et al. 2020), and fishes (Brandão et al. 2018). 
Recent ant cytogenetic studies have focused on measure-
ments of chromosomes (Barros et al. 2010, 2014, 2016; 
Cristiano et al. 2013, 2017, Santos et al. 2016, Micolino et 
al. 2019, 2020; Teixeira et al. 2020). We suggest the use of 
the standardized chromosomal nomenclature employing 
measurements described by Levan et al. (1964) in For-
micidae as well as in Hymenoptera, thereby allowing for 
comparisons between the species and populations. We 
also suggest the use of less condensed chromosomes and 
care with centromeric location (primary constriction) 
to diminish subjectivity in chromosome measurements. 
This chromosome classification based on measurements 

will also facilitate access to data on ant cytogenetics by 
researchers working on other organisms and could likely 
contribute to a better understanding of ant chromosomal 
diversity and evolution.

RESULTS AND DISCUSSION

We analyzed the chromosomes of eight ant species, 
eight genera, and six subfamilies. Our analysis presents 
the first karyological records for Pseudomyrmex unicolor 
(Smith, 1855), Gnamptogenys tortuolosa (Smith, 1858), 
and Odontomachus bauri Emery, 1892. Three species 
have already been described for the Atlantic rainforest, 
and showed karyotypic similarities. Unique karyotypes 
were detected in two different species complexes, sug-
gesting genera revision.

Subfamily Dolichoderinae

Azteca sp. group chartifex presented 2n = 28, 10m + 
4sm + 6st + 8a (Figure 1A). Previously, karyological data 
for only five taxa from the genus Azteca were available; 
four of these taxa were characterized as 2n = 28 and one, 
Azteca alfari Emery, 1893, as 2n = 26 (reviewed by Mari-
ano et al. 2019). The karyotype of Azteca chartifex Emery, 
1896 from French Guiana is 2n = 28, 10M + 18A (Mari-
ano et al. 2019). If we group the chromosomes of Azteca 

Table 1. Ant species collected from the Amazon rainforest and analyzed using classical cytogenetics. Collection sites, sample sizes (numbers 
of colonies/individuals), diploid (2n) and haploid (n) chromosome numbers, and karyotype formula. 

Ant species Locality Col./Ind. 2n (n) Karyotype formula
2n / (n)

Subfamily Dolichoderinae
Azteca sp. group chartifex La Montagne des Singes, Kourou, FG 1/8 28 10m + 4sm + 6st + 8a
Dolichoderus bidens (Linnaeus, 1758) Chácara du Rona, Oiapoque-AP, BR 2/11 18 14m + 4sm
Subfamily Ectatomminae
Gnamptogenys tortuolosa (Smith, 1858) * Sinnamary, FG 1/4 44 12m + 17sm + 15st
Subfamily Formicinae
Camponotus renggeri Emery, 1894 Campus Agronomique, Kourou, FG 1/4 (20) (2sm + 17st + 1a)
Subfamily Myrmicinae
Apterostigma sp. pilosum complex La Montagne des Singes, Kourou, FG 2/6 46 6m + 18sm + 16st + 6a
Wasmannia auropunctata (Roger, 1863) Chácara du Rona, Oiapoque-AP, BR 1/5 32 16m + 10sm + 6st
Subfamily Ponerinae
Odontomachus bauri Emery, 1892 * Açailândia-MA, BR 1/7 44 6sm + 24st + 14a
Subfamily Pseudomyrmecinae

Pseudomyrmex unicolor (Smith, 1855) * Campus Agronomique, Kourou, FG 2/5 68 56m + 12sm 
(56m+12sm)

(34) (28m + 6sm)

Abbreviations: * first cytogenetic report; BR = Brazil, FG = French Guiana; Brazilian states: AP = Amapá, MA = Maranhão.
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sp. group chartifex from the present study into two cat-
egories, partially in accordance with Imai et al. (1988), as 
with Az. chartifex, the karyotypic formula is 14M + 14A. 
This seems to indicate differences in chromosome mor-
phology between the two taxa, which corroborates the 
morphological data. Data from molecular cytogenetic 
studies may contribute to corroborate these two taxa. 

Colonies of Dolichoderus bidens (Linnaeus, 1758) 
were found in carton nests built on the abaxial surface 
of leaves of the family Musaceae. The behavior of the 
workers was particularly aggressive. There are several 
records of D. bidens in French Guiana (Franco et al. 
2019) and a single record in the neighboring Brazilian 
state of Amapá, in Serra do Navio, the center of the state 
(Kempf 1959). To date, there has been no report of D. 
bidens inhabiting areas between these regions, which are 
approximately 400 km apart.

Dolichoderus bidens showed a karyotype of 2n = 18, 
14m + 4sm (Figure 1B) in our study. Heterochromatic 
blocks around the centromeric/pericentromeric area of 
the chromosomes were identified (Figure 2A). Until now, 
the karyotype of D. bidens was only available for speci-
mens collected in the Atlantic rainforest of Ilhéus, Bahia 
(Santos et al. 2016). Our results for the specimens col-
lected from the Amazon rainforest showed similarities 
between these two rainforest populations, with subtle 

variations due to measurement divergences. In contrast, 
in a recent study, Dolichoderus imitator Emery, 1894 
showed remarkable karyotypic differences between the 
population from the Amazon rainforest (2n = 46) and 
that from the Atlantic rainforest (2n = 38) (Santos et al. 
2016; Aguiar et al. 2020).

Subfamily Ectatomminae

Gnamptogenys tortuolosa, which is included in the 
Neotropical sulcata group, presented 2n = 44, 12m + 
17sm + 15st (Figure 1C). As observed previously by 
Imai (1991), using standard Giemsa staining, all chro-
mosomes showed heterochromatic blocks restricted to 
the pericentromeric region and the short arms of subte-
locentric pairs (Figure 2B). Cytogenetic data for 14 taxa 
of Gnamptogenys are available, including representa-
tives of the mordax, striatula, and rastrata Neotropi-
cal groups (reviewed by Teixeira et al. 2020). This is the 
first chromosomal record for the sulcata group. The high 
chromosome number (2n >12, according to Imai et al. 
1994) and the high number of subtelocentric pairs with 
heterochromatin in the short arms suggest that centric 
fission rearrangements could have played an important 
role during the evolution of G. tortuolosa, as other spe-

Figure 1. Karyotypes of ant species from subfamilies: Dolichoderinae - (A) Azteca sp. group chartifex (2n = 28), (B) Dolichoderus bidens (2n 
= 18); Ectatomminae - (C) Gnamptogenys tortuolosa (2n = 44); and Formicinae - (D) Camponotus renggeri (n = 20). Box in (C) show size 
heteromophism of the long arm of pair 22 in G. tortuolosa, with one homologous submetacentric and the other subtelocentric chromosome. 
Scale bars = 5 µm. 
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cies of Gnamptogenys do not typically have a large num-
ber of chromosomes (Teixeira et al. 2020). Mariano et al. 
(2015) have proposed that centric fissions are important 
in the evolution of this genus and, although there are 
scarce cytogenetic data concerning the sulcata group, 
these fissions appear to play an important role in this 
group.

Heteromorphism involving the long arm of chro-
mosome pair 22 was observed in G. tortuolosa, which 
resulted in differences in the morphology of homologous 
chromosomes, with one chromosome being submeta-
centric and the other subtelocentric (Figure 1C, box). 
The two chromosome variants are different in size and, 
therefore, processes that duplicate or delete chromatin 
could have been involved in the origin of this hetero-
morphism.

Subfamily Formicinae

The nest of Camponotus renggeri Emery, 1894 col-
lected during the present study was found on fallen rot-
ten wood. In Oiapoque, north of the state of Amapá, 
Brazil, we also observed underground nests, as previ-
ously reported by Ronque et al. (2016). It is important to 
note that it is rarer to find C. renggeri nests in rainforest 
areas than in savannah regions, including the Amazoni-
an savannahs (Aguiar, Barros personal observation).

The colony of C. renggeri from the Amazon rainfor-
est showed n = 20, 2sm + 17st + 1a (Figure 1D). Colonies 
from other localities, such as the Amazonian savannah 

located at Macapá and the savannahs of Cerrado in the 
states of Mato Grosso (Aguiar et al. 2017) and Goiás 
(Vieira and Santana 2020), also showed n = 20 chromo-
somes. The presence of a secondary constriction on the 
short arm of a subtelocentric chromosome of medium 
size (pair 5) suggests the presence of rDNA clusters. Two 
chromosome-rDNA bearer pairs, a submetacentric pair 
and a subtelocentric pair of medium size, have previ-
ously been reported for this species (Aguiar et al. 2017). 
This is in contrast to that observed in the sister species 
Camponotus rufipes (Fabricius, 1775) and Camponotus 
(Myrmothrix) spp., which show a single submetacentric 
rDNA-bearer pair (Aguiar et al. 2017). Several chromo-
somal polymorphisms are associated with Camponotus 
(Myrmothrix) spp., but no variation was observed among 
the males analyzed in this study.

Subfamily Myrmicinae

Wasmannia auropunctata Roger (1863) presented 
2n = 32, 16m + 10sm + 6st (Figure 3A). Its karyotype 
showed the same chromosome number and similar mor-
phology to that of the Atlantic rainforest population 
(Souza et al. 2011). Although Souza et al. (2011) used a 
different chromosome classification method (Imai 1991), 
without the use of chromosome measurements, the kar-
ytoype is similar to that obtained in this study, being 
possible to recognize all chromosome pairs. A chromo-
somal polymorphism was detected in ants from French 
Guiana (Aguiar et al. 2020, see Figure 5b, since the kar-

Figure 2. Metaphases showing heterochromatic blocks (arrowheads) via 4% Giemsa staining in (A) Dolichoderus bidens (2n = 18) on cen-
tromeric and pericentromeric regions and (B) Gnamptogenys tortuolosa (2n = 44) on pericentromeric regions of all chromosomes and short 
arms of subtelocentric pairs. Scale bar = 5 µm.



34 Luísa Antônia Campos Barros et al.

yotype is incorrectly written in Table 1); however, ants 
collected at Oiapoque, Brazil (about 200 km away) did 
not show karyotype variations. The comparison between 
the karyotypes of specimens from these two localities 
provided insights into the polymorphism observed in 
French Guiana. A submetacentric chromosome, which 
corresponds to the largest chromosome of the karyotype 
in ants from French Guiana, is absent in specimens from 
Oiapoque, so we can infer that this particular chromo-
some originated from a chromosomal rearrangement 
that need to be further investigated.

The Apterostigma sp. pilosum complex was charac-
terized as 2n = 46, 6m + 18sm + 16st + 6a (Figure 3B). 
The chromosome number among Apterostigma ranges 
from 2n = 20 to 2n = 46 (Mariano et al. 2019). The genus 
Apterostigma contains six taxa that have been cytoge-

netically analyzed, but only half of the species have been 
taxonomically described. The Apterostigma pilosum 
complex is composed of nine similar species and is con-
sidered to be taxonomically difficult to resolve (Lattke 
1997). Some species were placed in synonymy of Apter-
ostigma mayri Forel, 1893 by Weber (1958). Apterostigma 
mayri and Apterostigma sp. pilosum complex showed 
distinct chromosome numbers of 2n = 24 and 2n = 46, 
respectively, although both are included within the pilo-
sum complex (Lattke 1997). The karyotypes with a lower 
chromosome number show more meta/submetacentric 
chromosomes when compared to species with higher 
chromosome numbers, including members of the Apter-
ostigma sp. pilosum complex. This suggests that centric 
fission rearrangements seem to be a part of the chro-
mosomal evolution of the genus Apterostigma. A taxon 

Figure 3. Karyotypes of ant species from subfamilies: Myrmicinae - (A) Wasmannia auropunctata (2n = 32), (B) Apterostigma sp. pilosum 
complex (2n = 46); Ponerinae - (C), (D) Odontomachus bauri (2n = 44); and Pseudomyrmecinae - (F), (G) Pseudomyrmex unicolor (2n = 
68, n = 34). The boxes show polymorphism for subtelocentric chromosome pair 22 in O. bauri: (C) homozygous individual with small arms 
and (D) heterozygous individual with a distinctive large subtelocentric chromosome. Scale bars = 5 µm
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from French Guiana showed a distinct and intermediate 
number of chromosomes (2n = 32) (Mariano et al. 2011) 
compared to that in the Apterostigma sp. described here. 
Cytogenetic data highlight the need for revision of the 
pilosum complex and the genus Apterostigma.

Subfamily Ponerinae

Odontomachus bauri showed 2n = 44, 6sm + 24st + 
14a (Figure 3C-D). This species is included in the hae-
matodus group, and all the studied species have the 
same chromosome number, 2n = 44 (reviewed in Santos 
et al. 2010). However, variations in chromosomal mor-
phology exist among species and provide insights into 
the mode of karyotypic evolution in this group (Aguiar 
et al. 2020). Differential heterochromatin growth after 
centric fission events may have played a role in the chro-
mosomal evolution of the haematodus group according 
to Imai et al. (1994). The O. bauri karyotype, according 
to the morphological variations due to heterochromatin 
growth on short arms, is derived within the haemato-
dus group (see Aguiar et al. 2020) and corroborates the 
molecular phylogenetic position (Larabee et al. 2016).

The long arm of the second subtelocentric pair of O. 
bauri collected from the Amazon rainforest showed a 
size polymorphism that was observed in individuals of 
the same colony. Homozygous individuals harbored two 
smaller subtelocentric chromosomes (Figure 3C, box). 
Only heterozygous individuals showed a distinctive large 
subtelocentric chromosome (Figure 3D, box). No indi-
viduals with two large subtelocentric chromosomes were 
observed. This type of chromosome size polymorphism 
has been observed in several ant species (e.g., Barros et 
al. 2013; Teixeira et al. 2020) and can originate from 
unequal crossing-over or translocations that cause visi-
ble chromosomal deletions or duplications (Schubert and 
Lysak 2011; Barros et al. 2013).

Subfamily Pseudomyrmecinae

Pseudomyrmex unicolor has been reported from Ser-
ra do Navio in the state of Amapá (Kempf 1959); howev-
er, it was also reported by different researchers in French 
Guiana (Franco et al. 2019) highlighting the scarcity of 
myrmecological studies in the state of Amapá. Pseudo-
myrmex unicolor was characterized as having 2n = 68, 
56m + 12sm and n = 34, 28m + 6sm (Figure 3E, F); a 
similarly high chromosome number is present in Pseu-
domyrmex gracilis (Fabricius, 1804) (2n = 70) obtained 
from the Atlantic rainforest. Cytogenetic information is 
available for seven Pseudomyrmex spp. ranging from 2n 

= 24 to 2n = 70 (Sposito et al. 2006). Despite having high 
chromosome numbers, only metacentric and submeta-
centric chromosomes were detected in P. unicolor. Poly-
ploidy does not appear to be an important factor in the 
chromosomal evolution of ants (Lorite and Palomeque 
2010) and, thus far, there is no evidence indicating poly-
ploidization among Pseudomyrmex spp. (Tsutsui et al. 
2008; Ardila-Garcia et al. 2010). 

The presence of heterochromatin blocks on the short 
arms of chromosomes of P. unicolor suggests that the 
“heterochromatic growth” after centric fissions (Imai 
et al. 1994) occurred during the chromosomal evolu-
tion of this species. Although this process is not well 
understood (Hirai et al. 1994), it may involve distinct 
mechanisms that enlarge the size of heterochromatic 
blocks on the chromosomes, such as slippage saltatory 
amplification, which contributes to an increase in the 
amount of DNA; unequal crossing-over, which extends 
the heterochromatin among homologous regions; and 
also distribution by ectopic recombination among non-
homologous chromosomes (Hirai 2020). The dispersion 
of rDNA on terminal regions indicates the involvement 
of different mechanisms (Hirai 2020). The increase in 
heterochromatin after chromosome fission has been 
previously suggested as a mechanism of chromosomal 
evolution in leaf-cutting ants of the genus Acromyrmex 
(Barros et al. 2016).

FINAL REMARKS

As there are few ant cytogenetic studies at the pop-
ulation level, we conducted the karyotypic analysis of 
some ant species from the Amazon rainforest and car-
ried out a comparative analysis with the populations of 
the Atlantic rainforest to detect karyotypic similarities 
and dissimilarities between them. Despite its simplicity, 
classical cytogenetics can reveal chromosomal variations 
that may affect the ability of a species to generate fertile 
progeny. This study highlights the need for a taxonomic 
revision of the Apterostigma pilosum complex and the 
Azteca chartifex group. Structural variations provide 
insights into the chromosomal evolution responsible for 
the polymorphisms detected in this study in W. auro-
punctata and O. bauri, as well as the heteromorphism in 
G. tortuolosa. 

GEOLOCATION INFORMATION

Ant colonies were collected from the following 
locations in French Guiana: La Montagne des Sing-
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es, Kourou (5.07225, -52.69407), Campus Agronom-
ique, Kourou (5.17312, -52.65480), and Sinnamary 
(5.28482, -52.91403). Colonies were collected in Brazil at 
Oiapoque, Amapá (3.84151, -51.84112), and Açailândia, 
Maranhão (-4.84200, -47.29667) (Table 1).
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