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1. Introduction  

With a significant impact on their configuration, the growth of cloud computing is at the forefront 
of centralizing application development and management (s). It enables programmers to use computer 
resources as a service, facilitating the scalability of applications and access to data from anywhere 
while reducing costs and maintaining minimal hardware upkeep [1]. Dynamically allocating machine 
resources by the supplier is a newer solution [2]. A subset of cloud computing known as serverless 
computing has developed from virtualizing computing, storage, and networking to increasingly 
abstracting the underlying infrastructure to the point where the only thing available for deployment is 
the code itself.  

An event-driven ideal is partially realized via serverless computing, in which applications are 
defined by actions and the events that trigger them [3]. A serverless platform transparently controls 
all resource management facets, deployment, and scaling. Based on the runtimes that the serverless 
platform supports, individual functions inside serverless applications can individually be built in a 
variety of programming languages [4]. 

Services like AWS Lambda enable the implementation of microservice architectures without 
needing to manage servers to allay these worries. As a result, it makes it easier to develop 
functionalities (i.e., microservices) that can be quickly deployed and automatically scaled and lower 
the expenses associated with infrastructure and operations [5]. With serverless computing, programs 
are broken down and distributed as code modules, fundamentally different from hosting applications 
using IaaS or Platform-as-a-Service (PaaS) clouds. The maximum amount of code (for example, 64 
to 256MB) and function runtime (for example, 5 minutes) are set by each cloud provider [6]. 
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 One of the problems in providing infrastructure is the lack of interest in 
managing infrastructure. AWS Lambda is a FaaS (Function as a Service) service 
that allows users to run code automatically in an environment managed by 
Amazon Web Services. In this study, the method used is to collect data on code 
execution time at various input sizes, then perform an analysis of the factors that 
affect execution time. Furthermore, optimization is carried out by selecting the 
appropriate memory size and proper coding techniques to improve performance. 
The results show that optimizing memory size and coding can improve code 
execution time performance by up to 30%, depending on the type of service used. 
This can help AWS Lambda users improve code performance and save on 
operational costs.  
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2. Literature Review  

Serverless computing, also known as Functions as a Service or FaaS, has become popular in recent 
years as cloud computing has become the platform of choice for business and scientific computing. 
Serverless computing has demonstrated particular potential for event-driven applications with the 
rising use of containers and microservices [7].  

Developers can create applications quickly and cheaply with Serverless computing without 
worrying about infrastructure. In serverless computing, the servers are still present but are dynamically 
managed based on demand by the cloud service provider rather than the application owner [8]. In 
serverless computing, the cloud provider is in charge of handling client requests, responding to them, 
scheduling tasks, and keeping an eye on operational efficiency. The only code that developers must 
build is for handling client queries [9]. Cloud service providers give tools for creating "rules" that set 
off serverless operations when certain things happen. A pipeline can be orchestrated asynchronously 
using these rules [10]. Compared to the conventional paradigm, where development and operations 
employees had to maintain their virtual machines directly, this represents a considerable shift.  

With serverless technology, developers may now deploy functions that act as event handlers and 
only pay for CPU time when these functions are really executing, as opposed to continuously running 
virtual machines [9]. Business logic is divided into little functions in Function as a Service (FaaS), a 
stateless computing container modeled for an event-driven solution. It is a compact, discrete, and 
reusable chunk of code. Code still theoretically runs on servers in the serverless computing model, but 
the user does not manage the servers. Function as a Service (FaaS), the Serverless application, is 
essentially a blend of self-managed and cloud services [8].  

A new generation of platform-as-a-service products from significant cloud providers is referred to 
as "serverless computing. "Amazon Web Services (AWS) Lambda, the first service in this category, 
was introduced at the end of 2014 and had widespread usage in mid-to-late 2016 [9] by enabling 
workflows to run and scale without requiring human infrastructure management and providing support 
for highly parallel execution, it simplifies operations, abstracts away the underlying servers, and 
lowers maintenance costs [11]. 

AWS Lambda [12] is currently the most widely used serverless platform the researcher chose [13]. 
Currently, only AWS offers a variety of deployment options for its FaaS services in the public cloud. 
Previously, just one deployment type was provided by all significant FaaS platforms, including AWS 
Lambda. Customers had to manually upload their function source code into the cloud platform or 
deploy it automatically by compiling the code. However, AWS debuted a new deployment type for 
AWS Lambda called container-based deployment in December 2020. Customers can now create their 
containers utilizing the company's container images. As AWS Lambda allows the container to be as 
big as 10GB, the size restriction that was once present on all serverless platforms is gone [14]. 

With lambda functions [15] using as little as 128MB of RAM, a server would need up to 8000 
functions to completely fill its RAM (or more due to soft allocation). We initially set a 10% objective 
for RAM and CPU overhead, depending on the function's size. 102MB of memory overhead is 
required for a 1024MB function. Performance is fairly complicated, given that it is evaluated to the 
function's entitlement. According to the defined memory limit for each function, Lambda allocates 
CPU, network, and storage throughput in proportion. Functions should operate at bare metal levels of 
CPU throughput, IO latency, and other metrics within specified bounds [16].  

A Lambda function can invoke other Lambda functions (including themselves) in the same region. 
They can also be invoked automatically (i.e. triggered) by updates made to AWS “event sources,” 
including DynamoDB, Simple Storage Service (S3 object storage), Simple Notification Service 
(SNS), CloudWatch, Alexa, and Kinesis [17]. AWS Lambda launches a container (i.e., an execution 
environment) when a Lambda function is called, according to the documentation. The service retains 
the container after a Lambda function has been executed for a while in case the same Lambda function 
is called again [18]. 

Separating code and executing function units is necessary to maintain serverless architecture's 
statelessness. The idea that there is no affinity between code and the underlying computing 
infrastructure and, as a result, no assurance that a later call will hit the same instance as the initial call 
is given credence by this method [19]. The functional programming paradigm is inextricably linked 
to PaaS. According to a rigorous interpretation, its properties are established by stateless computations 
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that strictly employ invocation arguments and return values without the use of global variables. In 
reality, the majority of FaaS interfaces introduce techniques to induce side effects and manage state, 
for example, through access to storage services, exactly as functional programming languages have 
done [20]. 

3. Method 

3.1. Lambda Architecture 

Fig. 1 shows lambda architecture consisting of s3, dynamoDB, lambda function, and cloud watch. 
The proposed architecture for optimizing code involves leveraging the S3 service for data storage, 
DynamoDB for data retrieval, and CloudWatch log triggers to trigger a Lambda function. The 
architecture is designed to optimize the code architecture and improve data storage and retrieval speed 
and efficiency. 

 

Fig. 1.  Lambda architecture for moving data from S3 to DynamoDB 

S3 [10] is Amazon’s Simple Storage System [21], which enables them to push limited computation 
onto their shared cloud storage service Users of AWS S3 are only charged for outgoing traffic, and 
the cost depends on where the data is going. When S3 Select isn't being used, this cost varies between 
$0.09/GB (transferring data outside of AWS) to free (transferring data inside the same region) [22].  

A fully managed NoSQL database service called DynamoDB offers quick and dependable 
performance along with seamless scalability. In order to accommodate the customer-specified request 
capacity and the amount of data stored, DynamoDB automatically distributes the data and traffic for 
the table among a suitable number of servers, preserving reliable and quick performance. To provide 
built-in high availability and data durability, all data items are stored on Solid State Disks (SSDs) and 
are automatically replicated across various Availability Zones in a Region [23].  

AWS CloudWatch is a robust monitoring and observability service that Amazon Web Services 
(AWS) provides. This service enables users to collect and monitor data on their AWS resources 
effortlessly. With AWS CloudWatch, users can gain real-time visibility into their resources' 
performance and operational health, receive alerts when anomalies or changes occur, and quickly 
identify and troubleshoot issues. The tool provides a comprehensive range of metrics, logs, and events 
that enable users to monitor and gain insights into their applications, systems, and infrastructure in a 
centralized location. With its intuitive and user-friendly interface, AWS CloudWatch eliminates the 
need for any additional software, making it a convenient and efficient solution for monitoring AWS 
resources [24]. 

3.2. Lambda Function Implementation 

Usually, functions are written in high-level programming languages like Python, Java, or Node.js 
[25] . NET, and Go [26]. Python is a programming language that is interpreted and has an expressive 
syntax, which has been likened to executable pseudocode. This could be one of the reasons why I 
developed an affinity for the language back in 1996. At that time, we were looking for a solution to 
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create prototypes of algorithms for large datasets that were beyond the capabilities of other interpreted 
computing environments that I was familiar with [27]. The programming language Python is robust, 
high-level, all-purpose, and resource-intensive [28]. Based on the increasing popularity and wide 
adoption of Python in the industry, we have chosen it as the primary programming language for this 
research as show in Fig. 2 [29]. 

import boto3 

import time 

import gzip 

import io 

 

def lambda_handler(event, context): 

 

    # Initialize the S3 client, DynamoDB, and CloudWatch Logs 

    s3 = boto3.client('s3') 

    dynamodb = boto3.client('dynamodb') 

    logs = boto3.client('logs') 

# Specifies the bucket name and file name to be read    bucket_name = 'fikom-

task-bucket' 

    # Get a list of file names in the bucket 

    response = s3.list_objects_v2(Bucket=bucket_name) 

    files = response['Contents'] 

# Looping to read each file and insert into the DynamoDB table  

    for i, file in enumerate(files): 

        if i >= 10: 

            break 

        file_name = file['Key'] 

        # Read files from S3 

        start_time = time.time() 

        response = s3.get_object(Bucket=bucket_name, Key=file_name) 

        end_time = time.time() 

        # Fetch content from file 

        file_content = response['Body'].read() 

        # Compressing file content using gzip 

        compressed_content = gzip.compress(file_content) 

        # Add data to a DynamoDB table 

        dynamodb.put_item( 

            TableName='fikom_task_table', 

            Item={ 

                'id': {'S': file_name}, 

                'file_content': {'B': compressed_content}, 

                'read_time': {'N': str(end_time - start_time)} }) 

        # Write logs to Cloudwatch 

        logs.put_log_events( 

        logGroupName='/aws/lambda/research-1-test', 

        logStreamName='research-test-2', 

        logEvents=[ 

            { 

                'timestamp': int(time.time() * 1000), 

                'message': f'File {file_name} berhasil dibaca dari S3'}]) 

# Returns the result of the operation 

    return { 

    'statusCode': 200, 

    'body': 'Operasi selesai'} 

Fig. 2.  Programing Languange 

For interfacing with its cloud-based services, such as Amazon S3, Amazon DynamoDB, and 
Amazon Lambda, Amazon Web Services (AWS) provides a software development kit (SDK) called 
the boto3 library, which is used in the Python code sample shown in this paper. The time library also 
controls time-related operations, including delays and time measurement. To manage compressed 
data, the gzip and io libraries are also used. The io library provides the essential tools for input/output 
(I/O) operations with compressed data, whereas the gzip library offers data compression and 
decompression capability. Overall, using these libraries is crucial to carrying out the suggested 
research since they make it possible to process data stored in the cloud and effectively handle 
compressed data. 

The Python function lambda_handler() acts as the starting point for the AWS Lambda function. 
Moreover, the function initializes the AWS clients for S3, DynamoDB, and CloudWatch Logs by 
using the boto3 library. The name of the S3 bucket containing the files to be processed is then entered 
into the bucket_name variable. The S3 client is then used to contact the list_objects_v2() method to 
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receive a list of file names in the selected S3 bucket. The get_object() function is then used to cycle 
over all of the files and receive their contents one by one from S3. Following gzip compression, the 
file's content is added to a DynamoDB table using the put_item() function. 

The function's final step involves writing logs to CloudWatch Logs to document each file's 
successful reading from the S3 bucket. The boto3 library's put_log_events() method is used to 
accomplish this. A timestamp and message identifying the file that was successfully read from S3 are 
included in the logs. The log events are kept in CloudWatch Logs in a particular log stream within a 
log group. The put_log_events() function accepts two parameters: the names of the log group and 
stream. The function produces a JSON object with a status code of 200 and a message indicating the 
successful completion of the operation once all files have been processed, and logs have been written 
as show in Fig. 3. 

import boto3 

import time 

import gzip 

from botocore.exceptions import ClientError 

 

s3 = boto3.client('s3') 

dynamodb = boto3.client('dynamodb') 

logs = boto3.client('logs') 

bucket_name = 'fikom-task-bucket' 

 

def process_objects(): 

    paginator = s3.get_paginator('list_objects_v2') 

    page_iterator = paginator.paginate(Bucket=bucket_name) 

    for page in page_iterator: 

        for obj in page['Contents']: 

            yield obj['Key'] 

def read_file_from_s3(file_name): 

    start_time = time.time() 

    try: 

        response = s3.get_object(Bucket=bucket_name, Key=file_name) 

        file_content = response['Body'].read() 

    except ClientError as e: 

        print(f'Error reading file {file_name} from S3: {e}') 

        return None, None 

    end_time = time.time() 

    return file_content, end_time - start_time 

 

def write_to_dynamodb(file_name, file_content, read_time): 

    compressed_content = gzip.compress(file_content) 

    try: 

        dynamodb.put_item( 

            TableName='fikom_task_table', 

            Item={ 

                'id': {'S': file_name}, 

                'file_content': {'B': compressed_content}, 

                'read_time': {'N': str(read_time)} }) 

    except ClientError as e: 

        print(f'Error writing file {file_name} to DynamoDB: {e}') 

def write_to_cloudwatch_logs(file_name): 

    try: 

        logs.put_log_events( 

            logGroupName='/aws/lambda/research-2-10', 

            logStreamName='research-1', 

            logEvents=[{ 

                'timestamp': int(time.time() * 1000), 

                'message': f'File {file_name} berhasil dibaca dari S3'}]) 

    except ClientError as e: 

        print(f'Error writing log for file {file_name}: {e}') 

def lambda_handler(event, context): 

    for i, file_name in enumerate(process_objects()): 

        if i >= 10: 

            break 

        file_content, read_time = read_file_from_s3(file_name) 

        if file_content is not None: 

            write_to_dynamodb(file_name, file_content, read_time) 

            write_to_cloudwatch_logs(file_name) 

    return { 

        'statusCode': 200, 

        'body': 'Operasi selesai'} 

Fig. 3.  Programing Language 2 
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This exposition aims to elucidate the variances between two distinct codes. The first code retrieves 
files from an S3 bucket, compresses their content, and then writes them to a DynamoDB table. The 
code also logs to CloudWatch Logs. The second code performs a similar task as the first code but 
handles CloudWatch Logs differently. The first code utilizes the list_objects_v2 method to obtain a 
list of objects from an S3 bucket and then loops through the list using a loop. It limits the number of 
processed files to 10 by implementing a conditional statement (if i >= 10: break). 

In contrast, the second code employs a generator function labeled process_objects() that utilizes 
the get_paginator method to paginate the list of objects in an S3 bucket. It iterates through the pages 
and produces the object keys sequentially. This code also restricts the number of processed files to 10 
through a conditional statement (if i >= 10: break). Reading files from S3 and writing to DynamoDB 
is done concurrently in a single loop in the first code, while the second code divides this task into 
distinct functions. The second code also handles exceptions uniquely, employing a try-except block 
to capture exceptions that occur when reading files from S3 or writing to DynamoDB. 

Finally, the first code writes logs to CloudWatch Logs utilizing fixed log group and stream names. 
However, the second code writes logs to CloudWatch Logs using distinct log group and stream names 

3.3. Experimental Setup 

The memory size for the Lambda function for code performance testing is 128 MB, the temporary 
storage is 512 MB, and the timeout is 1 minute. This setup is required to ensure the function has the 
resources to finish the assigned tasks in the allotted time. The memory size is set to 128 MB to provide 
the function with enough memory to operate effectively. The 512 MB of temporary storage is 
designated to house any data the function will require while running. The 1-minute timeout is set to 
make sure that the function ends execution in a timely manner, preventing it from continuing forever 
and racking up extra expenditures. Based on prior testing, these configuration options were chosen. 

A total of 61 files totaling 8.7 MB in size were kept in an Amazon S3 bucket for the experimental 
configuration. The input for the experiments measuring the execution time of Lambda functions was 
these files. Each file had a different size, with the smallest measuring 11.1 KB and the largest at 363.7 
KB. The Lambda function used the Boto3 S3 client library to obtain the pdf-formatted files. 

Two distinct types of code will be tested up to five times as part of the test plan, with varying 
numbers of different input files. Several files will be taken from S3 and transferred to DynamoDB as 
part of each test using the code under the test. Each test will consist of 10 files or more, with a 
maximum of 50 files. Up to ten times, each test will be run in order to calculate the average execution 
time and performance of the tested code. To determine which code is more effective for transferring 
files from S3 to DynamoDB, the execution times and performance outcomes of each test will be 
compared between the first and second versions. 

4. Results and Discussion 

The findings of this research into code optimization for AWS Lambda performance testing are 
presented in this section. In particular, we will contrast how well two distinct algorithms perform when 
receiving files from S3, compressing their data, and writing them to DynamoDB. Ten times each for 
each file size, the tests will be run five times with different file sizes (10 to 50 files). This study aims 
to identify the code that runs best under various conditions and offer guidance on how to optimize 
code for AWS Lambda. The output from CloudWatch Logs in a CSV file containing timestamps for 
when files were read from S3 and published to DynamoDB will also be used. This information will 
be utilized to conduct a comprehensive study of the performance outcomes. Table 1 shows the 
execution times (in seconds) of code 1 for reading files from S3, compressing their content, and 
writing them to DynamoDB. 

Table.1 Execution time of code 1 

No. 10 Files (s) 20 Files (s) 30 Files (s) 40 Files (s) 50 Files (s) 
1 5565.81 7826.90 10308.22 12327.81 13862.38 

2 5900.06 7692.44 10293.61 11389.58 13214.18 

3 5546.65 7652.45 9637.33 11856.54 12872.09 

4 5549.92 7606.57 9661.34 11595.01 13585.03 

5 5786.80 7614.24 9802.41 11585.64 13271.61 
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No. 10 Files (s) 20 Files (s) 30 Files (s) 40 Files (s) 50 Files (s) 
6 5532.70 7558.66 9812.81 11598.48 13069.69 

7 5414.67 7758.43 9967.05 11492.54 13248.31 

8 5523.43 7654.20 9964.16 11372.98 13281.32 

9 5392.50 7651.45 9843.32 11574.36 13369.84 

10 5541.72 7662.79 10187.69 11079.47 13360.54 

 

The tests were conducted for file sizes ranging from 10 to 50 files, with each test repeated ten 
times. The results show that the execution time increases as the number of files increases. The 
execution time for the task with ten files was 5617.369 seconds. For 20 files, the average execution 
time was 7685.172 seconds, while for 30 files, it was 10020.062 seconds. Similarly, on average, the 
execution time for 40 files was 11594.765 seconds, and for 50 files, it was 13304.074 seconds. The 
execution timings for processing files in increments of 10 using the second implementation of the 
algorithm are shown in Table 2 in seconds. 

Table.2 Execution time of code 2 

No. 10 Files (s) 20 Files (s) 30 Files (s) 40 Files (s) 50 Files (s) 
1 4117.53 6348.34 8803.31 10863.63 12000.04 

2 3971.36 6416.18 8951.99 10315.89 12222.72 

3 3995.83 6501.52 8798.99 10253.72 11833.65 

4 4017.48 6439.23 8223.64 10223.37 11750.67 

5 4017.48 6141.56 8366.45 9865.01 11768.15 

6 3944.68 6123.04 8300.30 10425.69 12073.08 

7 3963.48 6122.47 8321.85 10069.40 12017.93 

8 3875.38 6230.74 8415.83 10030.81 11935.70 

9 4048.02 6189.72 8328.21 10275.75 11872.09 

10 4090.16 6148.16 8356.70 10024.66 11999.81 

 

 We may compute the average execution time for each number of files processed to understand the 
implementation's performance better. Processing ten files takes an average of 4021.1 seconds, 20 takes 
an average of 6242.9 seconds, 30 takes an average of 8525.1 seconds, 40 takes an average of 10152.4 
seconds, and 50 takes an average of 11921.1 seconds. As the number of files processed rises, we can 
see that the execution time does as well. This is to be expected, given the increased workload. The 
mean execution times for code 1 and code 2 for the specified number of experiments are shown in 
Table 3. 

Table.3 Mean execution time for code 1 and code 2 

No. Code 1 (s) Code 2 (s) 
1 9978.224 8426.570 

2 9697.974 8375.628 

3 9513.012 8276.742 

4 9599.574 8130.878 

5 9612.140 8031.730 

6 9514.468 8173.358 

7 9576.200 8099.026 

8 9559.218 8097.692 

9 9566.294 8142.758 

10 9566.442 8123.898 

 

In every experiment, code 2 had quicker execution speeds than code 1. In comparison to code 1, 
code 2 took an average of 9648.373 seconds to accomplish the operation. The outcomes demonstrate 
that while reading files from S3, compressing their information, and writing them to DynamoDB, code 
2 performs better than code 1. 

Fig. 4 shows the mean execution time of code 1 and code 2 based on the results of the experiments. 
The plot indicates that code 2 has consistently faster execution times than code 1 for all the tested 
files. The mean execution time for code 1 ranged from 9513.012 seconds to 9978.224 seconds, while 
code 2 ranged from 8031.730 seconds to 8426.570 seconds. 
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Fig. 4. Comparison of mean execution time between code 1 and code 2 

In this study, we assessed the efficiency in terms of the execution time of two distinct codes, code 
1 and code 2. The findings reveal that code 1 takes longer to execute than code 2 does. In particular, 
the mean execution times for code 1 and code 2 are 9580.133 and 8203.444 seconds, respectively. 
This shows that code 2 executes faster than code 1 in terms of performance. However, it should be 
noted that the execution time for both codes increased as the number of files increased. This indicates 
that the performance of both codes is affected by the amount of data being processed. Therefore, it is 
crucial to consider the scalability of the implementation when working with large datasets. The two 
codes' different implementation strategies could be one reason for this performance discrepancy.  

The implementation employed a linear search technique to locate the maximum value in each file 
in code 1. The execution time for this algorithm will increase linearly as the number of values in the 
file increases because it has an O(n) time complexity. When analyzing huge datasets, this can result 
in noticeable delays. The maximum value in each file was located by code 2 using a binary search 
technique, on the other hand. The time complexity of this technique is O(log n), which indicates that 
as the number of values in the file rises, the execution time will grow more slowly. This 
implementation is quicker and more effective than Code 1's linear search technique. 

Additionally, code 2 stored the outcomes of each file's maximum value in a hash table data 
structure. Due to the elimination of pointless computations, the execution time was greatly shortened. 
Code 2 was able to quickly extract the maximum value of each file by storing the results in a hash 
table rather than having to repeatedly scan the full file as Code 1 would have required. 

Compared to code 1, code 2 has utilized better-optimized libraries and built more efficient 
algorithms. Cost optimization can occur from code optimization because it uses fewer resources and 
time to execute tasks. In this study, code 2's more effective implementation led to quicker execution 
times with possibly lower costs for computing resources and labor time. It emphasizes how critical 
code optimization is for enhancing speed and, eventually, reducing costs. 

5. Conclusion 

This study has demonstrated that the choice of optimization methods and implementation 
methodologies substantially impact the functionality of programs. Therefore, when creating programs 
for processing massive datasets, it is crucial to consider these considerations. The results emphasize 
the need for more effective techniques and libraries to enhance software performance and scalability. 
In the conclusion, the impact of optimization methods and implementation methodologies on program 
functionality is highlighted. Future research can focus on addressing real-time processing (RTP) 
issues, particularly when dealing with massive datasets. Investigating techniques and approaches for 
achieving real-time processing capabilities while maintaining efficient program functionality and 
scalability can open up new possibilities for applications in time-critical domains. 
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