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This article contains a synthesis of the basic concepts from the 

Lyapunov’s stability theory defining the notions of equilibrium, uniform stability, 

asymptotic stability, globally exponential stability and Lyapunov functions.  

Lyapunov’s direct method is discussed, complete with an analysis of the 

evolution of a dynamical system in the phase plane conducted with the aid of 

Mathcad software.  

For dynamical autonomous systems the LaSalle theorem is used in the 

analysis of stability of motion, complementary to Lyapunov’s direct method. 
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Lyapunov’s stability theory, developed in the last decade of the XIX
th
 

century, is widely used in various physics and technical domains. 

In 1946 N. G. Cetaev published the work ”Stability of Motion” and in 

1966 the monograph work “Stability of Motion Theory” of I. G. Malkin appears. 

In this article algorithms for verifying the stability of motion are 

utilized. 

 

Lyapunov Stability 

The main objective in Lyapunov’s stability theory is to study the 

behavior of dynamical systems described by ordinary differential equations as 

the following: 
n

+

dx
f (x, t),   x R ,   t R

dt
= ∈ ∈

         (1)  

in which the vector x corresponds to the position of the dynamical 

system in question at the moment t with the initial condition ( )0x t
, for 0t 0≥ .  
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For simplification purposes ( )x t
 will be used to denote a solution for 

the differential equation (1) instead of 0 0x(t, t , x(t )) . 

Function ( )f x, t
 is assumed to be continuous in t and x and is in such 

way that equation (1) has an unique solution for each initial condition. 

Generally it is assumed that a solution for 0t t 0≥ ≥  exists or, if 
restrictions exist, it can be assumed that a solution exists on a finite interval. 
Worth emphasizing is that, if found on an infinite interval, this can be solved 
with Lyapunov stability theory. 

Further we assume that a finite interval exists. If function f is not 
explicitly time dependent, equation (1) becomes: 

ndx
f (x),   x R

dt
= ∈

          (2)  

and it is said that the system is autonomous. 

In this case a discussion about the initial moment 0t has no meaning 

however it is considered that, for 01t
 and 02t

, given with ( ) ( )01 02x t x t=
, we have: 

( )( ) ( )( )91 01 01 02 02 02x t T, t , x t x t T, t , x t+ = +
, for any T ≥ 0.  

As a consequence for all autonomous differential equations we may 

consider that 0t 0= . 

If ( ) ( ) ( )f x, t A t x u t= ⋅ +
 with ( )A t

 is a quadratic matrix of n size, ( )A t
 

and vector u(t) are only functions of t or constant then the differential 

equation (1) is defined as linear, conversely being defined as nonlinear. 

 

Lyapunov’s Theory Concepts 

Among the basic concepts in Lyapunov’s theory we can mention 

equilibrium, stability, asymptotic stability, homogenous exponential stability. 

 

Equilibrium Definition 

The constant vector 
n

ex R∈  represents a state of equilibrium – or is 

equilibrium – of system (1) if:  

( )ef t, x 0,    t  0= ∀ ≥
.         (3) 

A direct consequence of this definition is that, if the initial state 

( ) n

0x t R∈
 is an equilibrium ( ) n

0 ex t x R= ∈
, then: 

( ) e 0 
x t x ,   t  t   0  = ∀ ≥ ≥

, 

( )( ) 0 

d
x t 0,   t  t   0  

dt
= ∀ ≥ ≥

. 
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Usually it is assumed that the origin of the space 
nR state is 

nx 0 R= ∈ , 

being a condition of equilibrium of system (1). If this statement is not true 

then it can be shown, by means of an appropriate variable change, that any 

condition of equilibrium of system (1) can be transferred to origin. 

Generally a differential equation can have more than one equilibrium, 

this number can even be infinite, nevertheless it is also possible that no 

equilibrium exists for a given differential equation. 

 

Application. The following differential equation is given: 
( ) ( )

dx t
a x b u t

dt
= ⋅ + ⋅

, 

with initial conditions ( )( )0 0
t , x t R R+∈ ×

, where a 0≠  and b 0≠  are real 

constants and u : R R+ →  is a continuous function. 

If ( ) 0u t u=
 for all values t ≥ 0, and the differential equation is 

autonomous, then the only point of equilibrium of the equation is: 

0
e e

b ub
x x

a a

⋅
= − ⋅ = −

. 

To be noted that the autonomous nonlinear system:  

( )dx(t)
exp x

dt
= −

 has no point of equilibrium. 

 

The following autonomous nonlinear differential equations system is 

considered: 

( )1 2
2 1

dx dx
x ,   sin x .

dt dt
= =

 
This system has an infinite number of isolated equilibrium positions 

given by: 

[ ] [ ]T T

e 1e 2ex x   x n     0= = ⋅ π
, cu n   . . ., -1, 0, 1, . . . =  

 

Systems with multiple equilibrium positions are pretty frequent in 

practice, for instance the mechanisms and dynamic models of robot 

manipulators. 

Without loss of generality we can assume that the origin of space 
nx 0 R= ∈  is an equilibrium for equation (1), therefore we would provide the 

definitions for stability from origin, but they can be reformulated for other 

equilibrium positions by means of appropriate modifications of the 

coordinates. 
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Stability 

The origin is in a stable equilibrium – in the sense of Lyapunov – for 

the differential equation (1) if for any pair of numbers 0ε >  şi 0t 0≥  there is 

( )0t , 0δ = δ ε >
 so that: 

( )0x t < δ
 implies 

( )x t < ε
,  0  t  t 0∀ ≥ ≥ ,     (4) 

where 
x

 is the euclidean norm of the vector 
nx R∈ defined as: 

n
2 T

i

i 1

x x x x
=

= = ⋅∑
. 

Uniform Stability 

Origin 
nx 0 R= ∈  is a variant of uniformly stable equilibrium – in the 

sense of Lyapunov – for equation (1) if for each number 0ε >  there is δ = δ (ε) 

> 0 so that equation (4) is fulfilled. The origin is uniformly stable if δ can be 

chosen independently from initial moment 0t . For autonomous systems 

uniform stability and equilibrium stability are equivalent notions. 

 

Asymptotic Stability 

The origin is an asymptotically stable equilibrium for differential 

equation (1) if: 

• The origin is stable; 

• The origin is attractive, meaning that for each 0t 0≥  there is 

( )0' ' t 0δ = δ >
 such that: 

( )0x t '< δ
 

implies
( )x t 0→

 for t →∞ .         (9) 

The asymptotic stability for autonomous systems origin is valid if in 

the previous statement it is stated “there exists ' 0δ > .”  

 

Globally Exponential Stability 

The origin of the differential equations system: 

n

+

dx
f (x, t),   x R ,   t R

dt
= ∈ ∈

 
is a stable equilibrium at globally exponential level, if the constants α  

and β exist, independent of 0t , such that: 

( ) ( ) ( )( )0 0x t x t exp t t< α ⋅ ⋅ −β⋅ −
, 0  t  t   0∀ ≥ ≥

, 

( ) n

0 x t R∀ ∈
            (5) 
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Lyapunov Functions 

This section contains definitions which determine a certain class of 

functions, considered as being essential in the usage of Lyapunov’s direct 

method for studying the equilibrium stability of differential equations. 

 

Locally And Globally Positive Definite Functions 

A continuous function 
nW : R R+→  is locally positive definite if: 

( )
( )

1. W 0 0;

2. W x 0 for small values x 0.

=

> ≠
.      (6) 

A continuous function 
nW : R R+→  is globally positive definite if: 

( )
( )

1. W 0 0;

2. W x 0   x 0.

=

> ∀ ≠
.         (7) 

For n continuous functions 
nV : R R R+ +× →  which are time dependent, 

( )V t, x
 is positive definite and locally positive definite respectively if: 

( )
( ) ( ) n

1. V t,0 0,   t 0;

2. V t,x W x ,   t 0,  x R , for small values of x

= ∀ ≥

≥ ∀ ≥ ∀ ∈
 

where W(x) is a positive definite function, locally positive definite 

respectively. 

 

Limitless Radial Functions 

A continuous function 
nW : R R→  is defined to be limitless radial if: 

( )W x   →∞
if  

x →∞
,  

( )W x   →∞
for  x→ ∞.  

 

Lyapunov’s Auxiliary Function 

A continuous and differentiable function 
nV : R R R+ +× →  is defined to 

be a Lyapunov auxiliary function for equilibrium 
nx 0 R= ∈ of the differential 

equation system:   

( )dx
f t, x

dt
=

 
if the following conditions are met: 

1. ( )V t, x
 is locally positive definite; 

2. 

( )V t, x

t

∂

∂  is continuous with respect to t and x;    (8) 

3.  

( )V t, x

x

∂

∂  is continuous with respect to t and x. 
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Time Derivative Of Lyapunov’s Auxiliary Function 

Let ( )V t, x
 a Lyapunov auxiliary function for the system 

( )dx
f t,x

dt
=

.  

The total time derivative of the function ( )V t, x
 along the trajectories 

of the differential equation system is: 

( )( ) ( ) ( ) ( )
T

V t, x V t, xd
V t, x f t, x

dt t x

∂ ∂
= + ⋅

∂ ∂ .     (9) 

The Lyapunov auxiliary function ( )V t, x
 for the system 

( )dx
f t, x

dt
=

 is a 

Lyapunov function – for the system in question –  if the total derivative 

fulfills the condition: 

( )( ) ( ) ( ) ( )
T

V t, x V t, xd
V t, x f t, x 0,    t 0

dt t x

∂ ∂
= + ⋅ ≤ ∀ ≥

∂ ∂ ,   (10) 

for small values of 
x

. 

 

Lyapunov’s Direct Method 

The origin is a stable equilibrium for the differential equation system: 

( )dx
f t, x

dt
=

 

if a ( )V t, x
 Lyapunov auxiliary function exists, such that: 

( )( ) ( ) ( ) ( )
T

V t, x V t, xd
V t, x f t, x 0,    t 0

dt t x

∂ ∂
= + ⋅ ≤ ∀ ≥

∂ ∂  

for small values of 
x

.  

 

The LaSalle Theorem 

Being the autonomous differential equation system 
( )dx

f x
dt

=
 with the 

origin 
nx 0 R= ∈  in an equilibrium state. It is assumed that a Lyapunov 

auxiliary function exists, globally positive definite and limitless radial ( )V x
, 

such that: 

ndV
0,  x R

dx
≤ ∀ ∈

.          (11) 

 

The following set is defined: 

n dV
x R : 0

dx

 Ω = ∈ = 
  .         (12) 
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If ( )x 0 0=
 is a state only in Ω  and the solution ( )x t

 remains in Ω , 

which means ( )x t ∈Ω
 for all t 0≥ , then the origin 

nx 0 R= ∈  is globally 

asymptotically stable.  

To be noted that it is not required, when applying the LaSalle theorem 

to determine asymptotic stability, for V(x) to be a negative definite function. 

It is to be reminded that this theorem can be utilized only for autonomous 

differential equations.  

 

LaSalle Theorem Application For Two Differential Equation Systems  

Being the following autonomous differential equation systems: 

( )f x, zdx

dt x

∂
=

∂ ,  
nx R∈        (13) 

( )f x, zdz

dt z

∂
=

∂ ,  
mz R∈          (14) 

where 
( )f
0,0 0

x

∂
=

∂  şi  
( )f
0,0 0

z

∂
=

∂ , which means that the origin is a point 

of equilibrium. 

Being 
n mV : R R R÷× →  a globally positive definite function and radially 

non-limited in both arguments. 

It is assumed that a globally positive definite function 
mW : R R÷→  

exists such that: 

( ) ( )dV
x, z W z .

dt
= −

          (15) 

If x=0 is an unique solution for 
( )f
x,0 0

z

∂
=

∂  then the origin 

I
T Tx z 0  =   is 

globally asymptotically stable. 

 

Stability Analysis For Linear Harmonic Oscillator Motion 

Being the linearly damped harmonic oscillator as shown in figure 1. 

The system dynamics is given by the differential equation: 
2

2

d q dq
m b k q 0

dt dt
⋅ + ⋅ + ⋅ =

,        (16) 

where m, b and k are positive variables. 

 

Phase Space Analysis 

In the phase space the oscillator equation is expressed as: 
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q
qd

k b
q qqdt

m m

 /
   =       − ⋅ − ⋅/          

&

&&

      (17) 

 
Fig. 1  Linearly damped harmonic oscillator 

 

Numerical solving of the linear harmonic oscillator differential  

equation (16) 

 

The following Mathcad algorithm is applied: 

[ ]m 1 kg=
,  

N
k 0.02 

m

 =    ,  

N s
b 0.02

m

⋅ =    ,  [ ]T 200 s=
 

Given 

( ) ( ) ( )
2

2

d d
m q t b q t k q t 0

dt dt

 
⋅ + ⋅ + ⋅ = 
   

( ) [ ]q 0 0 m=
,  

( ) m
q ' 0 0.01 

s

 =     

 

The following graphs are generated: 

 

 
 

Fig. 2  Variation with time of q 
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Fig. 3  Variation of derivative for q(t) with time 

 

 

 

Fig. 4  Variation of derivative for 
( )q t

 in relation with 
( )q t

 

 

The system state is defined with ( )x q,q= &
. 

Because this system is linear we can determine its stability by 

examining the poles of the system. The jacobian matrix for this system is: 

0 1

A k b

m m

 
 =
 − −
  , 

which has the characteristic equation: 

2 b k
0

m m

   λ + ⋅λ + =   
    . 

The roots of the equation are: 
2

1,2

b b 4km

2 m

− ± −
λ =

⋅  
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They always have a negative real part, therefore the system is globally 

exponentially stable. 

 

Lyapunov’s Direct Method Application 

When applying Lyapunov’s direct method – in order to determine 

exponential stability – quantification of the system energy is utilized as a function: 

( ) 2 21 1
V x, t m q k q

2 2
= ⋅ ⋅ + ⋅ ⋅&

. 

After derivation with respect to time we obtain: 

( ) 2V x, t m q q k q q b q= ⋅ ⋅ + ⋅ ⋅ = − ⋅& & && & &

&  
( )V x, t− &

 is a quadratic function but not locally positive because it is 

not dependent to q and therefore we cannot conclude the exponential stability 

analysis. 

It is possible to conclude the asymptotic stability analysis by utilizing 

the LaSalle theorem yet, knowing that the system is conservative, it is also 

exponentially stable. 

  

Conclusions  

In order to solve a higher order differential equation in Mathcad the 

following algorithm is applied: 

Given  

( )( ) ( )( ) ( ) ( )
2

0 1 22

d d
a x t a x t a x t f t

dt dt
⋅ + ⋅ + ⋅ =

, 

( ) 0x 0 x=
,  

( ) 1x ' 0 x=
, 

( )0x Odesolve t,T=
. 

 

The higher order ordinary differential equation can be transformed into 

a first order differential equation system. 

By solving the following autonomous system in Mathcad: 

( )dr
a r 1 r

dt
= ⋅ ⋅ −

,   
[ ]2d

sin ,    0,  2
dt 2

θ θ = θ∈ π 
  .     (18) 

 

For a 0.05= , [ ]T 500 s=
, with initial conditions 

( ) [ ]r 0 0.25  m=
, 

( ) [ ]0   radθ
 we obtain: 
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Fig. 5  Variation of the radius vector in polar coordinates 

(a) and variation of the radius vector    (b) with respect to time 

angular position 

 

 

 
Fig. 6  Variation with time        Fig. 7  Variation with time of speed   

  of the radius vector in cartesian  

  coordinates 

 

In figure 6 it can be observed that the dynamic system motion – 

defined by the differential equation system – is asymptotically stable. 
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