Bangladesh J. Sci. Ind. Res. 41(3-4), 171-180, 2006

Studies on Anomalous Behaviour at Curie Point, T_c of Some Classes of Mixed Ferrites

M. Tofazzal Hossain,^a Suravi Islam,^a Mokbul Hossain Mondal^a and A. H. Khan^b

^aBCSIR Laboratories, Dhaka and Department of Physics, ^bJahangirnagar University, Savar, Dhaka.

Abstract

A comparative studies on anomalous behaviour at Curie point between clay additives Mn-Zn ferrites and other mixed ferrites such as Mn-Zn, Ni-Zn, Mg-Mn and Ni-Mg have been carried out in this investigation. The changes in T_c on compositions, additives and manufacturing processes of such soft mixed ferrites have been determined from the temperature dependent dc resistivity data and the log ρ vs. (1/1000T) graphs. It is observed that the Curie temperature is dependent on compositions, additives, manufacturing process and microstructure. Definite changes of Curie points of clay additives Mn-Zn ferrites with other ferrites were observed. Both the Mn-Zn ferrites and clay additives Mn-Zn ferrites showed some changes in their T_c behavior. The T_c value of Mn-Zn ferrites with clay additives decreases with increasing additives. In the case of clay substituted Mn-Zn ferrites the decrease of Curie point can be understood by a decrease of the number of Fe³⁺ magnetic ions substituted by nonmagnetic Al³⁺ ions on O sites of the system.

Introduction

Curie temperature is the temperature when the energy of the thermal motion of the atoms is sufficient to overcome the interaction forces between the atomic moments. At this temperature a ferromagnetic substances changes over to paramagnetic substances. This temperature is also a measure of exchange forces in a ferromagnetics. Near Curie temperature, T_c , some of the intrinsic parameter such as the magnetization, the susceptibility, thermal and electrical conductivity are seen to behave differently than predicted by classical molecular field theory.

In general ferrite shows an increasing value of permeability with increasing temperature, until they approach their Curie points when the permeability falls sharply. This happens due to magnetic transition from the ferrimagnetic phase to the paramagnetic phase. The temperature variation of resistivity of magnetic materials shows similar irregularities at magnetic transition point. The magnetic transition point can often be clearly observed in the anomalous temperature variation of transport properties of magnetic material near T_c . The magnetic transition point T_c of pure iron was studied by Lunchbury.¹ He studied temperature dependent electrical resistivity ρ and observed T_c around 770° C. The expected linear relationship between lnp and 1/T has often been found for ferrite materials accompanied by a change in activation energy near the Curie temperature.

It has been observed that in mixed ferrites, where the divalent metal ions consist of some magnetic ions such as Ni, Co, Fe and some nonmagnetic ions such as Zn, Ca, Cu interesting phenomenon occurs. The diamagnetic Zn^{2+} ions content of the mixed Zn^{2+} ferrite has a marked effect on the Curie temperature. The Curie temperature decreases continuously as the Zinc content increased.² This was experimentally found out by Forestier in Zn²⁺ ions substituted mixed ferrite.³ On the other hand, the addition of diamagnetic Zn²⁺ content increase the room temperature permeability of Mn ferrite from 250 to 1000 and Ni ferrite from 10 to 700. So, mixed ferrite of appropriate composition can yield convenient T_c values for operating at high permeability.^{4,5} The study of the variation of T_c values with the content of a nonmagnetic substance like Zn²⁺ ions is clearly of importance.

The aim of the present experiment is to investigate the value of T_c of some mixed fer-

rites like Mn-Zn, Ni-Zn, Mg-Mn and Ni-Mg ferrites with varying the compositions, additives and manufacturing process and to observe the resulting change in their transition temperature, T_c. Besides, a comparative study of Curie points between Mn-Zn ferrites and clay additive Mn-Zn ferrites have been made in this investigation.

Materials and Methods

In the present investigation, eight series of samples with various compositions and additives were prepared in our laboratory by using a ceramic method. The samples were classified into eight groups such as A, B, C, D, E, F and G. Group A-E are Mn-Zn ferrites with different compositions and sintering temperature, group F is Ni-Zn ferrites, group G is Mg-Mn ferrites and group H is Ni-Mg ferrites. The main emphasis of this study has been given on group E in which clay has been employed as an additive. More details about the preparation of the ferrite from oxides are given by Snelling and Ahsanullah.^{4,5}

There are some methods available to determine Curie temperature, T_c . The Curie temperature is usually determined from magnetization or magnetic susceptibility data. The T_c can also be determined by different techniques; which include specific heat, thermal expansion and electrical resistivity as a function of temperature. In our present experiment the Curie temperature measurement involved measuring the resistivity ρ , at varing temperature. The same method has been treated by M. A. Hossain, S. R. Swant and R. N. Patil and V. R. Kulkarni *et.al.*⁶⁻⁹ To characterize the clay additive samples, the X-ray powder pattern were recorded on a Phillips X-ray diffractometer using Cu K α radiation.

Results and Discussion

Structural Characterization

Figs. 1.1 to 1.3 show the X-ray diffraction patterns for clay additive Mn-Zn ferrites (group E samples). The patterns were analyzed by Phillips X-ray diffractometer and confirm formation of cubic system with space group Fd3m. The structural parameters are shown in Table I.

Composition dependent Curie Temperature, T_c values of Mn-Zn, Mg-Mn and Ni-Mg ferrites

To determine T_c the temperature dependent dc resistivity data plotted as lnp Vs (1000/T) have been used. In group A, the Zn²⁺ ions content is constant and the weight % of the value of Fe₂O₃ and MnO are changed simultaneously. The values of T_c on compositions of Mn-Zn ferrites (A-group) are shown in Fig. 2.1

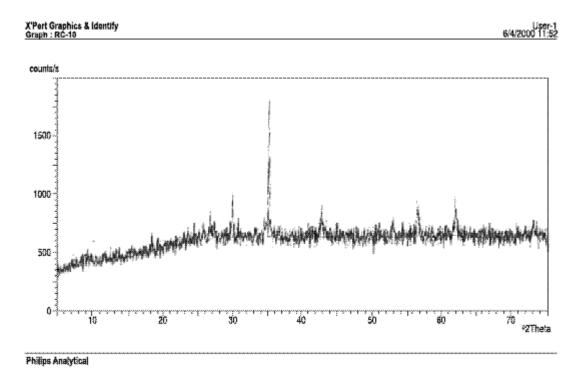


Fig. 1.1. X-ray diffraction patterns for Rc

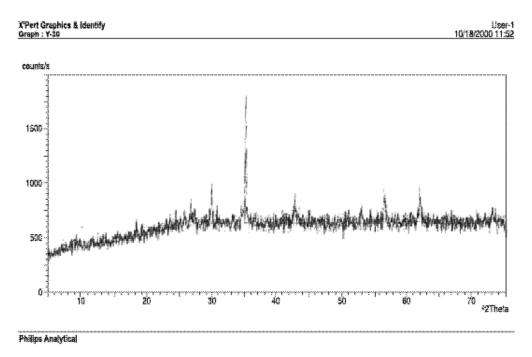
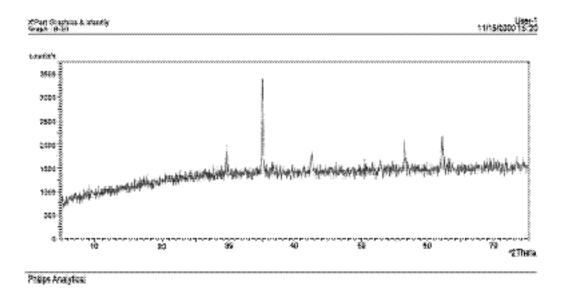



Fig. 1.2. X-ray diffraction patterns for Bc

Samples	Structure	Space group	Lattice parameter	Density	No of formula unit
			unit A ^O	unit gm/cc	with unit cell
E1	Cubic	Fd 3m	8.5136	5.010	8
E2	Cubic	Fd 3m	8.4975	5.084	8
E3	Cubic	Fd 3m	8.4794	5.162	8

 Table I.
 The crystal system, space group and values of lattice parameters, density, number of formula units of clay additive Mn-Zn ferrites.

It is seen from Fig. 2.1 that the Curie temperature increases with the increase of weight % of Fe₂O₃. It is also observed that the slight variation in the composition ratio of Fe₂O₃ and MnO have a remarkable effect on Tc. It is also well known that the T_c values are dependent on the exchange interaction of magnetic ions of ferrites between octahedral and tetrahedral sites. In the present study, the increase of T_c values in the case of iron rich Mn-Zn ferrites is due to the increase of exchange interaction of AB or BB between octahedral and tetrahedral sites.

Fig. 2.1. Composition dependent Tc in Mn-Zn Ferrites (Group A samples)

In this study we have also investigated the composition dependent anomalous behaviour that is T_c of Ni-Zn ferrites. In Ni-Zn ferrites the weight % of Fe₂O₃ remains constant and

the ratio of the value of the ZnO and NiO are changed simultaneously. The Curie temperature of this system is shown in Fig. 2.2. It is seen from the figure that the Curie temperature decreases with the increase of ZnO or increases with increase of NiO. This type of behaviour has also been reported by Forestier in Zn²⁺ ions substituted Ni-Zn ferrites.³ As the ZnO in Ni-Zn ferrite increases exchange interaction of AB and BB between octahedral and tetrahedral sites decreases and thus decreases T_c. Reverse is in the case of NiO addition.

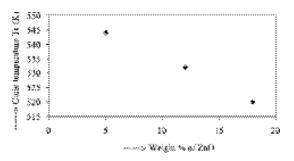


Fig. 2.2. Composition dependent Tc in Ni-Zn ferrites

In Mg-Mn and Ni-Mg we have seen that the Mg ions have remarkable effect on Curie temperature as in Figs. 2.3 and 2.4. It is seen from Fig. 2.3 that the Curie temperature

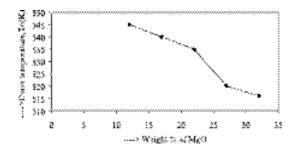


Fig. 2.3. Composition dependent Tc in Mg-MnFerrites

decreases with the increase of Mg ions. The decrease of Curie point with increase of Mg ions is due to the fact that Mg occupies O-sites, which weaken the AB interaction and hence decreases T_c . In case of Ni-Mg ferrite addition of NiO enhances AB and BB interaction resulting increased T_c values which is evident in Fig. 2.4.

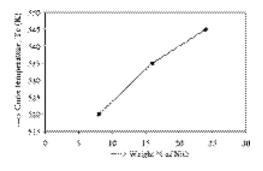


Fig. 2.4. Composition dependent T_c on Ni-Mg ferrite system

Effect of sintering temperature on Curie temperature, $T_{\rm c}$

The objective of the study of group C was to observe and gather a general knowledge

about the T_c values of Mn-Zn ferrites with different sintering temperature. This group of Mn-Zn ferrites was prepared by sintering at 1273 K, 1373 K, 1473 K and 1573 K Calculated values of Curie temperature, T_c of Mn-Zn ferrites sintered at 1273 K, 1373 K, 1473 K and 1573 K are shown in Fig. 2.5 against sintering temperature. It is evident from Fig. 2.5 that the T_c increases with increasing sintering temperature from 1000 to 1300°C. From the experimental findings it is observed that sintering temperature of the Mn-Zn ferrite samples bore some relations with their T_c . The T_c of the experimental samples increases with the increase of the sintering temperature. Because at higher sintering temperature, the density and average grain of the magnetic ions of ferrites are increased. The magnetic ions of Mn-Zn ferrites not only increases magnetic moments but also increases the T_c on sintering temperature.

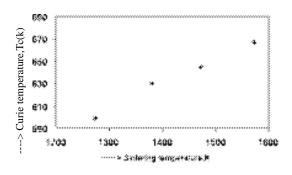


Fig. 2.5. Variation of Tc on sintering temperature (Group C samples)

Effects of Zn-variables on Tc values in Mn-Zn ferrite

The purpose of the study of group B samples was to observe the change in Curie temperature due to change of non magnetic Zn^{2+} ion in Mn-Zn ferrite. In this investigation we have studied and have compared the T_c of some mixed ferrites which containing Zn^{2+} ions (sample no. B₂, B₃ and B₄) with other ferrite that does not contain Zn^{2+} ions (sample no B₁).

It is observed that ferrite samples B_1 which does not contain Zn²⁺ ions has higher Tc value than the other samples of this group. But if we gradually increase the Zn²⁺ ions in mixed ferrite samples B2 to B4, Tc value decreases. This result is in good agreement with the result of J. Roberts and Galleo.^{2,10} This type of behavior was experimentally found out by Forester and Robert.3,2 The decrease of Curie point is due to the tetrahedral site preference of the Zn^{2+} ions. Zn^{2+} ions always prefer A sites i.e. tetrahedral site. The exchange integral for A site i.e. J_{AA} is almost negligible. So substitution of Zn²⁺ ions only weaken the AB interaction effectively. If the number of substituted ions are not too high the overall ferrimagnetic arrangement is not destroyed even though some loosely bound spins may become canted or destroyed, at temperature $T < T_c$. For large substitution, the AB interaction became comparable to or even weaker than BB interaction. In this way the collinear ferrimagnetic arrangement often changes to canted one. Owing to this reduced A-B exchange interaction with increasing Zn^{2+} ion content the Curie temperature will drop. So the study of the variation of T_c values with the content of nonmagnetic substance like Zn^{2+} ions is clearly important.

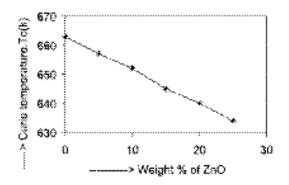
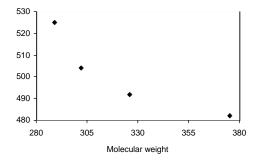
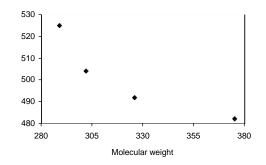




Fig. 2.6. Composition dependent Tc in Mn-Zn ferrite (Group B samples)

Effects of replacement of ZnO by Al₂O₃, CdO and CaO

We have already seen in group B that non magnetic material like Zn^{2+} ions in mixed ferrites play an important role in relation to their T_c. It was found that with gradual increase of Zn^{2+} content in mixed ferrites the Curie temperature decreases. Behavior of the substitution of non magnetic materials like Al, Cd, Ca, etc. in Mn-Zn ferrites have been also studied in the mixed ferrites (group D samples) to observe the similar effect. The calculated values of T_c on substituted ions are shown in Fig. 2.7. From the experimental finding it was found that molecular weight of different samples bore some relations with

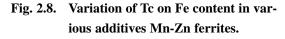


Fig. 2.7. Variation of Tc on various substitute ions (Group D samples)

their Curie temperature. The Curie temperature decreases with the increase of molecular weight.

Effects of clay additives in Mn-Zn ferrite on T_c

In this investigation three types of clay additive Mn-Zn ferrites have been studied. These types of clay additives are denoted by Rc, Bc and Yc and found in Bijoypur and Savar region of Bangladesh. The main cations of clay material are Si, Al, Mn and Fe. The

composition variations of T_c values of clay adittives of ferrite are shown in Fig. 2.8. It is evident, as in Fig. 2.8, that sample Y_c has the highest T_c value.

The observed variation of T_c values can be explained on the basis of AA, AB and BB interactions. In clay additive Mn-Zn ferrites, the cations are Fe, Mn and Si, which contribute to T_c values. It is well known that the cation Fe is magnetic and occupy both the tetrahedral and octahedral sites. In the

Table II. Composition variation of Tc values of clay additive ferrites

Sl. No	Composition of ferrites	Cations	Compound formula	Concentration %	Curie temperature T _c (K)
1.	Rc (Red clay substitute Mn-Zn ferrite)	Si Mn Fe	SiO MnO Fe ₂ O ₃	25.79 20.50 33.70	561
2.	Bc (Black clay substitute Mn-Zn ferrite)	Si Mn Fe	SiO MnO Fe ₂ O ₃	27.75 20.37 35.01	571
3.	Yc (Yellow clay substitute Mn-Zn ferrite)	Si Mn Fe	SiO MnO Fe ₂ O ₃	31.80 18.38 44.50	577

present study the increase of T_c value in the case of Fe rich clay additive Mn-Zn sample is due to the increase of exchange interaction of AB and BB between octahedral and tetrahedral sites.

Conclusions

The Curie temperature T_c , of the various ferrites is strongly dependent on composition, sintering temperature and various additives. It is seen that the slight variation of the composition i.e ratio of major constituents have a remarkable effect on T_c .

It is also observed that the T_c values depend on the exchange interaction of magnetic ions of ferrites between octahedral and tetrahedral sites and the observed variation may be explained on the basis of AA, BA or BB interactions of various cations and their site location between octahedral and tetrahedral sites.

It is evident that sintering temperature of the Mn-Zn ferrite sample bears some relations with their curie temperature. At higher sintering temperature the density and average grain of the magnetic ions of ferrites are increased and the magnetic moments are increased. This enhances the magnetic interaction and hence increases T_c values.

In clay additive Mn-Zn ferrites, the cations are Fe, Mn and Si which contribute to T_c values. It is well known that the cations Fe are

magnetic and occupy both the tetrahedral and octahedral sites. In the present study the increase of T_c value in case of Fe rich clay additive Mn-Zn sample is due to the increase of exchange interaction of AB and BB between octahedral and tetrahedral sites.

Acknowledgements

The authors are grateful to the Director, BCSIR laboratories, Dhaka for his encouragement and permission to publish the work. We are grateful to Mr. Anwar Hossain, ex Scientist-in-charge, Industrial Research Division, BCSIR laboratories, Dhaka who made valuable suggestions regarding experiments and project development. We are also indebted to Physical Instrumentation Division of the same laboratory for the use of their computer facilities. The authors wish to thank the Director, IGCRT,BCSIR, Dhaka, for providing the facilities for carrying out this work.

References

- M. D. Lunchbury and N. H. Saunders. J. Phys. F: Metal Phy., 6 (1976) 1967-77.
- J. Roberts. High frequency application of ferrites, The English University Press Ltd., London (1960).
- H. Forestier, Ann. de ch m.10e Ser. I. L F Bates, 1963 Modern Magnetism. University Press (Cambridge).

- E. C. Snelling. Soft Ferrites: Properties and Applications. Mullards Research Laboratories, CRC Press Ohio. (1969) 1.
- A. K. M. Ahsanullah, M. A. Hossain, M. Tofazzal Hossain and N. A. Ahmed. Observation of superconductivity type behavior in the measurement of electrical resistivity of mixture of Mn-Zn ferrites and clay materials. *Proc. Pakistan Acad. Sci.* Vol. 28(4) (1991) 387-399.
- M. A. Hossain, S. B. Rahman, M. Tofazzal Hossain, N. A. Ahmed, D. Haque and S. N. Rahman. Substitution of ZnO by Cdo, CuO, CaO, Al₂O₃ and MgO in Mn-Zn ferrite. *Bangladesh J. Sci. Ind. Res.* 32(1) (1997).
- R. N. Patil and S. R. Swant. Indian Journal of Pure & Applied Physics. 24 (1996) 294-296.

- 8. S. R. Swant and R. N. Patil. *Indian Journal* of Pure & Applied Physics, **20** (1981) 353-355.
- V. R. Kulkarni, M. M. Todkar and A. S. Vaingankar. *Indian Journal of Pure & Applied Physics*, 24 (1986) 294-296.
- M. A. Gilleo and S. Geller. J. Appl-Phys, 29 (1958) 380.
- K. H. Rao, N. K. Gaur, K. Aggarwal and R. G. Mendiratta. *Journal of Applied Physics*, 53(2) 1982.
- 12. Gauillaud. Proc. IEEE Suppl. 1048 (1957) 165.