Review Article

Management of glaucoma with neuroprotective drug

Islam N*

<u>Abstract</u>

Glaucoma is an optic neuropathy characterized by progressive loss of retinal ganglion cells (RGCs). Death of ganglion cells is not always only pressure dependent mechanism but also have several pressure independent mechanism that establish a cascade of changes that ultimately leads to cell death.

Neuro- protection is a process that attempt to preserve the cells that were spared during initial insult, but are still vulnerable to damage. Although not yet available, a neuroprotective agent would be great use that rescue neurons already compromised or that promote regrowth of axonal or dendritic connection to restore function.

This review based on literature, giving the idea of varies mechanism of RGC death delineated by research and discussed some pharmacological agent believed to have a neuroprotective role in glaucoma.

Introduction

Glaucoma is a neurodegenerative disease in which intraocular pressure (IOP) is a factor^{1,2}. leading risk Despite IOP lowering, glaucoma continues to worsen in a subset of patients²⁻⁵. The final stage in glaucoma involves retinal ganglion cell (RGC) damage and death². This damage can occur at statistically high, average, or low levels of IOP. While the biomechanics of optic disc cupping specifically, loss of neuroretinal rim and posterior bowing of the lamina cribrosa have been extensively studied^{6,7}. They do not adequately explain patients why certain continue to demonstrate worsening of the disease in spite of apparently low IOP. In addition to several IOP. other triggers are hypothesized to contribute to RGC axonal injury and death⁸.

These triggers include loss of neurotrophic factors, localized ischemia, excitotoxicity, alterations in immunity, and oxidative stress. There is increasing evidence that these factors, triggered by high IOP or occurring independently of IOP, may contribute to affecting the optic nerve.

Basis of neuroprotection

Glaucoma is an axonal disease in which Retinal ganglion cell (RGC) axons are the initial site of damage. According to the biomechanical model of damage, structural failure of laminar beams and strain along the retinal nerve fiber layer lead to axonal damage. Damaged axons then degenerate via apoptosis (an energy-requiring form of cell death) either in a retrograde fashion or bv Wallerian degeneration. Axonal transport is disrupted primarily at the level of the lamina cribrosa^{9,10}. A decrease in the axonal blood flow follows mechanical injury and death of RGCs^{9,10}. The exact pathophysiology of axonal injury and death remains unclear; however, a variety of inter and intra-cellular events are triggered during the process of cell death, and these events may be potential targets of strategies. neuroprotective In many neurologic diseases, injury can spread to connected neurons by a mechanism called transsvnaptic degeneration. The surrounding axons may undergo apoptosis because of the loss of certain neurotrophic factors, such as brain-derived neurotrophic factor and nerve growth factor^{11,12}. On the other hand, surrounding axons may be exposed to upregulated factors that lead to cytotoxicity, such as tumor necrosis factor-

^{*}Corresponds to: Dr. Md. Nurul Islam, Assistant Professor, Islami Bank Medical College, Rajshahi. *Email:* dr.nuruleye.bd@gmail.com.

a (TNF-a) ^{13,14}. It is unclear whether the process of transsynaptic degeneration affects only surrounding RGC axons or whether afferent neurons within the inner retina may also be affected.

Inhibition of intracellular calcium ion (Ca2+) uptake has been a major focus of glaucoma neuroprotection because an increase in intracellular Ca2+ is associated with RGCs degeneration. Calcium enters cells through voltage-gated channels and *N*-methyl-d-aspartate (NMDA) glutamate receptor associated channels. An increase in intracellular Ca2+ activates calcineurin. Which causes the release and activation of apoptotic mediators, such as caspases from mitochondria into the cytoplasmic space¹⁵.Cytoplasmic Ca2+ also stimulates nitric oxide production. The upstream trigger for this cascade of events may be glutamate dependent. Neuroprotection in glaucoma is the targeted treatment of neurons of the visual pathway (particularly RGCs) that are damaged in the glaucomatous process.

In neuroprotection, the goal is to directly stimulate or inhibit specific biochemical pathways that either prevent injury or stimulate recovery of these neurons. Indirect treatments, such as IOP lowering, by definition are not neuroprotection. Retinal ganglion cell njury may occur by a variety of pathophysiologic mechanisms including increased intraocular pressure, ischemia, genetic factors, and failure of trophic support. Conventional treatment to prevent optic neuropathy has focused on preventing or mitigating the effect of the Neuroprotection inciting factor. in glaucoma involves targeted modification of NMDA receptor and promotes Ca2+ uptake¹⁶. An increase in intravitreal glutamate causes RGC death in vitro; however, increase in intravitreal an glutamate has not been observed in models of glaucoma 17 . experimental Glutamate toxicity has also been shown to

lead to degeneration of postsynaptic neurons in the lateral geniculate nucleus¹⁸.

Neuroprotective medications

There are several theoretically effective neuroprotective therapies that unfortunately remain somewhat limited in practice. While cell culture results with brain-derived neurotrophic factor have been promising, its effect is only transient, which may possibly be due to receptor turnover¹⁹. Altering the expression of apoptosis proteins is possible in transgenic animals, but it cannot be easily achieved or humans²⁰. controlled in Finally. experimental models of RGCs axonal injury (cell cultures and murine or primate models) do not entirely reproduce the multifactorial pathophysiologic events of glaucoma in humans. Nevertheless, strong experimental Evidence for certain medications may lead to clinical use in the near future.

Memantine

Memantine is NMDA receptor an antagonist that blocks the excite toxic effects of glutamate²¹. The drug has been used to treat Parkinson's and Alzheimer's disease²². Glutamate-mediated synaptic transmission is critical for normal functioning of the nervous System: however, if neurons are injured and unable to properly control the regulation or clearance of glutamate, secondary excite toxic damage can result. Under pathologic conditions, the NMDA receptor is over activated and excessive Ca2+ influx occurs²³. Therefore, oral Memantine theoretically may benefit patients with progressive glaucoma. Memantine has been shown to protect RGCs and brainstem neurons in a monkey model of glaucoma²⁴. However, a recent report from a Phase III clinical trial indicates that Memantine failed to show efficacy compared with placebo when used in patients with glaucoma²⁵. Given the results of this trial, the exact role of Memantine in glaucoma patients remains unclear. We currently

counsel patients who show stereophotographic perimetric or progression of glaucoma despite maximally tolerable IOP lowering therapy about the absence of additional clinically proven therapies for glaucoma. Because of the safety profile of Memantine and its theoretical benefit in preventing axonal injury, patients in whom standard medical or surgical therapy is ineffective or not possible are offered treatment with Memantine.

Brimonidine

In addition to lowering IOP, alpha-2 adrenergic receptor agonists also increase release of neurotrophic factors, inhibit glutamate toxicity, and reduce Ca2+ uptake by neurons in both in vitro and in vivo models^{26,27} This animal class of medication may also inhibit activation of proteins involved in apoptosis²⁸. Alpha-2 receptors are found in a variety of retinal locations and are expressed in RGCs²⁹. Topically administered alpha-2 agonists, such as Brimonidine, have been found to achieve neuroprotective intravitreal concentrations³⁰. The efficacy of Brimonidine in normal-tension glaucoma patients is currently being evaluated prospectively.

However, the neuroprotective effect of Brimonidine remains controversial given the medication's accompanying IOPlowering effect. A clinician also cannot a priori determine whether glaucomatous damage is due to a pressure-dependent or pressure-independent process. As such, we do not use Brimonidine as a first-line glaucoma when treatment for other medications are tolerated, nor do we use Brimonidine for a neuroprotective effect. Further studies are needed to determine the utility of Brimonidine in glaucoma neuroprotection.

Betaxolol

Selective beta-1 adrenergic antagonists (Betaxolol) have a similar neuroprotective effect in vitro as the alpha-2 agonists. Betaxolol increases neurotrophin levels, decreases intracellular Ca2+, and blocks glutamate excitoxicity³¹.However, the concentrations required to achieve this effect are nonpharmacologic³². Topical administration does not appear to achieve necessary intravitreal neuroprotective concentrations. As such. currently beta-1 available topical adrenergic antagonists should not be used for glaucoma neuroprotection.

Calcium channel blockers

Systemic calcium channel blockers (CCB) cause vasodilation by preventing the intracellular uptake of Ca2+. CCB may improve optic nerve head perfusion, particularly in patients with normal-tension glaucoma³³. While CCBs have been shown to improve psychophysical testing in a small group of patients, these results have not been confirmed in a large study³⁴. Side effects associated with systemic CCBs may limit their practical use. In a small group of patients placed on systemic nifedipine, a significant number were intolerant of the medication and had to discontinue it^{35} . A recent prospective population-based study has also shown a positive correlation between systemic CCB use and the development of incident glaucoma. Further prospective studies are needed to determine the safety and efficacy of CCBs. We presently do not make recommendations to glaucoma patients regarding the use of CCBs.

Conclusion

The concept of direct optic nerve protection is in its infancy. Nonetheless research in to inventive delivery –systems improved safety and discovery of additional neuroprotective agents will undoubtedly lead us further in to this promising era in glaucoma therapy.

References

- 1. Glaucoma Panel. Primary Open Angle Glaucoma Preferred Practice Pattern Guideline. American Academy of Ophthalmology, San Francisco, 2005.
- 2. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004; 363(9422):1711–20.
- Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6):701–13; discussion 829 30.
- Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 1998; 126(4):487–97.
- 5. The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am Ophthalmol 2000; 130(4):429–40.
- Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 1980; 19(2):137–52.
- Bellezza AJ, Rintalan CJ, Thompson HW, et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci 2003; 44(2):623–37.
- 8. Weinreb RN. Glaucoma neuroprotection: What is it? Why is it needed? Can J Ophthalmol 2007; 42(3):396–8.
- Quigley HA, Anderson DR. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci 1977; 16(7):640–4.
- Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol 1976; 15(8): 606–16.
- 11. Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal

ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 2000; 41(11):3460–6.

- Pease ME, McKinnon SJ, Quigley HA, et al. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 2000; 41(3): 764– 74.
- 13. Yuan L, Neufeld AH. Tumor necrosis factoralpha: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000; 32(1): 42–50.
- Tezel G, Wax MB. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2000; 20(23): 8693–700.
- 15. Wang HG, Pathan N, Ethell IM, et al. Ca2+induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999; 284(5412):339–43.
- Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nat Rev Drug Discov 2006; 5(2):160– 70.
- 17. Wamsley S, Gabelt BT, Dahl DB, et al. Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma. Arch Ophthalmol 2005; 123(1):64–70.
- Gupta N, Yucel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol 2007; 18(2):110–4.
- Di Polo A, Aigner LJ, Dunn RJ, et al. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 1998; 95(7):3978–83.
- 20. Bilsland J, Harper S. Caspases and neuroprotection. Curr Opin Investig Drugs 2002; 3(12):1745–52.
- 21. Seif el Nasr M, Peruche B, Rossberg C, et al. Neuroprotective seffect of Memantine demonstrated in vivo and in vitro. Eur

- 22. Reisberg B, Doody R, Stoffler A, et al. Memantine in moderateto-severe Alzheimer's disease. N Engl J Med 2003; 348(14):1333–41.
- Lipton SA. The role of glutamate in neurodegenerative diseases including glaucoma. In Weinreb RN (ed) GlaucomaNeuroprotection. Wolters Kluwer Health, Netherlands, 2006,pp. 9–22.
- 24. Yucel YH, Gupta N, Zhang Q, et al. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol 2006; 124(2): 217–25.
- 25. Memantine Update. www.glaucoma.org/treating/memantine_updat _1.php. Accessed at 21 March 2008.
- Gao H, Qiao X, Cantor LB, WuDunn D. Upregulation of brain-derived neurotrophic factor expression by Brimonidine in rat retinal ganglion cells. Arch Ophthalmol 2002; 120(6): 797–803.
- Wheeler LA, Gil DW, WoldeMussie E. Role of alpha-2 adrenergic receptors in neuroprotection and glaucoma. Surv Ophthalmol 2001; 45(Suppl 3):S290–4; discussion S5–6.
- Tatton WG, Chalmers-Redman RM, Tatton NA. Apoptosis and anti-apoptosis signalling in glaucomatous retinopathy. Eur J Ophthalmol 2001;11(Suppl 2):S12–22.
- 29. Wheeler LA, Woldemussie E, Lai RK. Alpha-2 agonists and neuronal survival in glaucoma. In

Weinreb RN (ed) Glaucoma Neuroprotection. Wolters Kluwer Health, Netherlands, 2005, pp. 53–63.

- Kent AR, Nussdorf JD, David R, et al. Vitreous concentration of topically applied Brimonidine tartrate 0.2%. Ophthalmology 2001; 108(4):784–7.
- 31. Zhang J, Wu SM, Gross RL. Effects of betaadrenergic blockers on glutamate-induced calcium signals in adult mouse retinal ganglion cells. Brain Res 2003; 959(1):111–9.
- 32. Hollo G, Whitson JT, Faulkner R, et al. Concentrations of Betaxolol in ocular tissues of patients with glaucoma and normal monkeys after 1 month of topical ocular administration. Invest Ophthalmol Vis Sci 2006; 47(1):235–40.
- Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol 1993; 115(5):608–13.
- 34. Boehm AG, Breidenbach KA, Pillunat LE, et al. Visual function and perfusion of the optic nerve head after application of centrally acting calcium-channel blockers. Graefes Arch Clin Exp Ophthalmol 2003; 241(1):34–8.
- 35. Rainer G, Kiss B, Dallinger S, et al. A double masked placebo controlled study on the effect of nifedipine on optic nerve blood flow and visual field function in patients with open angle glaucoma. Br J Clin Pharmacol 2001; 52(2): 210–2.