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Abstract
Melanoma is one of the most dangerous skin cancers in the world. It accounts for 55%

of all deaths associated with skin cancer. Researchers believe that skin cancer increases the
risk of other cancers if not diagnosed early. Therefore, prompt and timely diagnosis of this
disease is very important for the successful treatment of the patient. This system can detect
melanoma lethal carcinoma from other skin lesions without the need for surgery, with a
low cost, accuracy of about 98.88% and specificity 99%. In this article, a new, intelligent
and accurate software (Delphi) system has been used to diagnose melanoma skin cancer.
To detect malignant melanoma, the ABCDT rule, asymmetry (A), boundary (B), color (C),
diameter (D) and textural variation (T) of the lesion are calculated and finally, an artificial
neural network (ANN) is used to obtain an accurate result. The ANN with Multi-Layer
Perceptron (MLP) contains the five extraction Characteristics (ABCDT) of lesions is used
as inputs, two hidden layers, and two outputs. Very good results were obtained using this
method. It was observed that for a dataset of 180 dermoscopic lesion images including 80
malignant melanomas, 20 benign melanomas and 80 nevus lesions. Due to its automatic
recognition and ability to be installed on a computer, this system can be very useful for
dermatologists as well as the general public.
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Introduction
Unfortunately, skin cancer has become very popular these days. Melanoma is caused by ge-

netic mutations in the pigment-producing cells called melanocytes [1]. Melanoma affects mostly

both sexes of the Caucasian population [2], and the prognosis of the disease becomes very poor

at the metastatic stage [3-4]. There are no effective treatments for metastatic melanoma [5], and

has grown rapidly over the past 30 years [6]. According to clinical definitions, malignant lesions

are not regularly [6]. Figure Figure 1 shows the symmetric and asymmetric lesions. Diagnosis of

melanoma in the early stages of the disease can certainly prevent the death of patients. Usually for

two reasons skin lesions turn from benign to malignant: First, lack of attention to the skin lesions on

body surface. Second, high similarity of skin lesions features and inaccessibility to a dermatologist.

For example, Figure 2 shows two very similar skin lesions, malignant melanoma and Clark’s nevus,

which is a benign skin lesion. Melanoma is the most common skin disease that can lead to death

[7], which often begins with malignant pigment cell tumors that cause more than 70% of deaths in

patients with skin cancer [8-9]. It should be noted that if skin cancer is not diagnosed in the early

stages, it can affect different parts of the body, including the liver, bones, lungs and brain, and makes

the treatment process very difficult and complicated. The need for an automatic and accurate device

for reduce unnecessary biopsy and rapid detection is quite clear. Therefore, a method for early de-

tection of melanoma is very useful and valuable [10-11] so that dermatologists can use this system

to diagnose skin lesions with high accuracy. In fact, melanoma is evaluated by clinical imaging.

Dermoscopy is often used to assess melanoma lesions, a non-invasive type of image analysis. A

new approach is shown here, which examines the skin lesion image by a trained neural network to

analyze if it is benign or malignant. The article is arranged as follows.
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Figure 1. A:Symmetric and B: Asymmetric melanoma lesions.

Figure 2. Clark nevus.

The second section describes previous work on melanoma
analysis in skin images. In the third section, the new contri-
bution to this article describes the analysis, feature extraction,
classification, ANN, details, tests and evaluations. Section IV
presents the conclusions.

As a basic step towards computer-aided skin cancers, auto-
matic diagnosis, and image analysis have often been studied in
the literature [12-19]. In the last few years, many studies have

been done to detect melanoma from skin images with an accu-
racy of 70% to 96%. Telemedicine techniques have been studied
as a source for the diagnosis of skin lesions. Compared to physi-
cians in-person diagnoses (face to face) and telemedicine diag-
noses (remote detection), tests on skin diseases have shown that
the use of tele- communications technology diagnosis (teleder-
matology) is more effective and safer. These techniques include
the benefits of easy access, low cost, and quick and accurate ac-
cess to treatment results [20-22].

Melanocytic cutaneous lesions have been reported to be the
deadliest among the three skin cancer outbreaks and the second
most common among adults aged 15 to 29 years [2]. Melanoma
is less common in Asia, Africa and Latin America than in Aus-
tralia, Europe, North America and New Zealand. Melanomas
sometimes change in appearance, including changes in size, ir-
regular edges, and discoloration, itching or fracture of the skin
[23]. In fact, melanoma can rarely occur in the mouth, intestines,
or eyes, but is most commonly found on the skin. It is common
in men and women in the back and legs, respectively [24].

The automatic detection of asymmetry in digital images was
proposed by the Stolz technique based on ABCD rule [25]. A
study on the asymmetry using imaging techniques to identify
melanoma skin lesions was presented by Ravichandran et al [26].

To date, many researchers are working on image process-
ing, visual techniques, and various melanoma parameters such
as size, shape, asymmetry, border, color, and diameter to detect
skin cancer [27-31]. One of the known methods is the ABCD
rule. The algorithm for detection is divided into four steps: asym-
metry, border, color, and diameter. ABCD is a fast learning,
calculation and a reliable way to diagnose melanoma [32-34].
Lesion irregularity, borders, colors and diameters can be ana-
lyzed and calculated by dividing the image of the lesion into
sub-images and extracting the properties of each image [35]. Fi-
nally, melanoma could be detected by a simple threshold for the
values obtained from the extracted features (lesion irregularity,
borders, colors and diameter) [36]. These features are used as
inputs to the first layer of the ANN [37-38].

We’ve developed the novel ABCDT rule by improve the ABCD,
for automatic diagnosis of skin cancer with greater accuracy and
precision. In other words, in the current study, the extraction of
features is done based on the ABCDT rule in dermoscopy.

Materials and Methods
This article aims to develop a new, intelligent and accurate

soft- ware system for skin cancer diagnosis using neural network
and ABCDT rule. The input of the device is images of skin le-
sions. This system with Pre-processing, ABCDT rule, and sep-
aration, extract appropriate features from the image. To get the
total dermoscopic score (TDS), for each of the "asymmetries,
boundary, colors, diameters and texture changes", a coefficient
is determined by which the TDS can be calculated.

In other words, to obtain TDS (Table 1, the score of each
"ABCDT" is multiplied by a specific weight factor. Finally, us-
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ing NN as a smart medical decision-making system based on
TDS, the type of lesion is determined to be melanoma or benign.
In other words, an NN has been used to implement the new au-
tomated classification of melanocytic lesions.

Table 1. The Proposed diagnostic criteria.

Diagnostic Criteria Score Weight Factor

Asymmetric (A) 0-5 1.3

Border (B) 0-8 0.5

Color variation (C) 1-6 1

Diameter (D) 0-1 0.1

Textural variation (T) 1-10 0.9

In this work, briefly, after the detection and elimination of
noise and hair on the image, ABCDT rule, Bayes learning algo-
rithm, and the neural network method (Feed Forward Back Prop-
agation) were used to detect the lesion is classified as benign or
malignant. AS shown in Figures 3 and 3, the architecture of the
skin cancer smart system used in this study consists of the five
steps of pre-processing, segmentation, feature extraction, classi-
fication and diagnosis as follows:

• Pre-processing: It involves filtering and contrast enhance-
ment techniques using the Retinex algorithm. Resize Pic-
tures, to analyze and compare data with the bank, all im-
ages are trans- formed into the same size. This size is
450×350 selected.
• Blurring and segmentation: The purpose of blurring is to

reduce noise. If we use edge detection algorithms for high-
resolution images, we will find many results that we are
not interested in. Conversely, if we blur the images too
much, we will lose data. So, we have to find the amount
of blurring we want to use without destroying the desired
edges. There are various techniques to achieve blurred
effects, but Gaussian blur is used with a factor of 2 to re-
move the noise and the hairs on the skin. So, first, the im-
age is converted to binary format. Using filters, detect and
eliminate hair and noise from the image. Then, the lesion
image is completely separated from the background. In
other words, the exact location of the lesion on the image
is determined by calculating the threshold and statistical
characteristics.
• Feature extraction: ABCDT rule examines the character-

istics of a lesion. These properties include asymmetry,
border, color, diameter, and textural variation. This rule is
a development of the known ABCD rule [39], commonly
used to diagnose melanoma from images. The extracted
properties are fed to the first layer of the NN.

Properties used to characterize the asymmetry of the lesion
The asymmetric feature of the lesion is one of the important

features in diagnosis. Natural moles are usually symmetrical.

Asymmetry is usually calculated in two ways: entropy and bi-
fold.

To calculate the asymmetry score, each lesion is examined
by two 90-degree axes, and the ANN determines its score. If the
lesion is properly symmetrical on both axes, this score is 0, and
if it is only on one axis, it will be 2.5. In case of asymmetry in
both axes, the score is 5. Finally, the asymmetry score must be
multiplied by 1.3 as the weight factor.

Features used for irregular characterization at the lesion border
Uneven or irregularly shaped margins increase the likelihood

of some kind of skin lesion. To calculate boundary irregularities,
the lesion is divided into eight sections. If the entire border of
the lesion has a severe incision, it is given a maximum score.
Otherwise the minimum score of 0 is given. The minimum and
maximum score of B are defined 0 and 8, respectively with the
0.5 weight factor.

Features used to characterize lesion color variation
Color properties are calculated between six colors, and each

color represents 1 point.

Properties used for diameter
According to our information, if the lesion diameter is larger

than 0.6 mm, the risk of cancer is higher. Diameter with a weight
coefficient of 0.1 is measured by converting the total number of
pixels in the largest diameter to millimeters (mm).

Characteristics used to characterize the textural variation of the
lesion

Since healthy skin is reddish, and skin lesions have more
textural variation and lower pixel intensity than healthy areas of
the skin. For this purpose, first, a low pass filter was used to
normalize the color and then extracted the correct features [40].
The textural variation values are considered from 1 to 10 with a
weight factor of 0.9.

Classification
The different features extracted from the lesion surface have

different weights. The weight of each group was drawn based
on the experience of dermatologists. Table 1 shows the impor-
tance of each group. The total dermoscopy score (TDS) can be
calculated using eq. (1).

T DS = 1.3 × A + 0.5 × B + 1 ×C + 0.1 × D + 0.9 × T (1)

Where: A, B, C, D, and T Scores are for the asymmetry feature, the border

irregularity, the color feature, the diameter size feature, and the textural variation,

respectively.
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Figure 3. A flowchart illustrating the proposed machine learning system for detecting skin cancers using dermoscopic images.

Figure 4. Clark nevus.

Diagnosis
If individual scores of asymmetry, boundary, color, diameter,

and textural variation are multiplied by weight- factor of 1.3,
0.5, 1, 0.1, and 0.9, respectively, a precise distinction can be
made between benign and malignant melanocytic lesions. The
TDS greater than 5.40 means a cancerous lesion, otherwise, it is
benign.

Results and Discussion
All of these steps and the final decision (benign or malignant)

are performed by a trained neural network.
Various classifications have been performed by researchers

for the ANNs [43-46]. In this work, the ANN with a multi-layer
perceptron (MLP) utilizes a supervised learning technique and
includes features extracted as inputs to the input layer with two

hidden layers containing 10 and 7 neurons for each layer (Figure
5). The MLP uses a region-oriented hybrid algorithm, a method
called elliptical symmetry to determine asymmetry, a Gaussian
smoothing to measure boundary irregularities, and a threshold
method for the lesion segment. Therefore, the system designed
to diagnose melanoma uses five features of the lesion.

The images used in this work were taken from the interna-
tional skin imaging collaboration (ISIC) [41]. Out of this dataset,
180 dermoscopic lesion images including 80 malignant mela- no-
mas, 20 benign melanomas and 80 nevus lesions were ex- tracted
and preprocessed for this research.

In several studies [42-44] they used ABCD rule to detect and
analyze pictures, whereas in our study we added one more factor
(ABCDT) to increase the efficiency and get the better result. We
found out The T factor has a huge impact on increasing accuracy.
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Figure 5. The neural network diagram of the proposed MLP model.

Given the weight factor (0.9) and values of the (0-10) change
intended for T, the number obtained from T has a great effect on
the result, and this is the most important difference between this
work and other similar tasks.

According to the accuracy (ACC) and specificity (SPEC) ob-
tained and compared with Pennisi et al. [47], Fan et al. [48],
Jahanifar et al. [49] and Sreelatha et al. [50] can be claimed that
the average performance of the technique used in this study is
better than previous techniques (Table 2).

Table 2. The Average performance evaluation metrics (%).

Algorithm ACC SPEC

Pennisi [47] 89.40 97.10

Fan [48] 93.60 -

Jahanifar [49] 97.90 98.20

Sreelatha [50] 98.64 99.22

Proposed MLP 98.88 99.00

The proposed method for the diagnosis of melanoma skin
cancer by ABCDT method revealed 98.88% accuracy and speci-
ficity 99%. This approach is safe, accessible, effective, non-
invasive and based on the principles of telemedicine with high
ac- curacy and reasonable price.

With this software system, people can make an early diag-
nosis of their skin lesions without referring to a physician and
specialists can use it as an intelligent, fast and accurate assistant.
In summary, the ABCDT rule, Bayes learning algorithm, and
neural network method were used to detect the type of carcino-
genic or non-cancerous lesions. According to TDS, it is a clear
fact that the three features of asymmetry, color, and textural vari-
ation of the lesion are crucial in the diagnosis of melanoma from
benign lesions. A TDS value above 5.40 indicates melanoma. In
ABCDT method, all steps perform by a fully automated neural
network.
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