On the cyclic DNA codes over the finite rings

 $\mathbb{Z}_{4}+w \mathbb{Z}_{4}$ and $\mathbb{Z}_{4}+w \mathbb{Z}_{4}+v \mathbb{Z}_{4}+w v \mathbb{Z}_{4}$Abdullah Dertli ${ }^{1}$, Yasemin Cengellenmis ${ }^{2}$
${ }^{1}$ Ondokuz Mayıs University, Faculty of Arts and Sciences
Mathematics Department, Samsun, Turkey abdullah.dertli@gmail.com
${ }^{2}$ Trakya University, Faculty of Sciences
Mathematics Department, Edirne, Turkey ycengellenmis@gmail.com

Received: 8 May 2017, accepted: 16 December 2017, published: 22 December 2017

Abstract

The structures of the cyclic DNA codes of odd length over the finite rings $R=\mathbb{Z}_{4}+w \mathbb{Z}_{4}$, $w^{2}=2$ and $S=\mathbb{Z}_{4}+w \mathbb{Z}_{4}+v \mathbb{Z}_{4}+w v \mathbb{Z}_{4}, w^{2}=$ $2, v^{2}=v, w v=v w$ are studied. The links between the elements of the rings R, S and 16 and 256 codons are established, respectively. The cyclic codes of odd length over the finite ring R satisfy reverse complement constraint and the cyclic codes of odd length over the finite ring S satisfy reverse constraint and reverse complement constraint are studied. The binary images of the cyclic DNA codes over the finite rings R and S are determined. Moreover, a family of DNA skew cyclic codes over R is constructed, its property of being reverse complement is studied.

Keywords-DNA codes; cyclic codes; skew cyclic codes.

I. Introduction

DNA is formed by the strands and each strand is sequence consists of four nucleotides; Adenine (A), Guanine (G), Thymine (T) and Cytosine (C). Two strands of DNA are linked with Watson-Crick

Complement. This is as $\bar{A}=T, \bar{T}=A, \bar{G}=C$, $\bar{C}=G$. For example if $c=(A T C C G)$ then its complement is $\bar{c}=(T A G G C)$.

A code is called a DNA code if it satisfies some or all of the following conditions:
i) The Hamming contraint, for any two different codewords $c_{1}, c_{2} \in C, H\left(c_{1}, c_{2}\right) \geq d$
ii) The reverse constraint, for any two different codewords $c_{1}, c_{2} \in C, H\left(c_{1}, c_{2}^{r}\right) \geq d$
iii) The reverse complement constraint, for any two different codewords $c_{1}, c_{2} \in C$, $H\left(c_{1}, c_{2}^{r c}\right) \geq d$
iv) The fixed GC content constraint, for any codeword $c \in C$ contains the some number of G and C element.

The purpose of the i)-iii) constraints is to avoid undesirable hybridization between different strands.

DNA computing were started by Leonhard Adleman in 1994, in [3]. The special error correct-

[^0]http://dx.doi.org/10.11145/j.biomath.2017.12.167
ing codes over some finite fields and finite rings with 4^{n} elements where $n \in N$ were used for DNA computing applications.

In [12], the reversible codes over finite fields were studied, firstly. It was shown that $C=\langle f(x)\rangle$ is reversible if and only if $f(x)$ is a self reciprocal polynomial. In [1], they developed the theory for constructing linear and additive cyclic codes of odd length over $G F(4)$. In [13], they introduced a new family of polynomials which generates reversible codes over a finite field $G F(16)$.

In [2], the reversible cyclic codes of any length n over the ring \mathbb{Z}_{4} were studied. A set of generators for cyclic codes over \mathbb{Z}_{4} with no restrictions on the length n was found. In [17], the cyclic DNA codes over the ring $R=\{0,1, u, 1+u\}$ where $u^{2}=1$ based on a similarity measure were constructed. In [9], the codes over the ring $F_{2}+u F_{2}, u^{2}=0$ were constructed for using in DNA computing applications.
I. Siap et al. considered the cyclic DNA codes over the finite ring $F_{2}[u] /\left\langle u^{2}-1\right\rangle$ in [18]. In [10], Liang and Wang considered the cyclic DNA codes over $F_{2}+u F_{2}, u^{2}=0$. Yıldız and Siap studied the cyclic DNA codes over $F_{2}[u] /\left\langle u^{4}-1\right\rangle$ in [20]. Bayram et al. considered codes over the finite ring $F_{4}+v F_{4}, v^{2}=v$ in [3]. Zhu and Chan studied the cyclic DNA codes over the non-chain ring $F_{2}[u, v] /\left\langle u^{2}, v^{2}-v, u v-v u\right\rangle$ in [21]. In [6], Bennenni at al. studied the cyclic DNA codes over $F_{2}[u] /\left\langle u^{6}\right\rangle$. Pattanayak et al. considered the cyclic DNA codes over the ring $F_{2}[u, v] /<u^{2}-1, v^{3}-v, u v-v u>$ in [15]. Pattanayak and Singh studied the cyclic DNA codes over the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}, u^{2}=0$ in [14].
J. Gao et al. studied the construction of the cyclic DNA codes by cyclic codes over the finite ring $F_{4}[u] /\left\langle u^{2}+1\right\rangle$, in [11]. Also, the construction of DNA the cyclic codes has been discussed by several authors in [7,8,16].

We study families of DNA cyclic codes of the finite rings $\mathbb{Z}_{4}+w \mathbb{Z}_{4}, w^{2}=2$ and $\mathbb{Z}_{4}+w \mathbb{Z}_{4}+$ $v \mathbb{Z}_{4}+w v \mathbb{Z}_{4}, w^{2}=2, v^{2}=v, w v=v w$. The rest of the paper is organized as follows. In section 2, details about algebraic structure of the finite ring
$\mathbb{Z}_{4}+w \mathbb{Z}_{4}, w^{2}=2$ are given. We define a Gray map from R to \mathbb{Z}_{4}. In section 3, the cyclic codes of odd length over R satisfy the reverse complement constraint are determined. In section 4, the cyclic codes of odd length over S satisfy the reverse complement constraint and the reverse contraint are examined. A linear code over S is represented by means of two linear codes over R. In section 5, the binary image of cyclic DNA code over R is determined. In section 6, the binary image of cyclic DNA code over S is determined. In section 7, by using a non trivial automorphism, the DNA skew cyclic codes are introduced. In section 8, the design of linear DNA code is presented.

II. Preliminaries

The algebraic structure of the finite ring $R=$ $\mathbb{Z}_{4}+w \mathbb{Z}_{4}, w^{2}=2$ is given in [4]. R is the commutative, characteristic 4 ring $\mathbb{Z}_{4}+w \mathbb{Z}_{4}=$ $\left\{a+w b: a, b \in \mathbb{Z}_{4}\right\}$ with $w^{2}=2 . R$ can also be thought of as the quotient ring $\mathbb{Z}_{4}[w] /\left\langle w^{2}-2\right\rangle$. R is a principal ideal ring with 16 elements and finite chain ring. The units of the ring are
$1,3,1+w, 3+w, 1+2 w, 1+3 w, 3+3 w, 3+2 w$
and the non-units are

$$
0,2, w, 2 w, 3 w, 2+w, 2+2 w, 2+3 w
$$

R has 4 ideals:

$$
\begin{aligned}
\langle 0\rangle & =\{0\} \\
\langle 1\rangle & =\langle 3\rangle=\langle 1+3 w\rangle=\ldots=R \\
\langle w\rangle & =\{0,2, w, 2 w, 3 w, 2+w, 2+2 w, 2+3 w\} \\
& =\langle 3 w\rangle=\langle 2+w\rangle=\langle 2+3 w\rangle \\
\langle 2 w\rangle & =\{0,2 w\} \\
\langle 2\rangle & =\langle 2+2 w\rangle=\{0,2,2 w, 2+2 w\} .
\end{aligned}
$$

We have

$$
\langle 0\rangle \subset\langle 2 w\rangle \subset\langle 2\rangle \subset\langle w\rangle \subset R
$$

Moreover R is a Frobenious ring.
We define $\phi: R \longrightarrow \mathbb{Z}_{4}^{2}$ as

$$
\phi(a+w b)=(a, b) .
$$

The Gray map is extended component wise to

$$
\begin{aligned}
\phi & : R^{n} \longrightarrow \mathbb{Z}_{4}^{2 n} \\
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), & =\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)
\end{aligned}
$$

where $\alpha_{i}=a_{i}+b_{i} w$ with $i=1,2, \ldots, n . \phi$ is a \mathbb{Z}_{4} module isomorphism.

A linear code C of length n over R is an R submodule of R^{n}. An element of C is called a codeword. A code of length n is cyclic if the code is invariant under the automorphism σ which is

$$
\sigma\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right)
$$

A cyclic code of length n over R can be identified with an ideal in the quotient ring $R[x] /\left\langle x^{n}-1\right\rangle$ via the R-modul isomorphism

$$
\begin{array}{rlr}
R^{n} & \longrightarrow R[x] /\left\langle x^{n}-1\right\rangle \\
\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) & \longmapsto & c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1} \\
& +\left\langle x^{n}-1\right\rangle
\end{array}
$$

Theorem 1: Let C be a cyclic code in $R[x] /\left\langle x^{n}-1\right\rangle$.Then there exists polynomials $g(x), a(x)$ such that $a(x)|g(x)| x^{n}-1$ and $C=$ $\langle g(x), w a(x)\rangle$.

The ring $R[x] /\left\langle x^{n}-1\right\rangle$ is a principal ideal ring when n is odd. So, if n is odd, then there exists $s(x) \in R[x] /\left\langle x^{n}-1\right\rangle$ such that $C=\langle s(x)\rangle$, in [4,19].

III. The reversible complement codes OVER R

In this section, we study the cyclic code of odd length over R satisfies the reverse complement constraint. Let $\{A, T, G, C\}$ represent the DNA alphabet. DNA occurs in sequences with represented by sequences of the DNA alphabet. DNA code of length n is defined as a set of the codewords $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ where $x_{i} \in\{A, T, G, C\}$. These codewords must satisfy the four constraints which are mentioned in [21].

Since the ring R is of cardinality 16 , we define the map ϕ which gives a one to one correspondence between the elements of R and the 16
codons over the alphabet $\{A, T, G, C\}^{2}$ by using the Gray map as follows

Elements	Gray images	DNA double pairs
0	$(0,0)$	$A A$
1	$(1,0)$	$C A$
2	$(2,0)$	$G A$
3	$(3,0)$	$T A$
w	$(0,1)$	$A C$
$2 w$	$(0,2)$	$A G$
$3 w$	$(0,3)$	$A T$
$1+w$	$(1,1)$	$C C$
$1+2 w$	$(1,2)$	$C G$
$1+3 w$	$(1,3)$	$C T$
$2+w$	$(2,1)$	$G C$
$2+2 w$	$(2,2)$	$G G$
$2+3 w$	$(2,3)$	$G T$
$3+w$	$(3,1)$	$T C$
$3+2 w$	$(3,2)$	$T G$
$3+3 w$	$(3,3)$	$T T$

The codons satisfy the Watson-Crick Complement.

Definition 2: For $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in R^{n}$, the vector $\left(x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}\right)$ is called the reverse of x and is denoted by x^{r}. A linear code C of length n over R is said to be reversible if $x^{r} \in C$ for every $x \in C$.

For $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in R^{n}$, the vector $\left(\bar{x}_{0}, \bar{x}_{1}, \ldots, \bar{x}_{n-1}\right)$ is called the complement of x and is denoted by x^{c}. A linear code C of length n over R is said to be complement if $x^{c} \in C$ for every $x \in C$.

For $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in R^{n}$, the vector $\left(\bar{x}_{n-1}, \bar{x}_{n-2}, \ldots, \bar{x}_{1}, \bar{x}_{0}\right)$ is called the reversible complement of x and is denoted by $x^{r c}$. A linear code C of length n over R is said to be reversible complement if $x^{r c} \in C$ for every $x \in C$.

Definition 3: Let $f(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t} \in$ $R[x]$ ($S[x]$) with $a_{t} \neq 0$ be polynomial. The reciprocal of $f(x)$ is defined as $f^{*}(x)=x^{t} f\left(\frac{1}{x}\right)$. It is easy to see that $\operatorname{deg} f^{*}(x) \leq \operatorname{deg} f(x)$ and if $a_{0} \neq 0$, then $\operatorname{deg} f^{*}(x)=\operatorname{deg} f(x) . f(x)$ is called a self reciprocal polynomial if there is a constant m such that $f^{*}(x)=m f(x)$.

Lemma 4: Let $f(x), g(x)$ be polynomials in $R[x]$. Suppose $\operatorname{deg} f(x)-\operatorname{deg} g(x)=m$ then,

Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings ...
i) $(f(x) g(x))^{*}=f^{*}(x) g^{*}(x)$
ii) $(f(x)+g(x))^{*}=f^{*}(x)+x^{m} g^{*}(x)$

Lemma 5: For any $a \in R$, we have $a+\bar{a}=$ $3+3 w$.

Lemma 6: If $a \in\{0,1,2,3\}$, then we have (3+ $3 w)-\overline{w a}=w a$.

Theorem 7: Let $C=\langle g(x), w a(x)\rangle$ be a cyclic code of odd length n over R. If $f(x)^{r c} \in C$ for any $f(x) \in C$, then $(1+w)\left(1+x+x^{2}+\ldots+x^{n-1}\right) \in C$ and there are two constants $e, d \in \mathbb{Z}_{4}^{*}$ such that $g^{*}(x)=e g(x)$ and $a^{*}(x)=d a(x)$.

Proof: Suppose that $C=\langle g(x), w a(x)\rangle$, where $a(x)|g(x)| x^{n}-1 \in \mathbb{Z}_{4}[x]$. Since $(0,0, \ldots, 0) \in C$, then its reversible complement is also in C.

$$
\begin{aligned}
(0,0, \ldots, 0)^{r c} & =(3+3 w, 3+3 w, \ldots, 3+3 w) \\
& =3(1+w)(1,1, \ldots, 1) \in C
\end{aligned}
$$

This vector corresponds of the polynomial

$$
\begin{gathered}
(3+3 w)+(3+3 w) x+\ldots+(3+3 w) x^{n-1} \\
=(3+3 w) \frac{x^{n}-1}{x-1} \in C
\end{gathered}
$$

Since $3 \in \mathbb{Z}_{4}^{*}$, then $(1+w)\left(1+x+\ldots+x^{n-1}\right) \in C$.
Let $g(x)=g_{0}+g_{1} x+\ldots+g_{s-1} x^{s-1}+g_{s} x^{s}$. Note that

$$
g(x)^{r c}=(3+3 w)+(3+3 w) x+\ldots+(3+3 w) x^{n-s-2}
$$

$$
+\bar{g}_{s} x^{n-s-1}+\ldots+\bar{g}_{1} x^{n-2}+\bar{g}_{0} x^{n-1} \in C
$$

Since C is a linear code, then
$3(1+w)\left(1+x+x^{2}+\ldots+x^{n-1}\right)-g(x)^{r c} \in C$
which implies that $\left((3+3 w)-\bar{g}_{s}\right) x^{n-s-1}+((3+$ $\left.3 w)-\bar{g}_{s-1}\right) x^{n-s-2}+\ldots+\left((3+3 w)-\bar{g}_{0}\right) x^{n-1} \in C$. By using $(3+3 w)-\bar{a}=a$, this implies that
$x^{n-s-1}\left(g_{s}+g_{s-1} x+\ldots+g_{0} x^{s}\right)=x^{n-s-1} g^{*}(x) \in C$
Since $g^{*}(x) \in C$, this implies that

$$
g^{*}(x)=g(x) u(x)+w a(x) v(x)
$$

where $u(x), v(x) \in \mathbb{Z}_{4}[x]$. Since $g_{i} \in \mathbb{Z}_{4}$, for $i=$ $0,1, \ldots, s$, we have that $v(x)=0$. As $\operatorname{deg} g^{*}(x)=$ $\operatorname{deg} g(x)$, we have $u(x) \in \mathbb{Z}_{4}^{*}$. Therefore there is a constant $e \in \mathbb{Z}_{4}^{*}$ such that $g^{*}(x)=e g(x)$. So, $g(x)$ is a self reciprocal polynomial.

Let $a(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t}$. Suppose that $w a(x)=w a_{0}+w a_{1} x+\ldots+w a_{t} x^{t}$. Then

$$
\begin{aligned}
(w a(x))^{r c}= & (3+3 w)+(3+3 w) x+\ldots \\
& +\overline{w a_{t}} x^{n-t-1}+\ldots+\overline{w a_{1}} x^{n-2} \\
& +\overline{w a_{0}} x^{n-1} \in C
\end{aligned}
$$

As $(3+3 w) \frac{x^{n}-1}{x-1} \in C$ and C is a linear code, then

$$
-(w a(x))^{r c}+(3+3 w) \frac{x^{n}-1}{x-1} \in C
$$

Hence, $x^{n-t-1}\left[\left(-\left(\overline{w a_{t}}\right)+(3+3 w)\right)+\left(-\left(\overline{w a_{t-1}}\right)+\right.\right.$ $\left.(3+3 w)) x+\ldots+\left(-\left(\overline{w a_{0}}\right)+(3+3 w)\right) x^{t}\right]$. By the Lemma 6, we get

$$
x^{n-t-1}\left(w a_{t}+w a_{t-1} x+\ldots+w a_{0} x^{t}\right)
$$

$x^{n-t-1} w a^{*}(x) \in C$. Since $w a^{*}(x) \in C$, we have

$$
w a^{*}(x)=g(x) h(x)+w a(x) s(x)
$$

Since w doesn't appear in $g(x)$, it follows that $h(x)=0$ and $a^{*}(x)=a(x) s(x)$. As $\operatorname{deg} a^{*}(x)=$ $\operatorname{deg} a(x)$, then $s(x) \in \mathbb{Z}_{4}^{*}$. So, $a(x)$ is a self reciprocal polynomial.

Theorem 8: Let $C=\langle g(x), w a(x)\rangle$ be a cyclic code of odd length n over R. If $(1+w)\left(1+x+x^{2}+\right.$ $\left.\ldots+x^{n-1}\right) \in C$ and $g(x), a(x)$ are self reciprocal polynomials, then $c(x)^{r c} \in C$ for any $c(x) \in C$.

Proof: Since $C=\langle g(x), w a(x)\rangle$, for any $c(x) \in C$, there exist $m(x)$ and $n(x)$ in $R[x]$ such that $c(x)=g(x) m(x)+w a(x) n(x)$. By using the Lemma 4, we have

$$
\begin{aligned}
c^{*}(x) & =(g(x) m(x)+w a(x) n(x)) \\
& =(g(x) m(x))^{*}+x^{s}(w a(x) n(x)) \\
& =g^{*}(x) m^{*}(x)+w a^{*}(x)\left(x^{s} n^{*}(x)\right)
\end{aligned}
$$

Since $g^{*}(x)=e g(x), a^{*}(x)=d a(x)$, we have $c^{*}(x)=e g(x) m^{*}(x)+d w a(x)\left(x^{s} n^{*}(x)\right) \in C$. So, $c^{*}(x) \in C$.

Let $c(x)=c_{0}+c_{1} x+\ldots+c_{t} x^{t} \in C$. Since C is a cyclic code, we get
$x^{n-t-1} c(x)=c_{0} x^{n-t-1}+c_{1} x^{n-t}+\ldots+c_{t} x^{n-1} \in C$

Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings ...

Since $(1+w)+(1+w) x+\ldots+(1+w) x^{n-1} \in C$ and C is a linear code we have

$$
\begin{aligned}
& -(1+w) \frac{x^{n}-1}{x-1}-x^{n-t-1} c(x) \\
& =-(1+w)-(1+w) x+\ldots+\left(-c_{0}-(1+w)\right) x^{n-t-1} \\
& +\ldots+\left(-c_{t}-(1+w)\right) x^{n-1} \in C
\end{aligned}
$$

By using $\bar{a}+(1+w)=-a$, this implies that

$$
-(1+w)-\ldots+\bar{c}_{0} x^{n-t-1}+\ldots+\bar{c}_{t} x^{n-1} \in C
$$

This shows that $\left(c^{*}(x)\right)^{r c} \in C$.

$$
\left(\left(c^{*}(x)\right)^{r c}\right)^{*}=\bar{c}_{t}+\bar{c}_{t-1} x+\ldots+(3+3 w) x^{n-1}
$$

This corresponds this vector $\left(\bar{c}_{t}, \bar{c}_{t-1}, \ldots, \bar{c}_{0}, \ldots, \overline{0}\right)$. Since $\left(c^{*}(x)^{r c}\right)^{*}=\left(x^{n-t-1} c(x)\right)^{r c}$, so $c(x)^{r c} \in$ C.

Example 9: Let $x^{3}-1=(x+3)\left(x^{2}+x+1\right) \in$ $\mathbb{Z}_{4}[x]$. Let $C=\left\langle x^{2}+x+1+w\left(x^{2}+x+1\right)\right\rangle . C$ is a cyclic DNA code of length 3 over R. The Gray image of C under the Gray map ϕ is a DNA code of length 6, Hamming distance 3. These codewords are as follows

All 16 codewords of C

$C C C C C C$	$T G T G T G$
GGGGGG	$G T G T G T$
$T T T T T T$	$G C G C G C$
AAAAAA	$C G C G C G$
GAGAGA	$C T C T C T$
AGAGAG	TCTCTC
TATATA	ACACAC
ATATAT	CACACA

Example 10: Let $x^{7}-1=(x+3)\left(x^{3}-2 x^{2}+\right.$ $x-1)\left(x^{3}-x^{2}+2 x-1\right) \in \mathbb{Z}_{4}[x]$. Let $C=<$ $x^{6}-3 x^{5}+x^{4}-3 x^{3}+x^{2}-3 x+1+w\left(x^{6}-3 x^{5}+\right.$ $\left.x^{4}-3 x^{3}+x^{2}-3 x+1\right)>. C$ is a cyclic DNA code of length 7 over R. The Gray image of C under the Gray map ϕ is a DNA code of length 14, Hamming distance 7. These codewords are as follows

All 16 codewords of C
CCCCCCCCCCCCCC GGGGGGGGGGGGGG TTTTTTTTTTTTTT AAAAAAAAAAAAAA GAGAGAGAGAGAGA AGAGAGAGAGAGAG TATATATATATATA AT AT AT AT AT AT AT TGTGTGTGTGTGTG GTGTGTGTGTGTGT GCGCGCGCGCGCGC
CGCGCGCGCGCGCG CTCTCTCTCTCTCT TCTCTCTCTCTCTC $A C A C A C A C A C A C A C$ CACAC ACAC AC ACA

IV. The reversible and reversible complement codes over S

Throughout this paper, S denotes the commutative ring $\mathbb{Z}_{4}+w \mathbb{Z}_{4}+v \mathbb{Z}_{4}+w v \mathbb{Z}_{4}=\left\{b_{1}+\right.$ $\left.w b_{2}+v b_{3}+w v b_{4}: b_{j} \in \mathbb{Z}_{4}, 1 \leq j \leq 4\right\}$ with $w^{2}=2, v^{2}=v, w v=v w$, with characteristic 4. S can also be thought of as the quotient ring $\mathbb{Z}_{4}[w, v] /<w^{2}-2, v^{2}-v, w v-v w>$.

Let

$$
\begin{aligned}
S & =\mathbb{Z}_{4}+w \mathbb{Z}_{4}+v \mathbb{Z}_{4}+w v \mathbb{Z}_{4} \\
& =\left(\mathbb{Z}_{4}+w \mathbb{Z}_{4}\right)+v\left(\mathbb{Z}_{4}+w \mathbb{Z}_{4}\right) \\
& =R+v R
\end{aligned}
$$

We define the Gray map ϕ_{1} from S to R as follows

$$
\begin{array}{rll}
\phi_{1} & : \quad S \longrightarrow R^{2} \\
a+v b & \longmapsto & (a, b)
\end{array}
$$

where $a, b \in R$. This Gray map is extended compenentwise to

$$
\begin{aligned}
\phi_{1} & : S^{n} \longrightarrow R^{2 n} \\
x & =\left(x_{1}, \ldots, x_{n}\right) \longmapsto\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)
\end{aligned}
$$

where $x_{i}=a_{i}+v b_{i}, a_{i}, b_{i} \in R$ for $i=1,2, \ldots, n$.
In this section, we study the cyclic codes of odd length n over S satisfy reverse and reverse
complement constraint. Since the ring S is of the cardinality 4^{4}, then we define the map ϕ_{1} which gives a one to one correspondence between the element of S and the 256 codons over the alphabet $\{A, T, G, C\}^{4}$ by using the Gray map. For example:

$$
\begin{gathered}
0=0+v 0 \longmapsto \phi_{1}(0)=(0,0) \longrightarrow A A A A \\
2 w v=0+v(2 w) \longmapsto \phi_{1}(2 w v)=(0,2 w) \longrightarrow A A A G \\
1+3 v+3 w v=1+v(3+3 w) \longmapsto \phi_{1}(1+v(3+3 w)) \\
=(1,3+3 w) \longrightarrow C A T T
\end{gathered}
$$

Definition 11: Let A_{1}, A_{2} be linear codes.

$$
A_{1} \otimes A_{2}=\left\{\left(a_{1}, a_{2}\right): a_{1} \in A_{1}, a_{2} \in A_{2}\right\}
$$

and

$$
A_{1} \oplus A_{2}=\left\{a_{1}+a_{2}: a_{1} \in A_{1}, a_{2} \in A_{2}\right\}
$$

Let C be a linear code of length n over S. Define

$$
\begin{aligned}
& C_{1}=\left\{a: \exists b \in R^{n}, a+v b \in C\right\} \\
& C_{2}=\left\{b: \exists a \in R^{n}, a+v b \in C\right\}
\end{aligned}
$$

where C_{1} and C_{2} are linear codes over R of length n.

Theorem 12: Let C be a linear code of length n over S. Then $\phi_{1}(C)=C_{1} \otimes C_{2}$ and $|C|=$ $\left|C_{1}\right|\left|C_{2}\right|$.

Corollary 13: If $\phi_{1}(C)=C_{1} \otimes C_{2}$, then $C=$ $v C_{1} \oplus(1-v) C_{2}$.

Theorem 14: Let $C=v C_{1} \oplus(1-v) C_{2}$ be a linear code of odd length n over S. Then C is a cyclic code over S if and only if C_{1}, C_{2} are cyclic codes over R.

Proof: Let $\quad\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right) \quad \in$ $C_{1},\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right) \in C_{2}$. Assume that $m_{i}=v a_{i}^{1}+(1-v) a_{i}^{2}$ for $i=0,1,2, \ldots, n-1$. Then $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \in C$. Since C is a cyclic code, it follows that $\left(m_{n-1}, m_{0}, m_{1}, \ldots, m_{n-2}\right) \in C$. Note that $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right)=v\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+$ (1 - $v)\left(a_{n-1}^{2}, a_{0}^{2}, \ldots, a_{n-2}^{2}\right)$. Hence $\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right) \in C_{1},\left(a_{n-1}^{2}, a_{0}^{2}, \ldots, a_{n-2}^{2}\right) \in$ C_{2}. Therefore C_{1}, C_{2} are cyclic codes over R.

Conversely, suppose that C_{1}, C_{2} are cyclic codes over R. Let $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \in C$, where $m_{i}=v a_{i}^{1}+(1-v) a_{i}^{2}$ for $i=0,1,2, \ldots, n-1$. Then $\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right) \in$ $C_{1},\left(a_{n-1}^{2}, a_{0}^{2}, \ldots, a_{n-2}^{2}\right) \in C_{2}$. Note that $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right)=v\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+$ $(1-v)\left(a_{n-1}^{2}, a_{0}^{2}, \ldots, a_{n-2}^{2}\right) \in C$. So, C is a cyclic code over S.

Theorem 15: Let $C=v C_{1} \oplus(1-v) C_{2}$ be a linear code of odd length n over S. Then C is reversible over S iff C_{1}, C_{2} are reversible over R.

Proof: Let C_{1}, C_{2} be reversible codes. For any $b \in C, b=v b_{1}+(1-v) b_{2}$, where $b_{1} \in$ $C_{1}, b_{2} \in C_{2}$. Since C_{1} and C_{2} are reversible, $b_{1}^{r} \in C_{1}, b_{2}^{r} \in C_{2}$. So, $b^{r}=v b_{1}^{r}+(1-v) b_{2}^{r} \in C$. Hence C is reversible.

On the other hand, Let C be a reversible code over S. So for any $b=v b_{1}+(1-v) b_{2} \in C$, where $b_{1} \in C_{1}, b_{2} \in C_{2}$, we get $b^{r}=v b_{1}^{r}+(1-v) b_{2}^{r} \in C$. Let $b^{r}=v b_{1}^{r}+(1-v) b_{2}^{r}=v s_{1}+(1-v) s_{2}$, where $s_{1} \in C_{1}, s_{2} \in C_{2}$. So C_{1} and C_{2} are reversible codes over R.

Lemma 16: For any $c \in S$, we have $c+\bar{c}=$ $(3+3 w)+v(3+3 w)$.

Lemma 17: For any $a \in S, \bar{a}+3 \overline{0}=3 a$.
Theorem 18: Let $C=v C_{1} \oplus(1-v) C_{2}$ be a cyclic code of odd length n over S. Then C is reversible complement over S iff C is reversible over S and $(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C$.

Proof: Since C is reversible complement, for any $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C, c^{r c}=$ $\left(\bar{c}_{n-1}, \bar{c}_{n-2}, \ldots, \bar{c}_{0}\right) \in C$. Since C is a linear code, so $(0,0, \ldots, 0) \in C$. Since C is reversible complement, so $(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C$. By using the Lemma 17, we have

$$
\begin{aligned}
3 c^{r} & =3\left(c_{n-1}, c_{n-2}, \ldots, c_{0}\right) \\
& =\left(\bar{c}_{n-1}, \bar{c}_{n-2}, \ldots, \bar{c}_{0}\right)+3(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C
\end{aligned}
$$

So, for any $c \in C$, we have $c^{r} \in C$.
On the other hand, let C be reversible. So, for any $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C, c^{r}=$ $\left(c_{n-1}, c_{n-2}, \ldots, c_{0}\right) \in C$. To show that C is reversible complement, for any $c \in C$,

$$
\begin{aligned}
c^{r c} & =\left(\bar{c}_{n-1}, \bar{c}_{n-2}, \ldots, \bar{c}_{0}\right) \\
& =3\left(c_{n-1}, c_{n-2}, \ldots, c_{0}\right)+(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C .
\end{aligned}
$$

So, C is reversible complement.
Lemma 19: For any $a, b \in S$,

$$
\overline{a+b}=\bar{a}+\bar{b}-3(1+w)(1+v)
$$

Theorem 20: Let D_{1} and D_{2} be two reversible complement cyclic codes of length n over S. Then $D_{1}+D_{2}$ and $D_{1} \cap D_{2}$ are reversible complement cyclic codes.

Proof: Let $d_{1}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in D_{1}, d_{2}=$ $\left(c_{0}^{1}, c_{1}^{1}, \ldots, c_{n-1}^{1}\right) \in D_{2}$. Then,

$$
\begin{aligned}
&\left(d_{1}+d_{2}\right)^{r c}=\left(\overline{\left(c_{n-1}+c_{n-1}^{1}\right)}, \ldots, \overline{\left(c_{1}+c_{1}^{1}\right)}, \overline{\left(c_{0}+c_{0}^{1}\right)}\right) \\
&=\left(\overline{c_{n-1}}+\overline{c_{n-1}^{1}}-3(1+w)(1+v), \ldots,\right. \\
&\left.\overline{c_{0}}+\overline{c_{0}^{1}}-3(1+w)(1+v)\right) \\
&=\left(\overline{c_{n-1}}-3(1+w)(1+v), \ldots, \overline{c_{0}}\right. \\
&\quad-3(1+w)(1+v))+\left(\overline{c_{n-1}^{1}}, \ldots, \overline{c_{0}^{1}}\right) \\
&=\left(d_{1}^{r c}-3(1+w)(1+v) \frac{x^{n}-1}{x-1}\right) \\
& \quad+d_{2}^{r c} \in D_{1}+D_{2} .
\end{aligned}
$$

This shows that $D_{1}+D_{2}$ is reversible complement cyclic code. It is clear that $D_{1} \cap D_{2}$ is reversible complement cyclic code.

V. Binary images of cyclic DNA codes OVER R

The 2-adic expansion of $c \in \mathbb{Z}_{4}$ is $c=\alpha(c)+$ $2 \beta(c)$ such that $\alpha(c)+\beta(c)+\gamma(c)=0$ for all $c \in \mathbb{Z}_{4}$

c	$\alpha(c)$	$\beta(c)$	$\gamma(c)$
0	0	0	0
1	1	0	1
2	0	1	1
3	1	1	0

The Gray map is given by

$$
\begin{array}{rll}
\Psi & : & \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2}^{2} \\
c & \longmapsto & \Psi(c)=(\beta(c), \gamma(c))
\end{array}
$$

for all $c \in \mathbb{Z}_{4}$ in [14]. Define

$$
\begin{aligned}
\breve{O} & : \quad R \longrightarrow \mathbb{Z}_{2}^{4} \\
a+b w & \longmapsto \breve{O}(a+w b)=\Psi(\phi(a+w b)) \\
& =\Psi(a, b) \\
& =(\beta(a), \gamma(a), \beta(b), \gamma(b))
\end{aligned}
$$

Let $a+w b$ be any element of the ring R. The Lee weight w_{L} of the element of the ring R is defined as follows

$$
w_{L}(a+w b)=w_{L}(a, b)
$$

where $w_{L}(a, b)$ described the usual Lee weight on \mathbb{Z}_{4}^{2}. For any $c_{1}, c_{2} \in R$ the Lee distance d_{L} is given by $d_{L}\left(c_{1}, c_{2}\right)=w_{L}\left(c_{1}-c_{2}\right)$.

The Hamming distance $d\left(c_{1}, c_{2}\right)$ between two codewords c_{1} and c_{2} is the Hamming weight of the codewords $c_{1}-c_{2}$.

$A A$	\longrightarrow	0000	$C G$	\longrightarrow	0111
$C A$	\longrightarrow	0100	$C T$	\longrightarrow	0110
$G A$	\longrightarrow	1100	$G C$	\longrightarrow	1101
$T A$	\longrightarrow	1000	$G G$	\longrightarrow	1111
$A C$	\longrightarrow	0001	$G T$	\longrightarrow	1110
$A G$	\longrightarrow	0011	$T C$	\longrightarrow	1001
$A T$	\longrightarrow	0010	$T G$	\longrightarrow	1011
$C C$	\longrightarrow	0101	$T T$	\longrightarrow	1010

Lemma 21: The Gray map \breve{O} is a distance preserving map from (R^{n}, Lee distance) to ($\mathbb{Z}_{2}^{4 n}$, Hamming distance). It is also \mathbb{Z}_{2}-linear.

Proof: For $c_{1}, c_{2} \in R^{n}$, we have $\breve{O}\left(c_{1}-\right.$ $\left.c_{2}\right)=\breve{O}\left(c_{1}\right)-\breve{O}\left(c_{2}\right)$. So, $d_{L}\left(c_{1}, c_{2}\right)=w_{L}\left(c_{1}-\right.$ $\left.c_{2}\right)=w_{H}\left(\breve{O}\left(c_{1}-c_{2}\right)\right)=w_{H}\left(\breve{O}\left(c_{1}\right)-\breve{O}\left(c_{2}\right)\right)=$ $d_{H}\left(\breve{O}\left(c_{1}\right), \breve{O}\left(c_{2}\right)\right)$. So, the Gray map \breve{O} is distance preserving map. For any $c_{1}, c_{2} \in R^{n}, k_{1}, k_{2} \in$ \mathbb{Z}_{2}, we have $\breve{O}\left(k_{1} c_{1}+k_{2} c_{2}\right)=k_{1} \breve{O}\left(c_{1}\right)+k_{2} \breve{O}\left(c_{2}\right)$. Thus, \breve{O} is \mathbb{Z}_{2}-linear.

Proposition 22: Let σ be the cyclic shift of R^{n} and v be the 4 -quasi-cyclic shift of $\mathbb{Z}_{2}^{4 n}$. Let \breve{O} be the Gray map from R^{n} to $\mathbb{Z}_{2}^{4 n}$. Then $\breve{O} \sigma=v \breve{O}$.

Proof: Let $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in R^{n}$, we have $c_{i}=a_{1 i}+w b_{2 i}$ with $a_{1 i}, b_{2 i} \in \mathbb{Z}_{4}, 0 \leq i \leq$ $n-1$. By applying the Gray map, we have

$$
\breve{O}(c)=\left(\begin{array}{c}
\beta\left(a_{10}\right), \gamma\left(a_{10}\right), \beta\left(b_{20}\right), \gamma\left(b_{20}\right), \beta\left(a_{11}\right), \\
\gamma\left(a_{11}\right), \beta\left(b_{21}\right), \gamma\left(b_{21}\right), \ldots, \beta\left(a_{1 n-1}\right), \\
\gamma\left(a_{1 n-1}\right), \beta\left(b_{2 n-1}\right), \gamma\left(b_{2 n-1}\right)
\end{array}\right) .
$$

Hence

$$
\begin{aligned}
& v(\breve{O}(c))= \\
& \qquad\left(\begin{array}{c}
\beta\left(a_{1 n-1}\right), \gamma\left(a_{1 n-1}\right), \beta\left(b_{2 n-1}\right), \gamma\left(b_{2 n-1}\right), \\
\beta\left(a_{10}\right), \gamma\left(a_{10}\right), \beta\left(b_{20}\right), \gamma\left(b_{20}\right), \ldots, \beta\left(a_{1 n-2}\right), \\
\gamma\left(a_{1 n-2}\right), \beta\left(b_{2 n-2}\right), \gamma\left(b_{2 n-2}\right)
\end{array}\right) .
\end{aligned}
$$

Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings ...
On the other hand,

$$
\sigma(c)=\left(c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right)
$$

We have

$$
\begin{aligned}
& \breve{O}(\sigma(c))= \\
& \quad\left(\begin{array}{c}
\beta\left(a_{1 n-1}\right), \gamma\left(a_{1 n-1}\right), \beta\left(b_{2 n-1}\right), \\
\gamma\left(b_{2 n-1}\right), \beta\left(a_{10}\right), \gamma\left(a_{10}\right), \beta\left(b_{20}\right), \gamma\left(b_{20}\right), \ldots, \\
\beta\left(a_{1 n-2}\right), \gamma\left(a_{1 n-2}\right), \beta\left(b_{2 n-2}\right), \gamma\left(b_{2 n-2}\right)
\end{array}\right) .
\end{aligned}
$$

Therefore, $\breve{O} \sigma=v \breve{O}$.
Theorem 23: If C is a cyclic DNA code of length n over R then $\breve{O}(C)$ is a binary quasi-cyclic DNA code of length $4 n$ with index 4.

VI. Binary image of cyclic DNA codes OVER S

We define

$$
\begin{array}{rll}
\widetilde{\Psi} & : & S \longrightarrow \mathbb{Z}_{4}^{4} \\
a_{0}+w a_{1}+v a_{2}+w v a_{3} & \longmapsto & \left(a_{0}, a_{1}, a_{2}, a_{3}\right)
\end{array}
$$

where $a_{i} \in \mathbb{Z}_{4}$, for $i=0,1,2,3$.
Now, we define $\Theta: S \longrightarrow \mathbb{Z}_{2}^{8}$ as

$$
\begin{aligned}
& a_{0}+w a_{1}+v a_{2}+w v a_{3} \\
& \quad \longmapsto \Theta\left(a_{0}+w a_{1}+v a_{2}+w v a_{3}\right) \\
& \quad=\Psi\left(\widetilde{\Psi}\left(a_{0}+w a_{1}+v a_{2}+w v a_{3}\right)\right)= \\
& \left(\beta\left(a_{0}\right), \gamma\left(a_{0}\right), \beta\left(a_{1}\right), \gamma\left(a_{1}\right), \beta\left(a_{2}\right), \gamma\left(a_{2}\right), \beta\left(a_{3}\right), \gamma\left(a_{3}\right)\right),
\end{aligned}
$$

where Ψ is the Gray map \mathbb{Z}_{4} to \mathbb{Z}_{2}^{2}.
Let $a_{0}+w a_{1}+v a_{2}+w v a_{3}$ be any element of the ring S. The Lee weight w_{L} of the element of the ring S is defined as
$w_{L}\left(a_{0}+w a_{1}+v a_{2}+w v a_{3}\right)=w_{L}\left(\left(a_{0}, a_{1}, a_{2}, a_{3}\right)\right)$
where $w_{L}\left(\left(a_{0}, a_{1}, a_{2}, a_{3}\right)\right)$ described the usual Lee weight on \mathbb{Z}_{4}^{4}. For any $c_{1}, c_{2} \in S$, the Lee distance d_{L} is given by $d_{L}\left(c_{1}, c_{2}\right)=w_{L}\left(c_{1}-c_{2}\right)$.

The Hamming distance $d\left(c_{1}, c_{2}\right)$ between two codewords c_{1} and c_{2} is the Hamming weight of the codewords $c_{1}-c_{2}$.

The binary images of cyclic DNA codes;

$A A A A$	\longrightarrow	00000000
$A A C A$	\longrightarrow	00000100
$A A G A$	\longrightarrow	00001100
$A A T A$	\longrightarrow	00001000

Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings ...

Theorem 29: A code C over R of length n is a skew cyclic code if and only if C is a left $R[x, \theta]$ submodule of the left $R[x, \theta]$-module \check{R}_{n}.
Theorem 30: Let C be a skew cyclic code over R of length n and let $f(x)$ be a polynomial in C of minimal degree. If $f(x)$ is monic polynomial, then $C=\langle f(x)\rangle$, where $f(x)$ is a right divisor of $x^{n}-1$.

For all $x \in R$, we have

$$
\theta(x)+\theta(\bar{x})=3-3 w .
$$

Theorem 31: Let $C=\langle f(x)\rangle$ be a skew cyclic code over R, where $f(x)$ is a monic polynomial in C of minimal degree. If C is reversible complement, the polynomial $f(x)$ is self reciprocal and

$$
(3+3 w) \frac{x^{n}-1}{x-1} \in C .
$$

Proof: Let $C=\langle f(x)\rangle$ be a skew cyclic code over R, where $f(x)$ is a monic polynomial in C. Since $(0,0, \ldots, 0) \in C$ and C is reversible complement, we have $(\overline{0}, \overline{0}, \ldots, \overline{0})=(3+3 w, 3+$ $3 w, \ldots, 3+3 w) \in C$.
Let $f(x)=1+a_{1} x+\ldots+a_{t-1} x^{t-1}+x^{t}$. Since C is reversible complement, we have $f^{r c}(x) \in C$. That is

$$
\begin{aligned}
f^{r c}(x)= & (3+3 w)+(3+3 w) x+\ldots+(3+3 w) x^{n-t-2} \\
& +(2+3 w) x^{n-t-1}+\bar{a}_{t-1} x^{n-t}+\ldots \\
& +\bar{a}_{1} x^{n-2}+(2+3 w) x^{n-1} .
\end{aligned}
$$

Since C is a linear code, we have

$$
f^{r c}(x)-(3+3 w) \frac{x^{n}-1}{x-1} \in C .
$$

This implies that
$-x^{n-t-1}+\left(\bar{a}_{t-1}-(3+3 w)\right) x^{n-t}+\ldots$
$+\left(\bar{a}_{1}-(3+3 w)\right) x^{n-2}-x^{n-1} \in C$.
Multiplying on the right by x^{t+1-n}, we have
$-1+\left(\bar{a}_{t-1}-(3+3 w)\right) \theta(1) x+\ldots$
$+\left(\bar{a}_{1}-(3+3 w)\right) \theta^{t-1}(1) x^{t-1}-\theta^{t}(1) x^{t} \in C$.
By using $a+\bar{a}=3+3 w$, we have
$-1-a_{t-1} x-a_{t-2} x^{2}-\ldots-a_{1} x^{t-1}-x^{t}$ $=3 f^{*}(x) \in C$.

Since $C=\langle f(x)\rangle$, there exist $q(x) \in R[x, \theta]$ such that $3 f^{*}(x)=q(x) f(x)$. Since $\operatorname{deg} f(x)=$ $\operatorname{deg} f^{*}(x)$, we have $q(x)=1$. Since $3 f^{*}(x)=$ $f(x)$, we have $f^{*}(x)=3 f(x)$. So, $f(x)$ is self reciprocal.
Theorem 32: Let $C=\langle f(x)\rangle$ be a skew cyclic code over R, where $f(x)$ is a monic polynomial in C of minimal degree. If $(3+3 w) \frac{x^{n}-1}{x-1} \in C$ and $f(x)$ is self reciprocal, then C is reversible complement.

Proof: Let $f(x)=1+a_{1} x+\ldots+a_{t-1} x^{t-1}+x^{t}$ be a monic polynomial of the minimal degree.
Let $c(x) \in C$. So, $c(x)=q(x) f(x)$, where $q(x) \in R[x, \theta]$. By using Lemma 4, we have $c^{*}(x)=(q(x) f(x))^{*}=q^{*}(x) f^{*}(x)$. Since $f(x)$ is self reciprocal, so $c^{*}(x)=q^{*}(x) e f(x)$, where $e \in \mathbb{Z}_{4} \backslash\{0\}$. Therefore $c^{*}(x) \in C=\langle f(x)\rangle$. Let $c(x)=c_{0}+c_{1} x+\ldots+c_{t} x^{t} \in C$. Since C is a cyclic code, we get
$c(x) x^{n-t-1}=c_{0} x^{n-t-1}+c_{1} x^{n-t}+\ldots+c_{t} x^{n-1} \in C$.
The vector corresponding to this polynomial is

$$
\left(0,0, \ldots, 0, c_{0}, c_{1}, \ldots, c_{t}\right) \in C
$$

Since $(3+3 w, 3+3 w, \ldots, 3+3 w) \in C$ and C linear, we have
$(3+3 w, 3+3 w, \ldots, 3+3 w)-\left(0,0, \ldots, 0, c_{0}, c_{1}, \ldots, c_{t}\right)$ $=\left(3+3 w, \ldots, 3+3 w,(3+3 w)-c_{0}, \ldots,(3+3 w)-c_{t}\right) \in C$.

By using $a+\bar{a}=3+3 w$, we get

$$
\left(3+3 w, 3+3 w, \ldots, 3+3 w, \bar{c}_{0}, \ldots, \bar{c}_{t}\right) \in C
$$

which is equal to $\left(c(x)^{*}\right)^{r c}$. This shows that $\left(\left(c(x)^{*}\right)^{r c}\right)^{*}=c(x)^{r c} \in C$.

VIII. DNA CODES OVER S

Definition 33: Let f_{1} and f_{2} be polynomials with $\operatorname{deg} f_{1}=t_{1}, \operatorname{deg} f_{2}=t_{2}$ and both dividing $x^{n}-1 \in R[x]$.
Let $m=\min \left\{n-t_{1}, n-t_{2}\right\}$ and $f(x)=$ $v f_{1}(x)+(1-v) f_{2}(x)$ over S. The set $L(f)$ is called a Γ-set, where the automorphism $\Gamma: S \longrightarrow$ S is defined as follows:
$a+w b+v c+w v d \longmapsto a+b+w(b+d)-v c-w v d c$.

$$
L(f)=\left[\begin{array}{llllllllll}
a_{0} & a_{1} & a_{2} & \ldots & a_{t} & 0 & \cdots & \cdots & \cdots & 0 \tag{1}\\
0 & \Gamma\left(a_{0}\right) & \Gamma\left(a_{1}\right) & \cdots & \cdots & \Gamma\left(a_{t}\right) & 0 & \cdots & \cdots & 0 \\
0 & 0 & a_{0} & a_{1} & \cdots & \cdots & a_{t} & 0 & \cdots & 0 \\
0 & 0 & 0 & \Gamma\left(a_{0}\right) & \Gamma\left(a_{1}\right) & \cdots & \cdots & \Gamma\left(a_{t}\right) & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots & \vdots & \cdots & \cdots & \cdots & \cdots & \vdots
\end{array}\right]
$$

The set $L(f)$ is defined as

$$
L(f)=\left\{E_{0}, E_{1}, \ldots, E_{m-1}\right\},
$$

where

$$
E_{i}=\left\{\begin{array}{c}
x^{i} f \text { if } i \text { is even } \\
x^{i} \Gamma(f) \text { if } i \text { is odd }
\end{array}\right.
$$

$L(f)$ generates a linear code C over S denoted by $C=\langle f\rangle_{\Gamma}$. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t}$ be over S and S-submodule generated by $L(f)$ is generated by the matrix in Eq. (1).

Theorem 34: Let f_{1} and f_{2} be self reciprocal polynomials dividing $x^{n}-1$ over R with degree t_{1} and t_{2}, respectively. If $f_{1}=f_{2}$, then $f=v f_{1}+$ $(1-v) f_{2}$ and $|\langle L(f)\rangle|=256^{m} . C=\langle L(f)\rangle$ is a linear code over S and $\Theta(C)$ is a reversible DNA code.

Proof: It is proved as in the proof of the Theorem 5 in [5].

Corollary 35: Let f_{1} and f_{2} be self reciprocal polynomials dividing $x^{n}-1$ over R and $C=$ $\langle L(f)\rangle$ be a cyclic code over S. If $\frac{x^{n}-1}{x-1} \in C$, then $\Theta(C)$ is a reversible complement DNA code.

Example 36: Let $f_{1}(x)=f_{2}(x)=x-1$ dividing $x^{7}-1$ over R. Hence,

$$
C=\left\langle v f_{1}(x)+(1-v) f_{2}(x)\right\rangle_{\Gamma}=\langle x-1\rangle_{\Gamma}
$$

is a Γ-linear code over S and $\Theta(C)$ is a reversible complement DNA code, because of

$$
\frac{x^{7}-1}{x-1} \in C
$$

Acknowledgement 37: We wish to express sincere thanks to Steven Dougherty who gave helpful comments.

References

[1] Abualrub T., Ghrayeb A., Zeng X., Construction of cyclic codes over GF (4) for DNA computing, J. Franklin Institute, 343, 448-457, 2006.
[2] Abualrub T., Siap I., Reversible quaternary cyclic codes, Proc. of the 9th WSEAS Int. Conference on Appl. Math., Istanbul, 441-446, 2006.
[3] Adleman L., Molecular computation of the solution to combinatorial problems, Science, 266, 1021-1024, 1994.
[4] Aydın N., Dertli A., Cengellenmis Y., Cyclic and Constacyclic codes over $\mathbb{Z}_{4}+w \mathbb{Z}_{4}$, preprint.
[5] Bayram A., Oztas E., Siap I., Codes over $F_{4}+v F_{4}$ and some DNA applications, Designs, Codes and Cryptography, DOI: 10.107/s10623-015-0100-8, 2015.
[6] Bennenni N., Guenda K., Mesnager S., New DNA cyclic codes over rings, arXiv: 1505.06263v1, 2015.
[7] Gaborit P., King O. D., Linear construction for DNA codes, Theor. Computer Science, 334, 99-113, 2005.
[8] Guenda K., Gulliver T. A., Sole P,. On cyclic DNA codes, Proc., IEEE Int. Symp. Inform. Theory, Istanbul, 121125, 2013.
[9] Guenda K., Gulliver T. A., Construction of cyclic codes over $F_{2}+u F_{2}$ for DNA computing, AAECC, 24, 445459, 2013.
[10] Liang J., Wang L., On cyclic DNA codes over $F_{2}+u F_{2}$, J. Appl. Math. Comput., DOI: 10.1007/s12190-015-08928, 2015.
[11] Ma F., Yonglin C., Jian G., On cyclic DNA codes over $F_{4}[u] /\left\langle u^{2}+1\right\rangle$.
[12] Massey J. L., Reversible codes, Inf. Control, 7, 369-380, 1964.
[13] Oztas E. S., Siap I., Lifted polynomials over F_{16} and their applications to DNA codes, Filomat, 27, 459-466, 2013.
[14] Pattanayak S., Singh A. K., On cyclic DNA codes over the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$, arXiv: $1508.02015,2015$.
[15] Pattanayak S., Singh A. K., Kumar P., DNA cyclic codes over the ring $F_{2}[u, v] /\left\langle u^{2}-1, v^{3}-v, u v-v u\right\rangle$, arXiv:1511.03937, 2015.
[16] Pattanayak S., Singh A. K., Construction of Cyclic DNA codes over the ring $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$ based on deletion distance, arXiv: 1603.04055v1, 2016.
[17] Siap I., Abualrub T., Ghrayeb A., Cyclic DNA codes over the ring $F_{2}[u] /\left(u^{2}-1\right)$ based on the delition distance, J. Franklin Institute, 346, 731-740, 2009.

Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings ...
[18] Siap I., Abualrub T., Ghrayeb A., Similarity cyclic DNA codes over rings, IEEE, 978-1-4244-1748-3, 2008.
[19] Wan Z. X., Quaternary codes, vol.8., World Scientific, 1997.
[20] Yıldız B., Siap I., Cyclic DNA codes over the ring
$F_{2}[u] /\left(u^{4}-1\right)$ and applications to DNA codes, Comput. Math. Appl., 63, 1169-1176, 2012.
[21] Zhu S., Chen X., Cyclic DNA codes over $F_{2}+u F_{2}+$ $v F_{2}+u v F_{2}$, arXiv: $1508.07113 \mathrm{v} 1,2015$.

[^0]: Copyright: © 2017 Dertli et al. This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 Citation: Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings
 $\mathbb{Z}_{4}+w \mathbb{Z}_{4}$ and $\mathbb{Z}_{4}+w \mathbb{Z}_{4}+v \mathbb{Z}_{4}+w v \mathbb{Z}_{4}$, Biomath 6 (2017), 1712167,

