
www.biomathforum.org/biomath/index.php/biomath

ORIGINAL ARTICLE

On the cyclic DNA codes over the finite rings
Z4 + wZ4 and Z4 + wZ4 + vZ4 + wvZ4

Abdullah Dertli1, Yasemin Cengellenmis2

1Ondokuz Mayıs University, Faculty of Arts and Sciences
Mathematics Department, Samsun, Turkey

abdullah.dertli@gmail.com
2Trakya University, Faculty of Sciences

Mathematics Department, Edirne, Turkey
ycengellenmis@gmail.com

Received: 8 May 2017, accepted: 16 December 2017, published: 22 December 2017

Abstract—The structures of the cyclic DNA codes
of odd length over the finite rings R = Z4 + wZ4,
w2 = 2 and S = Z4 + wZ4 + vZ4 + wvZ4, w

2 =
2, v2 = v, wv = vw are studied. The links between
the elements of the rings R, S and 16 and 256
codons are established, respectively. The cyclic codes
of odd length over the finite ring R satisfy reverse
complement constraint and the cyclic codes of odd
length over the finite ring S satisfy reverse constraint
and reverse complement constraint are studied. The
binary images of the cyclic DNA codes over the finite
rings R and S are determined. Moreover, a family
of DNA skew cyclic codes over R is constructed, its
property of being reverse complement is studied.

Keywords-DNA codes; cyclic codes; skew cyclic
codes.

I. INTRODUCTION

DNA is formed by the strands and each strand
is sequence consists of four nucleotides ; Adenine
(A), Guanine (G), Thymine (T) and Cytosine (C).
Two strands of DNA are linked with Watson-Crick

Complement. This is as A = T , T = A, G = C,
C = G. For example if c = (ATCCG) then its
complement is c = (TAGGC).

A code is called a DNA code if it satisfies some
or all of the following conditions:

i) The Hamming contraint, for any two different
codewords c1, c2 ∈ C, H(c1, c2) ≥ d

ii) The reverse constraint, for any two different
codewords c1, c2 ∈ C, H(c1, c

r
2) ≥ d

iii) The reverse complement constraint, for any
two different codewords c1, c2 ∈ C,
H(c1, c

rc
2 ) ≥ d

iv) The fixed GC content constraint, for any
codeword c ∈ C contains the some number
of G and C element.

The purpose of the i)-iii) constraints is to
avoid undesirable hybridization between different
strands.

DNA computing were started by Leonhard
Adleman in 1994, in [3]. The special error correct-

Copyright: c© 2017 Dertli et al. This article is distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.
Citation: Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings
Z4 + wZ4 and Z4 + wZ4 + vZ4 + wvZ4, Biomath 6 (2017), 1712167,
http://dx.doi.org/10.11145/j.biomath.2017.12.167 Page 1 of 11

http://www.biomathforum.org/biomath/index.php/biomath
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.11145/j.biomath.2017.12.167


Abdullah Dertli, Yasemin Cengellenmis, On the cyclic DNA codes over the finite rings ...

ing codes over some finite fields and finite rings
with 4n elements where n ∈ N were used for
DNA computing applications.

In [12], the reversible codes over finite fields
were studied, firstly. It was shown that C = 〈f(x)〉
is reversible if and only if f(x) is a self reciprocal
polynomial. In [1], they developed the theory for
constructing linear and additive cyclic codes of
odd length over GF (4). In [13], they introduced
a new family of polynomials which generates
reversible codes over a finite field GF (16).

In [2], the reversible cyclic codes of any length
n over the ring Z4 were studied. A set of genera-
tors for cyclic codes over Z4 with no restrictions
on the length n was found. In [17], the cyclic
DNA codes over the ring R = {0, 1, u, 1 + u}
where u2 = 1 based on a similarity measure
were constructed. In [9], the codes over the ring
F2 + uF2, u

2 = 0 were constructed for using in
DNA computing applications.

I. Siap et al. considered the cyclic DNA codes
over the finite ring F2[u]/

〈
u2 − 1

〉
in [18]. In

[10], Liang and Wang considered the cyclic DNA
codes over F2+uF2, u

2 = 0. Yıldız and Siap stud-
ied the cyclic DNA codes over F2[u]/

〈
u4 − 1

〉
in [20]. Bayram et al. considered codes over the
finite ring F4 + vF4, v

2 = v in [3]. Zhu and
Chan studied the cyclic DNA codes over the
non-chain ring F2[u, v]/

〈
u2, v2 − v, uv − vu

〉
in

[21]. In [6], Bennenni at al. studied the cyclic
DNA codes over F2[u]/

〈
u6
〉
. Pattanayak et al.

considered the cyclic DNA codes over the ring
F2[u, v]/ < u2 − 1, v3 − v, uv − vu > in [15].
Pattanayak and Singh studied the cyclic DNA
codes over the ring Z4 + uZ4, u

2 = 0 in [14].
J. Gao et al. studied the construction of the

cyclic DNA codes by cyclic codes over the finite
ring F4[u]/

〈
u2 + 1

〉
, in [11]. Also, the construc-

tion of DNA the cyclic codes has been discussed
by several authors in [7,8,16].

We study families of DNA cyclic codes of the
finite rings Z4 + wZ4, w2 = 2 and Z4 + wZ4 +
vZ4 + wvZ4, w

2 = 2, v2 = v, wv = vw. The rest
of the paper is organized as follows. In section 2,
details about algebraic structure of the finite ring

Z4 + wZ4, w2 = 2 are given. We define a Gray
map from R to Z4. In section 3, the cyclic codes of
odd length over R satisfy the reverse complement
constraint are determined. In section 4, the cyclic
codes of odd length over S satisfy the reverse
complement constraint and the reverse contraint
are examined. A linear code over S is represented
by means of two linear codes over R. In section
5, the binary image of cyclic DNA code over R
is determined. In section 6, the binary image of
cyclic DNA code over S is determined. In section
7, by using a non trivial automorphism, the DNA
skew cyclic codes are introduced. In section 8, the
design of linear DNA code is presented.

II. PRELIMINARIES

The algebraic structure of the finite ring R =
Z4 + wZ4, w2 = 2 is given in [4]. R is the
commutative, characteristic 4 ring Z4 + wZ4 =
{a+ wb : a, b ∈ Z4} with w2 = 2. R can also be
thought of as the quotient ring Z4[w]/

〈
w2 − 2

〉
.

R is a principal ideal ring with 16 elements and
finite chain ring. The units of the ring are

1, 3, 1 +w, 3 +w, 1 + 2w, 1 + 3w, 3 + 3w, 3 + 2w,

and the non-units are

0, 2, w, 2w, 3w, 2 + w, 2 + 2w, 2 + 3w.

R has 4 ideals:

〈0〉 = {0},
〈1〉 = 〈3〉 = 〈1 + 3w〉 = ... = R,

〈w〉 = {0, 2, w, 2w, 3w, 2+w, 2+2w, 2+3w},
= 〈3w〉 = 〈2 + w〉 = 〈2 + 3w〉 ,

〈2w〉 = {0, 2w},
〈2〉 = 〈2 + 2w〉 = {0, 2, 2w, 2 + 2w}.

We have

〈0〉 ⊂ 〈2w〉 ⊂ 〈2〉 ⊂ 〈w〉 ⊂ R.

Moreover R is a Frobenious ring.
We define φ : R −→ Z2

4 as

φ (a+ wb) = (a, b) .
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The Gray map is extended component wise to

φ : Rn −→ Z2n
4

(α1, α2, ..., αn) , = (a1, ..., an, b1, ..., bn),

where αi = ai + biw with i = 1, 2, ..., n. φ is a
Z4 module isomorphism.

A linear code C of length n over R is an R-
submodule of Rn. An element of C is called a
codeword. A code of length n is cyclic if the code
is invariant under the automorphism σ which is

σ (c0, c1, ..., cn−1) = (cn−1, c0, ..., cn−2)

A cyclic code of length n over R can be
identified with an ideal in the quotient ring
R[x]/ 〈xn − 1〉 via the R–modul isomorphism

Rn −→ R[x]/ 〈xn − 1〉
(c0, c1, ..., cn−1) 7−→ c0+c1x+...+cn−1x

n−1

+ 〈xn − 1〉

Theorem 1: Let C be a cyclic code in
R[x]/ 〈xn − 1〉 .Then there exists polynomials
g(x), a(x) such that a(x)|g(x)|xn − 1 and C =
〈g(x), wa(x)〉 .

The ring R[x]/ 〈xn − 1〉 is a principal ideal ring
when n is odd. So, if n is odd, then there exists
s(x) ∈ R[x]/ 〈xn − 1〉 such that C = 〈s(x)〉, in
[4,19].

III. THE REVERSIBLE COMPLEMENT CODES

OVER R

In this section, we study the cyclic code of odd
length over R satisfies the reverse complement
constraint. Let {A, T,G,C} represent the DNA al-
phabet. DNA occurs in sequences with represented
by sequences of the DNA alphabet. DNA code
of length n is defined as a set of the codewords
(x0, x1, ..., xn−1) where xi ∈ {A, T,G,C}. These
codewords must satisfy the four constraints which
are mentioned in [21].

Since the ring R is of cardinality 16, we define
the map φ which gives a one to one correspon-
dence between the elements of R and the 16

codons over the alphabet {A, T,G,C}2 by using
the Gray map as follows

Elements Gray images DNA double pairs
0 (0, 0) AA
1 (1, 0) CA
2 (2, 0) GA
3 (3, 0) TA
w (0, 1) AC
2w (0, 2) AG
3w (0, 3) AT

1 + w (1, 1) CC
1 + 2w (1, 2) CG
1 + 3w (1, 3) CT
2 + w (2, 1) GC
2 + 2w (2, 2) GG
2 + 3w (2, 3) GT
3 + w (3, 1) TC
3 + 2w (3, 2) TG
3 + 3w (3, 3) TT

The codons satisfy the Watson-Crick Comple-
ment.

Definition 2: For x = (x0, x1, ..., xn−1) ∈ Rn,
the vector (xn−1, xn−2, ..., x1, x0) is called the
reverse of x and is denoted by xr. A linear code
C of length n over R is said to be reversible if
xr ∈ C for every x ∈ C.

For x = (x0, x1, ..., xn−1) ∈ Rn, the vector
(x0, x1, ..., xn−1) is called the complement of x
and is denoted by xc. A linear code C of length
n over R is said to be complement if xc ∈ C for
every x ∈ C.

For x = (x0, x1, ..., xn−1) ∈ Rn, the vec-
tor (xn−1, xn−2, ..., x1, x0) is called the reversible
complement of x and is denoted by xrc. A linear
code C of length n over R is said to be reversible
complement if xrc ∈ C for every x ∈ C.

Definition 3: Let f(x) = a0 +a1x+ ...+atx
t ∈

R[x] ( S[x] ) with at 6= 0 be polynomial. The
reciprocal of f(x) is defined as f∗(x) = xtf( 1

x).
It is easy to see that deg f∗(x) ≤ deg f(x) and if
a0 6= 0, then deg f∗(x) = deg f(x). f(x) is called
a self reciprocal polynomial if there is a constant
m such that f∗(x) = mf(x).

Lemma 4: Let f(x), g(x) be polynomials in
R[x]. Suppose deg f(x)− deg g(x) = m then,
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i) (f(x)g(x))∗ = f∗(x)g∗(x)
ii) (f(x) + g(x))∗ = f∗(x) + xmg∗(x)

Lemma 5: For any a ∈ R, we have a + a =
3 + 3w.

Lemma 6: If a ∈ {0, 1, 2, 3}, then we have (3+
3w)− wa = wa.

Theorem 7: Let C = 〈g(x), wa(x)〉 be a cyclic
code of odd length n over R. If f(x)rc ∈ C for any
f(x) ∈ C, then (1+w)(1+x+x2+...+xn−1) ∈ C
and there are two constants e, d ∈ Z∗4 such that
g∗(x) = eg(x) and a∗(x) = da(x).

Proof: Suppose that C = 〈g(x), wa(x)〉 ,
where a(x)|g(x)|xn − 1 ∈ Z4[x]. Since
(0, 0, ..., 0) ∈ C, then its reversible complement
is also in C.

(0, 0, ..., 0)rc = (3 + 3w, 3 + 3w, ..., 3 + 3w)

= 3(1 + w)(1, 1, ..., 1) ∈ C.

This vector corresponds of the polynomial

(3 + 3w) + (3 + 3w)x+ ...+ (3 + 3w)xn−1

= (3 + 3w)
xn − 1

x− 1
∈ C.

Since 3 ∈ Z∗4, then (1+w)(1+x+...+xn−1) ∈ C.
Let g(x) = g0 + g1x + ... + gs−1x

s−1 + gsx
s.

Note that

g(x)rc= (3+3w)+(3+3w)x+...+(3+3w)xn−s−2

+gsx
n−s−1+...+g1x

n−2+g0x
n−1 ∈ C.

Since C is a linear code, then

3(1 + w)(1 + x+ x2 + ...+ xn−1)− g(x)rc ∈ C

which implies that ((3 + 3w)− gs)xn−s−1 + ((3 +
3w)−gs−1)xn−s−2+...+((3+3w)−g0)xn−1 ∈ C.
By using (3 + 3w)− a = a, this implies that

xn−s−1(gs+gs−1x+...+g0x
s) = xn−s−1g∗(x) ∈ C

Since g∗(x) ∈ C, this implies that

g∗(x) = g(x)u(x) + wa(x)v(x)

where u(x), v(x) ∈ Z4[x]. Since gi ∈ Z4, for i =
0, 1, ..., s, we have that v(x) = 0. As deg g∗(x) =
deg g(x), we have u(x) ∈ Z∗4. Therefore there is
a constant e ∈ Z∗4 such that g∗(x) = eg(x). So,
g(x) is a self reciprocal polynomial.

Let a(x) = a0 + a1x+ ...+ atx
t. Suppose that

wa(x) = wa0 + wa1x+ ...+ watx
t. Then

(wa(x))rc = (3 + 3w) + (3 + 3w)x+ ...

+watx
n−t−1 + ...+ wa1x

n−2

+wa0x
n−1 ∈ C

As (3+3w)x
n−1
x−1 ∈ C and C is a linear code, then

−(wa(x))rc + (3 + 3w)
xn − 1

x− 1
∈ C

Hence, xn−t−1[(−(wat)+(3+3w))+(−(wat−1)+
(3+3w))x+ ...+(−(wa0)+(3+3w))xt]. By the
Lemma 6, we get

xn−t−1(wat + wat−1x+ ...+ wa0x
t)

xn−t−1wa∗(x) ∈ C. Since wa∗(x) ∈ C, we have

wa∗(x) = g(x)h(x) + wa(x)s(x)

Since w doesn’t appear in g(x), it follows that
h(x) = 0 and a∗(x) = a(x)s(x). As deg a∗(x) =
deg a(x), then s(x) ∈ Z∗4. So, a(x) is a self
reciprocal polynomial.

Theorem 8: Let C = 〈g(x), wa(x)〉 be a cyclic
code of odd length n over R. If (1+w)(1+x+x2+
...+ xn−1) ∈ C and g(x), a(x) are self reciprocal
polynomials, then c(x)rc ∈ C for any c(x) ∈ C.

Proof: Since C = 〈g(x), wa(x)〉 , for any
c(x) ∈ C, there exist m(x) and n(x) in R[x] such
that c(x) = g(x)m(x) +wa(x)n(x). By using the
Lemma 4, we have

c∗(x) = (g(x)m(x) + wa(x)n(x))

= (g(x)m(x))∗ + xs(wa(x)n(x))

= g∗(x)m∗(x) + wa∗(x)(xsn∗(x))

Since g∗(x) = eg(x), a∗(x) = da(x), we have
c∗(x) = eg(x)m∗(x) + dwa(x)(xsn∗(x)) ∈ C.
So, c∗(x) ∈ C.

Let c(x) = c0 + c1x + ... + ctx
t ∈ C. Since C

is a cyclic code, we get

xn−t−1c(x) = c0x
n−t−1+c1x

n−t+...+ctx
n−1 ∈ C
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Since (1 +w) + (1 +w)x+ ...+ (1 +w)xn−1 ∈ C
and C is a linear code we have

−(1 + w)
xn − 1

x− 1
− xn−t−1c(x)

= −(1 + w)− (1 + w)x+ ...+ (−c0 − (1 + w))xn−t−1

+...+ (−ct − (1 + w))xn−1 ∈ C.

By using a+ (1 + w) = −a, this implies that

−(1 + w)− ...+ c0x
n−t−1 + ...+ ctx

n−1 ∈ C

This shows that (c∗(x))rc ∈ C.

((c∗(x))rc)∗ = ct + ct−1x+ ...+ (3 + 3w)xn−1

This corresponds this vector (ct, ct−1, ..., c0, ..., 0).
Since (c∗(x)rc)∗ = (xn−t−1c(x))rc, so c(x)rc ∈
C.

Example 9: Let x3−1 = (x+3)(x2 +x+1) ∈
Z4[x]. Let C =

〈
x2 + x+ 1 + w(x2 + x+ 1)

〉
. C

is a cyclic DNA code of length 3 over R. The Gray
image of C under the Gray map φ is a DNA code
of length 6, Hamming distance 3. These codewords
are as follows

All 16 codewords of C

CCCCCC TGTGTG
GGGGGG GTGTGT
TTTTTT GCGCGC
AAAAAA CGCGCG
GAGAGA CTCTCT
AGAGAG TCTCTC
TATATA ACACAC
ATATAT CACACA

Example 10: Let x7 − 1 = (x+ 3)(x3 − 2x2 +
x − 1)(x3 − x2 + 2x − 1) ∈ Z4[x]. Let C =<
x6−3x5 +x4−3x3 +x2−3x+1+w(x6−3x5 +
x4 − 3x3 + x2 − 3x + 1) >. C is a cyclic DNA
code of length 7 over R. The Gray image of C
under the Gray map φ is a DNA code of length
14, Hamming distance 7. These codewords are as
follows

All 16 codewords of C

CCCCCCCCCCCCCC
GGGGGGGGGGGGGG
TTTTTTTTTTTTTT
AAAAAAAAAAAAAA
GAGAGAGAGAGAGA
AGAGAGAGAGAGAG
TATATATATATATA
ATATATATATATAT
TGTGTGTGTGTGTG
GTGTGTGTGTGTGT
GCGCGCGCGCGCGC
CGCGCGCGCGCGCG
CTCTCTCTCTCTCT
TCTCTCTCTCTCTC
ACACACACACACAC
CACACACACACACA

IV. THE REVERSIBLE AND REVERSIBLE

COMPLEMENT CODES OVER S

Throughout this paper, S denotes the commu-
tative ring Z4 + wZ4 + vZ4 + wvZ4 = {b1 +
wb2 + vb3 + wvb4 : bj ∈ Z4, 1 ≤ j ≤ 4} with
w2 = 2, v2 = v, wv = vw, with characteristic
4. S can also be thought of as the quotient ring
Z4[w, v]/ < w2 − 2, v2 − v, wv − vw > .

Let

S = Z4 + wZ4 + vZ4 + wvZ4

= (Z4 + wZ4) + v(Z4 + wZ4)

= R+ vR

We define the Gray map φ1 from S to R as
follows

φ1 : S −→ R2

a+ vb 7−→ (a, b)

where a, b ∈ R. This Gray map is extended
compenentwise to

φ1 : Sn −→ R2n

x = (x1, ..., xn) 7−→ (a1, ..., an, b1, ..., bn)

where xi = ai + vbi, ai, bi ∈ R for i = 1, 2, ..., n.
In this section, we study the cyclic codes of

odd length n over S satisfy reverse and reverse
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complement constraint. Since the ring S is of
the cardinality 44, then we define the map φ1

which gives a one to one correspondence between
the element of S and the 256 codons over the
alphabet {A, T,G,C}4 by using the Gray map.
For example:

0 = 0 + v0 7−→ φ1(0) = (0, 0) −→ AAAA

2wv=0+v(2w) 7−→φ1(2wv)=(0,2w)−→AAAG

1+3v+3wv =1+v(3+3w) 7−→φ1(1+v(3+3w))

= (1, 3 + 3w) −→ CATT

Definition 11: Let A1, A2 be linear codes.

A1 ⊗A2 = {(a1, a2) : a1 ∈ A1, a2 ∈ A2}

and

A1 ⊕A2 = {a1 + a2 : a1 ∈ A1, a2 ∈ A2}

Let C be a linear code of length n over S.
Define

C1 = {a : ∃ b ∈ Rn, a+ vb ∈ C}
C2 = {b : ∃ a ∈ Rn, a+ vb ∈ C}

where C1 and C2 are linear codes over R of length
n.

Theorem 12: Let C be a linear code of length
n over S. Then φ1(C) = C1 ⊗ C2 and |C| =
|C1| |C2| .

Corollary 13: If φ1(C) = C1 ⊗ C2, then C =
vC1 ⊕ (1− v)C2.

Theorem 14: Let C = vC1 ⊕ (1 − v)C2 be a
linear code of odd length n over S. Then C is a
cyclic code over S if and only if C1, C2 are cyclic
codes over R.

Proof: Let (a1
0, a

1
1, ..., a

1
n−1) ∈

C1, (a
2
0, a

2
1, ..., a

2
n−1) ∈ C2. Assume that

mi = va1
i + (1 − v)a2

i for i = 0, 1, 2, ..., n − 1.
Then (m0,m1, ...,mn−1) ∈ C. Since
C is a cyclic code, it follows that
(mn−1,m0,m1, ...,mn−2) ∈ C. Note that
(mn−1,m0, ...,mn−2) = v(a1

n−1, a
1
0, ..., a

1
n−2) +

(1 − v)(a2
n−1, a

2
0, ..., a

2
n−2). Hence

(a1
n−1, a

1
0, ..., a

1
n−2) ∈ C1, (a

2
n−1, a

2
0, ..., a

2
n−2) ∈

C2. Therefore C1, C2 are cyclic codes over R.

Conversely, suppose that C1, C2 are cyclic
codes over R. Let (m0,m1, ...,mn−1) ∈ C,
where mi = va1

i + (1 − v)a2
i for

i = 0, 1, 2, ..., n − 1. Then (a1
n−1, a

1
0, ..., a

1
n−2) ∈

C1, (a
2
n−1, a

2
0, ..., a

2
n−2) ∈ C2. Note that

(mn−1,m0, ...,mn−2) = v(a1
n−1, a

1
0, ..., a

1
n−2) +

(1− v)(a2
n−1, a

2
0, ..., a

2
n−2) ∈ C. So, C is a cyclic

code over S.
Theorem 15: Let C = vC1 ⊕ (1 − v)C2 be a

linear code of odd length n over S. Then C is
reversible over S iff C1, C2 are reversible over R.

Proof: Let C1, C2 be reversible codes. For
any b ∈ C, b = vb1 + (1 − v)b2, where b1 ∈
C1, b2 ∈ C2. Since C1 and C2 are reversible,
br1 ∈ C1, b

r
2 ∈ C2. So, br = vbr1 + (1 − v)br2 ∈ C.

Hence C is reversible.
On the other hand, Let C be a reversible code

over S. So for any b = vb1 +(1−v)b2 ∈ C, where
b1 ∈ C1, b2 ∈ C2, we get br = vbr1+(1−v)br2 ∈ C.
Let br = vbr1 +(1−v)br2 = vs1 +(1−v)s2, where
s1 ∈ C1, s2 ∈ C2. So C1 and C2 are reversible
codes over R.

Lemma 16: For any c ∈ S, we have c + c =
(3 + 3w) + v(3 + 3w).

Lemma 17: For any a ∈ S, a+ 30 = 3a.
Theorem 18: Let C = vC1 ⊕ (1 − v)C2 be a

cyclic code of odd length n over S. Then C is
reversible complement over S iff C is reversible
over S and (0, 0, ..., 0) ∈ C.

Proof: Since C is reversible complement,
for any c = (c0, c1, ..., cn−1) ∈ C, crc =
(cn−1, cn−2, ..., c0) ∈ C. Since C is a linear
code, so (0, 0, ..., 0) ∈ C. Since C is reversible
complement, so (0, 0, ..., 0) ∈ C. By using the
Lemma 17, we have

3cr = 3(cn−1, cn−2, ..., c0)

= (cn−1, cn−2, ..., c0) + 3(0, 0, ..., 0) ∈ C.

So, for any c ∈ C, we have cr ∈ C.
On the other hand, let C be reversible. So,

for any c = (c0, c1, ..., cn−1) ∈ C, cr =
(cn−1, cn−2, ..., c0) ∈ C. To show that C is re-
versible complement, for any c ∈ C,

crc = (cn−1, cn−2, ..., c0)

= 3(cn−1, cn−2, ..., c0) + (0, 0, ..., 0) ∈ C.
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So, C is reversible complement.
Lemma 19: For any a, b ∈ S,

a+ b = a+ b− 3(1 + w)(1 + v).

Theorem 20: Let D1 and D2 be two reversible
complement cyclic codes of length n over S. Then
D1 +D2 and D1 ∩D2 are reversible complement
cyclic codes.

Proof: Let d1 = (c0, c1, ..., cn−1) ∈ D1, d2 =
(c1

0, c
1
1, ..., c

1
n−1) ∈ D2. Then,

(d1+d2)rc=
(

(cn−1+c1
n−1), ..., (c1+c1

1), (c0+c1
0)
)

=
(
cn−1+c1

n−1−3(1+w)(1+v), ...,

c0 + c1
0 − 3(1 + w)(1 + v)

)
=(cn−1 − 3(1 + w)(1 + v), ..., c0

−3(1+w)(1+v))+
(
c1
n−1, ..., c

1
0

)
=

(
drc1 − 3(1 + w)(1 + v)

xn − 1

x− 1

)
+drc2 ∈ D1 +D2.

This shows that D1 +D2 is reversible complement
cyclic code. It is clear that D1 ∩D2 is reversible
complement cyclic code.

V. BINARY IMAGES OF CYCLIC DNA CODES

OVER R

The 2-adic expansion of c ∈ Z4 is c = α(c) +
2β(c) such that α(c) + β(c) + γ(c) = 0 for all
c ∈ Z4

c α(c) β(c) γ(c)
0 0 0 0
1 1 0 1
2 0 1 1
3 1 1 0

The Gray map is given by

Ψ : Z4 −→ Z2
2

c 7−→ Ψ(c) = (β(c), γ(c))

for all c ∈ Z4 in [14]. Define

Ŏ : R −→ Z4
2

a+ bw 7−→ Ŏ(a+ wb) = Ψ (φ (a+ wb))

= Ψ(a, b)

= (β(a), γ(a), β(b), γ(b))

Let a + wb be any element of the ring R. The
Lee weight wL of the element of the ring R is
defined as follows

wL(a+ wb) = wL(a, b)

where wL(a, b) described the usual Lee weight on
Z2

4. For any c1, c2 ∈ R the Lee distance dL is
given by dL(c1, c2) = wL(c1 − c2).

The Hamming distance d(c1, c2) between two
codewords c1 and c2 is the Hamming weight of
the codewords c1 − c2.

AA −→ 0000
CA −→ 0100
GA −→ 1100
TA −→ 1000
AC −→ 0001
AG −→ 0011
AT −→ 0010
CC −→ 0101

CG −→ 0111
CT −→ 0110
GC −→ 1101
GG −→ 1111
GT −→ 1110
TC −→ 1001
TG −→ 1011
TT −→ 1010

Lemma 21: The Gray map Ŏ is a distance
preserving map from (Rn, Lee distance) to (Z4n

2 ,
Hamming distance). It is also Z2-linear.

Proof: For c1, c2 ∈ Rn, we have Ŏ(c1 −
c2) = Ŏ(c1) − Ŏ(c2). So, dL(c1, c2) = wL(c1 −
c2) = wH(Ŏ(c1 − c2)) = wH(Ŏ(c1) − Ŏ(c2)) =
dH(Ŏ(c1), Ŏ(c2)). So, the Gray map Ŏ is distance
preserving map. For any c1, c2 ∈ Rn, k1, k2 ∈
Z2,we have Ŏ(k1c1 +k2c2) = k1Ŏ(c1)+k2Ŏ(c2).
Thus, Ŏ is Z2-linear.

Proposition 22: Let σ be the cyclic shift of Rn

and υ be the 4-quasi-cyclic shift of Z4n
2 . Let Ŏ be

the Gray map from Rn to Z4n
2 . Then Ŏσ = υŎ.

Proof: Let c = (c0, c1, ..., cn−1) ∈ Rn, we
have ci = a1i + wb2i with a1i, b2i ∈ Z4, 0 ≤ i ≤
n− 1. By applying the Gray map, we have

Ŏ(c)=

β(a10), γ(a10), β(b20), γ(b20), β(a11),
γ(a11), β(b21), γ(b21), ..., β(a1n−1),
γ(a1n−1), β(b2n−1), γ(b2n−1)

 .

Hence

υ(Ŏ(c)) = β(a1n−1), γ(a1n−1), β(b2n−1), γ(b2n−1),
β(a10), γ(a10), β(b20), γ(b20), ..., β(a1n−2),

γ(a1n−2), β(b2n−2), γ(b2n−2)

.
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On the other hand,

σ(c) = (cn−1, c0, c1, ..., cn−2).

We have

Ŏ(σ(c)) = β(a1n−1), γ(a1n−1), β(b2n−1),
γ(b2n−1), β(a10), γ(a10), β(b20), γ(b20), ...,
β(a1n−2), γ(a1n−2), β(b2n−2), γ(b2n−2)

.
Therefore, Ŏσ = υŎ.

Theorem 23: If C is a cyclic DNA code of
length n over R then Ŏ(C) is a binary quasi-cyclic
DNA code of length 4n with index 4.

VI. BINARY IMAGE OF CYCLIC DNA CODES

OVER S

We define

Ψ̃ : S −→ Z4
4

a0 + wa1 + va2 + wva3 7−→ (a0, a1, a2, a3)

where ai ∈ Z4, for i = 0, 1, 2, 3.
Now, we define Θ : S −→ Z8

2 as

a0 + wa1 + va2 + wva3

7−→ Θ(a0 + wa1 + va2 + wva3)

= Ψ(Ψ̃(a0 + wa1 + va2 + wva3)) =

(β(a0),γ(a0),β(a1),γ(a1),β(a2),γ(a2),β(a3),γ(a3)),

where Ψ is the Gray map Z4 to Z2
2.

Let a0 + wa1 + va2 + wva3 be any element of
the ring S. The Lee weight wL of the element of
the ring S is defined as

wL(a0+wa1+va2+wva3) = wL((a0, a1, a2, a3))

where wL((a0, a1, a2, a3)) described the usual Lee
weight on Z4

4. For any c1, c2 ∈ S, the Lee distance
dL is given by dL(c1, c2) = wL(c1 − c2).

The Hamming distance d(c1, c2) between two
codewords c1 and c2 is the Hamming weight of
the codewords c1 − c2.

The binary images of cyclic DNA codes;

AAAA −→ 00000000
AACA −→ 00000100
AAGA −→ 00001100
AATA −→ 00001000

...
...

...

Lemma 24: The Gray map Θ is a distance
preserving map from (Sn, Lee distance) to (Z8n

2 ,
Hamming distance). It is also Z2-linear.

Proof: It is proved as in the proof of the
Lemma 21.

Proposition 25: Let σ be the cyclic shift of Sn

and
′
υ be the 8-quasi-cyclic shift of Z8n

2 . Let Θ be
the Gray map from Sn to Z8n

2 . Then Θσ =
′
υΘ.

Proof: It is proved as in the proof of the
Proposition 22.

Theorem 26: If C is a cyclic DNA code of
length n over S then Θ(C) is a binary quasi-cyclic
DNA code of length 8n with index 8.

Proof: Let C be a cyclic DNA code of length
n over S. So, σ(C) = C. By using the Proposition
25, we have Θ(σ(C)) =

′
υ(Θ(C)) = Θ(C). Hence

Θ(C) is a set of length 8n over the alphabet Z2

which is a quasi-cyclic code of index 8.

VII. SKEW CYCLIC DNA CODES OVER R

We will use a non trivial automorphism, for all
a+ wb ∈ R, it is defined by

θ : R −→ R

a+ wb 7−→ a− wb

The ring R[x, θ] = {a0 +a1x+ ...+an−1x
n−1 :

ai ∈ R,n ∈ N} is called skew polynomial ring. It
is non commutative ring. The addition in the ring
R[x, θ] is the usual polynomial and multiplication
is defined as (axi)(bxj) = aθi(b)xi+j . The order
of the automorphism θ is 2.

Definition 27: A subset C of Rn is called a
skew cyclic code of length n if C satisfies the
following conditions,
i) C is a submodule of Rn,
ii) If c = (c0, c1, ..., cn−1) ∈ C, then σθ (c) =

(θ(cn−1), θ(c0), ..., θ(cn−2)) ∈ C
Let f(x) + 〈xn − 1〉 be an element in the set

Řn = R [x, θ] / 〈xn − 1〉 and let r(x) ∈ R [x, θ].
Define multiplication from left as follows,

r(x)(f(x) + 〈xn − 1〉) = r(x)f(x) + 〈xn − 1〉

for any r(x) ∈ R [x, θ].
Theorem 28: Řn is a left R [x, θ]-module where

multiplication defined as in above.
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Theorem 29: A code C over R of length n is a
skew cyclic code if and only if C is a left R [x, θ]-
submodule of the left R [x, θ]-module Řn.

Theorem 30: Let C be a skew cyclic code over
R of length n and let f(x) be a polynomial in C
of minimal degree. If f(x) is monic polynomial,
then C = 〈f(x)〉 , where f(x) is a right divisor of
xn − 1.

For all x ∈ R, we have

θ(x) + θ(x) = 3− 3w.

Theorem 31: Let C = 〈f(x)〉 be a skew cyclic
code over R, where f(x) is a monic polynomial
in C of minimal degree. If C is reversible comple-
ment, the polynomial f(x) is self reciprocal and

(3 + 3w)
xn − 1

x− 1
∈ C.

Proof: Let C = 〈f(x)〉 be a skew cyclic
code over R, where f(x) is a monic polynomial
in C. Since (0, 0, ..., 0) ∈ C and C is reversible
complement, we have

(
0, 0, ..., 0

)
= (3 + 3w, 3 +

3w, ..., 3 + 3w) ∈ C.
Let f(x) = 1 +a1x+ ...+at−1x

t−1 +xt. Since
C is reversible complement, we have f rc(x) ∈ C.
That is

f rc(x)=(3+3w)+(3+3w)x+...+(3+3w)xn−t−2

+(2+3w)xn−t−1+at−1x
n−t+ ...

+a1x
n−2+(2+3w)xn−1.

Since C is a linear code, we have

f rc(x)− (3 + 3w)
xn − 1

x− 1
∈ C.

This implies that

−xn−t−1 + (at−1 − (3 + 3w))xn−t + ...
+ (a1 − (3 + 3w))xn−2 − xn−1 ∈ C.

Multiplying on the right by xt+1−n, we have

−1 + (at−1 − (3 + 3w))θ(1)x+ ...

+ (a1 − (3 + 3w))θt−1(1)xt−1 − θt(1)xt ∈ C.

By using a+ a = 3 + 3w, we have

−1− at−1x− at−2x
2 − ...− a1x

t−1 − xt

= 3f∗(x) ∈ C.

Since C = 〈f(x)〉, there exist q(x) ∈ R [x, θ]
such that 3f∗(x) = q(x)f(x). Since deg f(x) =
deg f∗(x), we have q(x) = 1. Since 3f∗(x) =
f(x), we have f∗(x) = 3f(x). So, f(x) is self
reciprocal.

Theorem 32: Let C = 〈f(x)〉 be a skew cyclic
code over R, where f(x) is a monic polynomial
in C of minimal degree. If (3 + 3w)x

n−1
x−1 ∈ C

and f(x) is self reciprocal, then C is reversible
complement.

Proof: Let f(x) = 1+a1x+...+at−1x
t−1+xt

be a monic polynomial of the minimal degree.
Let c(x) ∈ C. So, c(x) = q(x)f(x), where

q(x) ∈ R[x, θ]. By using Lemma 4, we have
c∗(x) = (q(x)f(x))∗ = q∗(x)f∗(x). Since f(x)
is self reciprocal, so c∗(x) = q∗(x)ef(x), where
e ∈ Z4\{0}. Therefore c∗(x) ∈ C = 〈f(x)〉. Let
c(x) = c0 + c1x + ... + ctx

t ∈ C. Since C is a
cyclic code, we get

c(x)xn−t−1 =c0x
n−t−1+c1x

n−t+...+ctx
n−1∈C.

The vector corresponding to this polynomial is

(0, 0, ..., 0, c0, c1, ..., ct) ∈ C.

Since (3 + 3w, 3 + 3w, ..., 3 + 3w) ∈ C and C
linear, we have

(3+3w, 3+3w, ..., 3+3w)−(0, 0, ..., 0, c0, c1, ..., ct)

=(3+3w, ..., 3+3w, (3+3w)−c0, ..., (3+3w)−ct)∈C.

By using a+ a = 3 + 3w, we get

(3 + 3w, 3 + 3w, ..., 3 + 3w, c0, ..., ct) ∈ C,

which is equal to (c(x)∗)rc. This shows that
((c(x)∗)rc)∗ = c(x)rc ∈ C.

VIII. DNA CODES OVER S

Definition 33: Let f1 and f2 be polynomials
with deg f1 = t1, deg f2 = t2 and both dividing
xn − 1 ∈ R[x].

Let m = min{n − t1, n − t2} and f(x) =
vf1(x) + (1 − v)f2(x) over S. The set L(f) is
called a Γ-set, where the automorphism Γ : S −→
S is defined as follows:

a+wb+vc+wvd 7−→a+b+w(b+d)−vc−wvdc.
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L(f) =


a0 a1 a2 · · · at 0 · · · · · · · · · 0
0 Γ(a0) Γ(a1) · · · · · · Γ(at) 0 · · · · · · 0
0 0 a0 a1 · · · · · · at 0 · · · 0
0 0 0 Γ(a0) Γ(a1) · · · · · · Γ(at) · · · 0
... · · · · · · · · ·

... · · · · · · · · · · · ·
...

 (1)

The set L(f) is defined as

L(f) = {E0, E1, ..., Em−1},

where

Ei =

{
xif if i is even
xiΓ(f) if i is odd

L(f) generates a linear code C over S denoted
by C = 〈f〉Γ. Let f(x) = a0 + a1x + ... + atx

t

be over S and S-submodule generated by L(f) is
generated by the matrix in Eq. (1).

Theorem 34: Let f1 and f2 be self reciprocal
polynomials dividing xn − 1 over R with degree
t1 and t2, respectively. If f1 = f2, then f = vf1 +
(1− v)f2 and |〈L(f)〉| = 256m. C = 〈L(f)〉 is a
linear code over S and Θ(C) is a reversible DNA
code.

Proof: It is proved as in the proof of the
Theorem 5 in [5].

Corollary 35: Let f1 and f2 be self reciprocal
polynomials dividing xn − 1 over R and C =
〈L(f)〉 be a cyclic code over S. If xn−1

x−1 ∈ C,
then Θ(C) is a reversible complement DNA code.

Example 36: Let f1(x) = f2(x) = x − 1
dividing x7 − 1 over R. Hence,

C = 〈vf1(x) + (1− v)f2(x)〉Γ = 〈x− 1〉Γ

is a Γ-linear code over S and Θ(C) is a reversible
complement DNA code, because of

x7 − 1

x− 1
∈ C.
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