

*Department of Chemistry, College of Education, Ibn-Al-Haitham, University of Baghdad, Baghdad, Iraq. ** Microbiology, Medical City, Teaching Laboratories, Baghdad, Iraq.

Abstract

The reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor $[H_4L]$. The precursor under reflux and drops of CH_3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N_2O_4 ligand $[H_2L]$, this ligand was reacted with (MCl₂) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods $[^1H NMR (just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structure of <math>[Co(L)], [Ni(L)], [Cu(L)]$ and[Zn(L)] complexes adopting an octahedral about this metal ions. The synthesized ligand, along with their metal complexes were screened for their *in vitro* antibacterial activity against ten local strains of *E. coli* as gram-negative bacteria in addition to ten strains of *Salmonella typhi* and to ten strains of *Acinetobacter baumannii* and Ten gram- positive bacteria utilizing for locally strains of *Staphylococcus aureus*, were tested also using the agar diffusion technique.

Keywords: Schiff base , Complexes .

الخلاصة

تضمن البحث تحضير الليكاند [H₂L] وذلك من مفاعلة ٢- أمينو حامض البنزويك مع ٢,١ داي كلورو أيثان تحت التصعيد الإرجاعي في الميثانول وبوجود هيدروكسيد الصوديوم كقاعدة اذ اعطى التفاعل المادة الوسطية [H₄L] ومن خلال تفاعل المادة الوسطية مع ٢ مول من Salicylaldehyde تحت التصعيد الإرجاعي في الميثانول وقطرات من H₄L] ومن خلال تفاعل المادة التفاعل الليكاند [H₂L] نوع (N₂O₂) ، ثم مفاعلة الليكاند مع بعض العناصر الفلزية باستخدام الميثانول وسطاً التفاعل وبنسبة (١:١) وبوجود هيدروكسيد البوتاسيوم كقاعدة وتحت التصعيد الأرجاعي , حيث تكونت معقدات جديدة نوات الصيغة العامة [(M(L)] , حيث وبوجود هيدروكسيد البوتاسيوم كقاعدة وتحت التصعيد الأرجاعي , حيث تكونت معقدات جديدة نوات الصيغة العامة [(M(L)] , حيث وباوجود هيدروكسيد البوتاسيوم كقاعدة وتحت التصعيد الأرجاعي , حيث تكونت معقدات جديدة نوات الصيغة العامة [(M(L)] وبوجود هيدروكسيد البوتاسيوم كقاعدة وتحت التصعيد الأرجاعي , حيث تكونت معقدات جديدة نوات الصيغة العامة [(L)M] , حيث والبوجود هيدروكسيد البوتاسيوم كفاعدة وتحت التصعيد الأرجاعي ، حيث تكونت معقدات جديدة نوات الصيغة العامة [(L)] , حيث البنفسجية – المرئية و وطيف الرئين النووي المغناطيسي الماNMR¹ (فقط لليكاند)) و التحليل الكمي الدقيق للعناصر مع التوصيلية البنفسجية – المرئية و محتوى الكلور ودرجة الانصهار والحساسية المغناطيسية ، من نتائج البحث كان الشكل الفراغي المقترح المولارية الكهربائية ومحتوى الكلور ودرجة الانصهار والحساسية المغالية البابيولوجية خارج الخلية الحية لليكاند ومعقداته ضد عشر عزلات من ال المارية الكهربائية ومحتوى الكلور ودرجة الانصهار والحساسية المغالية البابيولوجية خارج الخلية الحية لليكاند ومعقداته ضد عشر عزلات من ال Co(L)] ([Ni(L)] ثماني السطوح درست الفعالية البابيولوجية خارج الخلية الحية لليكاند ومعقداته مد عشر عزلات من ال من ال *E. cou* وعشر عزلات من ال *Staphylococcus وعشر ع*زلات من ال *Staphylococcus وعشر عاد من عشر عز*لات من الأصناف أختبر تباستخدام تقنبة الحبود.

Introduction

Schiff bases and their coordination compounds have played a great importance in medicine, industry and biochemistry. Schiff bases are characterized by the (-N=CH-) (imine) group which imports in elucidating the mechanism of transamination rasemination reaction in biological ^(1,2). During the past two decades, considerable attention has been paid the chemistry of metal complexes to containing nitrogen and other donor ⁽³⁾. This may be attributed to their stability, biological activity ⁽⁴⁾ and potential application in many fields such as oxidation catalysis (5) and electrochemistry ⁽⁶⁾. We have already drawn attention (7-11) to the strong relationship

between metals or their complexes, and with a statical (12-18) and anticancer (19,20) antibacterial ⁽¹²⁻¹⁸⁾, and anticancer activities. In 2009 A. Thabit and co-workers reported the synthesis of a Novel ligand type N_2O_2 and its complexes with Co(II), Cu(II), Zn(II), and Cd(II), which have been characterized by spectroscopy and elemental analysis ⁽²¹⁾. This paper reports the synthesis and characterization of new derived from the reaction of α-amino carboxylic acid with 1,2methanol, dichloroethane in resulted reacted $(\text{precursor})[H_4L],$ which with salicylaldehyde and its Co(II), Ni(II), Cu(II) and Zn(II) complexes.

¹Corresponding author E- mail : manhelreaziz@yahoo.com Received : 13/10/2009 Accepted : 24/1/2010

Experimental

Chemicals used were analytical grades; metals were used as chloride salts. The complexes were determined by absorption technique, using Shimadza (A.A) 680 G atomic absorption spectrophotometer. I.R data were recorded as (KBr) disc using a Schimadza 4800 s FTIR spectrophotometer in the range (4000-400) cm⁻¹ which measured at the laboratories of Ibn-Sinaa Company. ¹H-NMR spectra were recorded in DMSO-d₆ using Burcker 300 MHz spectrometer¹ which measured at Amman - Jordan. (UV-Vis.) spectra were obtained in (MeOH) on a CECIL, CE 2700 spectrophotometer in the range (200-900) nm using quartz cell which measured at the college of Ibn- Al-Haithem. Magnetic measurements were carried out on solid compounds using 6 Bruker B.M. Melting points were recorded on an electro thermal Stuart apparatus and are not corrected. Electrical conductivity measurements of the complexes were recorded at 25C for 10⁻³M solutions in (MOH) as a solvent using a Wissenchaftilich technique werksttaten, D1820 bweilheimI.F 42 conductivity meter which measured at the college of Ibn- Al-Haithem. The chloride contents for complexes was determined by potentiometric titration method on (686-titro processor-665), Dosinat-metrom Swiss, which measured at the laboratories of Ibn-Sinaa Company. Antibacterial screening was done at laboratories of medical city, Baghdad using agar diffusion technique ^(22,23) The ligand along with their metal complexes were screened for their in vitro antibacterial activity against gram negative bacteria (E. coli), gram-positive bacteria (Staphylococcus aureus), Salmonella typhi and Acinetobacter baumannii bacterial strains. The ligand and complexes have their shown varied antibacterial activities against one or more

bacterial strains and this activity enhanced on coordination / chelating.

Preparation of the ligand $[H_2L]$

The ligand was prepared by two steps: Step (1): A solution of α -amino carboxylic acid (0.35 g, 2.25 mmole) in methanol (10ml) was added to it dichloroethane (0.2g,2.23mmole), (0.2 ml) with KOH (0.18ml) as a base, the mixture was refluxed for 3 hours with stirring. Then the mixture was allowed to cool at room temperature. The resulting a gray solid (precursor) [H₄L] was obtained which filtered off and then washed with ethanol. Yield (37%), (0.25g), mp (245-250 C° dec.). Step (2): A solution of salicalyaldehyde (0.2 g,1.66mmole), (0.18 ml) in methanol (5 ml) was added to the precursor solution $[H_4L]$ (0.25 g, 0.83 mmole), then (8) drops of CH₃COOH was added slowly to the reaction mixture. The mixture was refluxed for (5 hours) with stirring. The resulting was orange solid of [H₂L] as product was filtered of and then washed with ethanol. Yield (42%), (0.18g), mp (220-226 C° dec.).

Preparation of the ligand $[H_2L]$ with metal ions

(0.15 g, 2.94 mmole) of ligand solution in methanol (10ml), with KOH as a base was added to a solution of (0.07 g, 2.94 mmole) $CoCl_2.6H_2O$ in methanol (10ml), the mixture was refluxed with stirring for (4 hours). The resulting was dark brown solid as product which was filtered of and then washed by water and re-crystallized with ethanol. The complexes [Ni(L)], [Cu(L)] and[Zn(L)], were obtained in a similar method to that mentioned in the preparation of [Co(H₂L)₂] complex described above, (Table1) stated the quantity of starting materials and some physical properties of the prepared complexes.

Compounds	Formula	Colour	M.p(C°)	Yield%	Chloride	Metal	M _. wt
H ₄ L	$C_{16}H_{16}N_2O_4$	Gray	245-250 dec.	37	Nil		300.31
H ₂ L	$C_{30}H_{24}N_2O_6$	Orange	220-226 dec.	42	Nil		508.52
[Co(L)](1)	$C_{30}H_{22}N_2CoO_6$	Dark brown	230 dec.	60	Nil	10.42 (9.18)	565.44
[Ni(L)](2)	C ₃₀ H ₂₂ N ₂ NiO ₆	Yellowish green	292 dec.	78	Nil	10.38 (11.18)	565.20
[Cu(L)](3)	$C_{30}H_{22}N_2CuO_6$	Dark green	320 dec.	52	Nil	11.15 (11.37)	570.05
[Zn(L)](4)	$C_{30}H_{22}N_2ZnO_6$	Light green	230 dec.	53	Nil	11.43 (12.44)	571.90

Table 1 : The microanalysis results and some physical properties for the prepared ligand H_2L and its complexes

Results and Discussion

Synthesis of the ligand

The ligand $[H_2L]$ was prepared according to the general method shown in Scheme (1). The I.R spectral of the precursor $[H_4L]$ of the ligand [H₂L], is shown in Fig (1), the results were summarized in Table (2) The figure exhibited band at (3329,3379) cm⁻¹ which attributed to the stretching vibration of asymmetric and symmetric (N-H) for NH₂ group, also the spectrum was showed bands at (1612) cm⁻¹, (1249) cm⁻¹ and (1192) cm⁻¹ attributed to v (C=O) of ester group, v (C-O) ester group and v (C-O) phenolic respectively (21,24-27), By comparing with the I.R spectrum of the ligand [H₂L], Fig (2), Table (2) exhibited bands (3421) cm⁻¹, which can be attributed to v (O-H) and (disappeared NH₂) groups), also the spectrum showed bands at (1612) cm⁻¹, (1608) cm⁻¹, (1273) cm⁻¹ and (1239) cm⁻¹ attributed to v (C=O) ester group, υ (C=N) imine group, υ (C-O) ester group and υ (C-O) phenolic respectively [21,24-27]. The (U.V-Vis) spectra for precursor $[H_4L]$, Fig (3), the results were summarized in Table (3), the figure exhibits two high intense absorption peaks at (248) nm ε_{max} (2532) molar⁻¹cm⁻¹, and (319) nm ε_{max} (2484) molar⁻¹cm⁻¹, which

assigned to $(\pi \rightarrow \pi^*)$, and $(n \rightarrow \pi^*)$ transition respectively [28,29], While The (U.V-Vis) spectrum of the ligand $[H_2L]$ Fig (4), (Table3) exhibits three high intense absorption peaks at (250) nm ε_{max} (2631) molar⁻¹cm⁻¹, (293) nm ε_{max} (2660) molar⁻¹cm⁻¹, and (360) nm ε_{max} (2581) molar⁻¹cm⁻¹, which assigned to $(\pi \rightarrow \pi^*)$, $(\pi \rightarrow \pi^*)$ and $(n \rightarrow \pi^*)$ transition respectively ^(28,29). The ¹H NMR spectrum of the ligand (H₂L), in DMSO- d^6 , Fig (5) shows proton of (O-H) group (ph-OH) which appears as a singlet peak signal at (10.2) ppm. The proton of (C–H) imine group appears as a singlet peak at (8.7) ppm. The multiples signals peaks at the range between (7-8)ppm, are due to aromatic hydrogen of carbon for the benzene ring which bonded with (C=O) carbonyl group, while the multiples signals peaks at the range between (6-7)ppm, are due to aromatic hydrogen of carbon for the benzene ring which bonded with (C=N) imine group, also the spectrum of the ligand appears a triplet peak at (4.7)ppm, which assigned to (-CH₂-) methelene group, as soon as a singlet high peak at (2.5) pmm for the DMSO-d⁶ solvent [24,25,30,31].

Where M= Co(II),Ni(II),Cu(II),and Zn(II) Scheme 1 : The preparation of the ligand [H₂L] and its complexes

Compound	v(C=N)	v(C=O)	υ(C-O)	v(C-O)	υ(O-H)	v(M-O)	v(M-O)	v(M-N)
		ester	ester	phenolic		phenolic	esteric	
H_4L		1612	1249	1192				
H_2L	1608	1612	1273	1239	3421			
[Co(L)](1)	1593	1612	1327	1300		505	461	416
[Ni (L)](2)	1593	1612	1327	1300		536	440	430
[Cu (L)](3)	1585	1609	1319	1288		540	468	428
[Zn (L)](4)	1593	1611	1327	1300		516	459	445

Table 2 : Infrared spectral data(wave number $\hat{\upsilon}$) cm⁻¹ for the ligand H₂L and its complexes

Figure 1: Infrared spectrum of the precursor (H₄L)

Figure 2: Infrared spectrum of the ligand (H₂L)

Figure 3: Electronic spectrum of the precursor (H₄L)

Compound	Λnm	ε _{max} molar ⁻¹ cm ⁻¹	Assignment	Ratio	Molar conductivity S.cm ² .mol ⁻¹	Magnetic susceptibility B.M	coordination
H_4L	248.9	2532	$\pi \rightarrow \pi^*$				
	319.7	2484	n→π*				
H_2L	250.0	2631	$\pi \rightarrow \pi^*$				
	293.6	2660	$\pi \rightarrow \pi^*$				
	360.8	2581	n→π*				
[Co(L)](1)	248.5	2642	Ligand field	neutral			
	295.6	2531	Ligand field			3.87	
	414.0	1264	C.T		18.1	(4.15)	Octahedral
	629.8	96	${}^{4}T_{1g(F)} \rightarrow {}^{4}T_{2g(F)}$				
[Ni(L)](2)	245.0	2597	Ligand field	neutral		2.83	Octahedral
	305.3	1617	Ligand field			(3.2)	
	400.1	1317	C.T		14.9		
	580.0	62	${}^{3}A_{2(g)} \rightarrow {}^{3}T_{1g(p)}$				
[Cu(L)](3)	243.5	2608	Ligand field	neutral		1.7	Octahedral
	300.0	2551	Ligand field			(1.9)	
	406.1	2636	C.T		12.46		
	698.9	52	$^{2}E \rightarrow ^{2}T_{2}$		12.40		
[Zn(L)](4)	220.3	1483	Ligand field	neutral			Octahedral
	289.0	584	Ligand field		13.65		
	388.5	371	C.T				

Table 3 : Electronic spectral data for the ligand H_2L and its complexes

C.T= Charge transfer

Figure 4: Electronic spectrum of the ligand (H₂L)

Figure 5: ¹H NMR spectrum of the ligand (H₂L)

Synthesis of the complexes

The reaction the of ligand [H₂L] with Co(II), Ni(II), Cu(II) and Zn(II) was carried out in MeOH. These complexes are stable in solution. The analytical and physical data, Table (1) and spectral data, Table (2) and Table (3) are compatible with the suggested structure Scheme (1). The I.R spectra of the complexes [Co(L)](1), [Ni(L)](2), [Cu(L)](3), and [Zn(L)](4). Fig (6) and Fig (7), respectively, the results were summarized in Table (2), the figure exhibited at (1608) cm^{-1} in the free ligand spectrum which assigned to v(C=N) imine group Shifted to lower frequency and appeared at (1593) cm^{-1} , (1593) cm^{-1} , (1585) cm⁻¹ and (1593) cm⁻¹ for the complexes (1),(2),(3), and (4) respectively ⁽²⁵⁻²⁸⁾. These bands were assigned the v (C=N) stretches of reduced bond order, this can be attributed to the delocalization of metal-electron density into the ligand π -system (HOMO \rightarrow LUMO) [32,33]. (HOMO=Highest occupied molecular orbital, LUMO= Lowest unoccupied molecular orbital). The phenolic (C- \hat{O}) stretching vibration appeared at (1239) cm⁻¹ in the free ligand was Shifted to higher frequency and appeared at (1300) cm⁻¹, (1300) cm⁻¹, (1288) cm^{-1} , and (1300) cm^{-1} for the complexes (1), (2), (3) and (4) respectively, as well as ester group (C-O) stretching vibration appeared at (1273) cm⁻¹ in the free ligand was shifted to higher frequency too, and appeared at (1327) cm^{-1} , (1327) cm^{-1} , (1319) cm^{-1} and (1327) cm^{-1} for the complexes (1), (2), (3) and (4) respectively, all that indicated a linkage between oxygen of phenolic group and oxygen of ester group and the metal ^(24,32,34). The spectra showed the appearance of bands at (416) cm⁻¹, (430) cm⁻¹, (428) cm⁻¹ and (445) cm⁻¹ refer to υ (M-N) for complexes (1), (2), (3) and (4) respectively, These bands confirm the coordination of the nitrogen atom to the metal center, while the bands at [(505),(461)]cm⁻¹, [(536),(440)] cm⁻¹ and [(540),(468)] cm⁻¹ [(516), (459)] cm⁻¹assigned to v (M-O) of complexes (1),(2),(3), and (4) respectively,

Theses bands indicating the phenolic and esteric oxygen in the ligand is involved the coordination with metal ions in complexes [34-37]. The (U.V-Vis) spectra for the complexes are shown in Fig (8) and Fig (9), Table(3), Complex [Co(L)]: showed two high intense peak at (248) nm ε_{max} (2642) molar⁻¹cm⁻¹ and (295) nm ε_{max} (2531) molar⁻¹ cm⁻¹ were assigned to the ligand field, while a medium intense peak at (414) nm ε_{max} (1264) molar ¹cm⁻¹ was assigned to the charge transfer (C.T), a weak broad peak at (629) nm ε_{max} (96) was assigned to(d-d)electronic molar⁻¹cm⁻¹ transition $({}^{4}T_{1g(F)} \rightarrow {}^{4}T_{2g(F)})$ suggesting octrahedral geometry⁽²⁹⁾. **Complex**[Ni(L)]: showed two high intense absorption peaks at (245) nm ε_{max} (2597) molar⁻¹ cm⁻¹ and (305) nm ε_{max} (1617) molar⁻¹ cm⁻¹ are due to the ligand field, another high intense peak at (400) nm ε_{max} (1317) molar⁻¹cm⁻¹ was assigned to (C.T), while a weak broad peak at (580)nm ε_{max} (62) molar⁻¹cm⁻¹ was assigned to (d-d) electronic transition $({}^{3}A_{2(g)} \rightarrow {}^{3}T_{1g(p)})$ suggesting octahedral geometry ⁽²⁹⁾. **Complex**[**Cu**(**L**)]: showed two high intense absorption peaks at (243) nm ε_{max} (2608) molar⁻¹ cm⁻¹ and (300) nm ε_{max} (2551) molar⁻¹cm⁻¹ are due to the ligand field. a high intense absorption peak at (406) nm ε_{max} (2636) molar⁻¹ cm⁻¹ was assigned to (C.T), while a weak broad peak at (698) nm ε_{max} (52) molar⁻¹cm⁻¹ was assigned to (d-d) electronic transition (${}^{2}E \rightarrow {}^{2}T_{2}$) suggesting octahedral geometry⁽²⁹⁾. **Complex**[**Zn**(**L**)]: showed two peaks at (220) nm ε_{max} (1483) molar⁻¹cm⁻¹ and (289) nm ε_{max} (584) molar⁻¹ cm⁻¹ are due to the ligand field. while a weak broad peak at (388) nm ε_{max} (371) molar⁻¹cm⁻¹ was assigned to (C.T), the d^{10} configuration of Zn^{II} ion along with the data obtained confirms a octahedral structure around the ion (29). The molar conductance of the complexes in methanol lie in the range $(12.46-18.1 \text{ Ohm}^{-1}\text{cm}^{-2}\text{mol}^{-1})$, Table(3), indicting their non-electrolyte having molar ratio of metal:ligand as 1:1⁽³⁸⁾. The magnetic moments for the complexes are shown in Table (3) ⁽³⁹⁾.

Figure 6: Infrared spectrum of the complex [Co(L)](1)

Figure 7: Infrared spectrum of the complex [Ni(L)](2)

Figure 8: Electronic spectrum of the ligand [Co(L)](1)

Figure 9: Electronic spectrum of the ligand [Ni(L)](2)

Biological activity

The antibacterial activity of the synthesized ligand [H₂L] and its complexes [Co(L)](1), [Ni(L)](2), [Cu(L)](3), and [Zn(L)](4) Table (4, 5, 6 and 7), Fig(10 and 11) were tested utilizing the agar diffusion technique (40). The organisms tested were Staphylococcus aureus, E. collie, Salmonella typhi, and Acinetobacter baumannii. The agar media (Muller-Hinton agar) were inoculated with test organisms and a solution of the tested compound (100µg/ml) ⁽⁴¹⁾, was placed separately in cups (6 mm diameter) in the agar medium. The inhibition zones were measured after 24 hours incubation at 35 C. Separate studies were carried out with the solution alone of DMSO and the showed no activity against any bacterial strains ⁽⁴¹⁾. The results of these studies revealed that metals complexes showed

an effective in the inhibition of Acinetobacter *baumannii*, Table (4). The ligand and (Co^{+2}) , Ni^{+2} , Cu^{+2} , Zn^{+2}) complexes were showed an inhibition in some strains in each of Staphylococcus, E. coli, and Salmonella typhi, as shown in Table (5, 6, and 7) . Biological activity of the previous compounds in inhibition of bacterial growth could be attributed to one of the following mechanisms, the first mechanism is by the inhibition of the bacterial cell wall synthesis by bounding to the precursor of the cell wall (42), second mechanism revealed that some antibodies have similar stereo structure to substrate (D-alanyl D-alanine). So it will act competitive inhibitions for the enzymes (transpeptidase and /or carboxpeptidase) which are the main enzymes catalyzed the end step in the biosynthesis of peptidoglycans of the bacterial

cell wall ⁽⁴³⁾. Other mechanisms could contributed to the results found in the study which include the inhibition of biosynthesis of bacterial proteins by linking to the ribosoms by doing so, the ribosomes will not be in contact with tRNA, so the bacteria will not survive ⁽⁴⁴⁾. An other mechanisms were postulated that some antibodies inhibit the denovo synthesis of bacterial DNA by splitting DNA in DNA-enzyme complexes by inhibition DNA ligase ⁽⁴⁵⁾.

Table 4 : Biological activity of Acinetobacter baumannii bacteria of the ligand [H₂L] and its complexes

	Bacteria (zone of inhibition (diameter mm))										
Compound	A ₁	A ₂	A ₃	A_4	A ₅	A ₆	A ₇	A ₈	A ₉	A ₁₀	
H_2L	14	11	Nil	14	16	14	15	12	13	16	
[Co(L)](1)	15	10	Nil	15	14	15	12	Nil	16	15	
[Ni(L)](2)	14	10	12	14	13	16	13	12	15	15	
[Cu(L)](3)	14	10	11	12	13	12	13	13	12	13	
[Zn(L)](4)	11	11	Nil	14	13	14	14	12	15	16	

A= Acinetobacter baumannii bacteria

Table 5 : Biological activity of Staphylococcus aureus bacteria of the ligand [H₂L] and its complexes

_	Bacteria (zone of inhibition (diameter mm))										
Compound	S_1	S ₂	S ₃	S_4	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	
H_2L	Nil	Nil	16	Nil	Nil	Nil	Nil	Nil	Nil	Nil	
[Co(L)](1)	Nil	Nil	16	Nil	Nil	Nil	Nil	Nil	Nil	Nil	
[Ni(L)](2)	Nil	Nil	16	Nil	Nil	Nil	Nil	Nil	Nil	Nil	
[Cu(L)](3)	9	8	17	9	10	9	8	9	8	11	
[Zn(L)](4)	Nil	Nil	18	12	Nil	Nil	12	Nil	Nil	Nil	

S= Staphylococcus aureus bacteria

Table 6 : Biological activity of E. coli bacteria of the ligand [H₂L] and its complexes

	Bacteria (zone of inhibition (diameter mm))										
Compound	E ₁	E ₂	E ₃	E_4	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀	
H ₂ L	Nil	Nil	Nil	12	12	10	Nil	11	Nil	10	
[Co(L)](1)	9	Nil	Nil	10	7	10	Nil	Nil	Nil	10	
[Ni(L)](2)	10	Nil	Nil	11	8	12	Nil	10	Nil	8	
[Cu(L)](3)	Nil	Nil	Nil	12	8	12	Nil	10	Nil	10	
[Zn(L)](4)	Nil	Nil	Nil	8	8	8	Nil	10	Nil	Nil	

 $E=E.\ coli$ bacteria

Table 7 : Biological activity of Salmonella typhi of the ligand [H₂L] and its complexes

	Bacteria (zone of inhibition (diameter mm))											
Compound	Sal_1	Sal ₂	Sal 3	Sal ₄	Sal 5	Sal ₆	Sal 7	Sal ₈	Sal ₉	Sal ₁₀		
H ₂ L	Nil	11	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil		
[Co(L)](1)	10	12	9	Nil	Nil	Nil	Nil	Nil	Nil	12		
[Ni(L)](2)	Nil	Nil	10	Nil	Nil	Nil	Nil	Nil	Nil	Nil		
[Cu(L)](3)	Nil	Nil	Nil	Nil	Nil	Nil	12	9	Nil	Nil		
[Zn(L)](4)	10	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil		

Sal= Salmonella typhi bacteria

Figure 10: Inhibition zones for *Acinetobacter* baumannii utilizing agar diffusion technique

References

- 1. K. Y. ,A.Mayer , K.K.Cheung , "Synthesis of transition metal isocyanid complexes hydrogen bonding sits in peripheral location" , Inorg, Chem, Acta , 1999 285:223-232.
- A.S.Shawali, N.M.S.Harb, K.O.Baghdad, "A study of tautomerism in diazonium coupling products of 4-hydroxycoumrin", J. Heterocyclic Chem. , 1985,22:1397-1403.
- **3.** J. C.,Wu; N., Tang; W. S.,Lui;M. Y., TanA. S. C., Chan, Intramolecular Hydrogen bond self-temperature synthesis of new robson-type macroligand. Chin. Chim. Lett., ; 2001,12,757-760.
- C. M. Lui , R. G. Xiong , X. Z. You , Y , J. Lui , and K. K. Chenung polyhydron , 1996, 15 , 4565-4571.
- 5. S. S. Djebbar , B. O Benanli and J. P. Ddeloume, Trans. Met., (1998), 23, 443-447.
- 6. Y. J. Hamada , Electron Transition , (1997), 44, 1208.
- Chohan ZH, Praveen M, Ghaffar A. Structural and biologi-cal behaviour of Co(II), Cu(II) and Ni(II) metal complexesof some amino acid derived Schiff-bases. Metal-Based Drugs. 1997;4(5): 267–272;.
- 8. Chohan ZH, Scozzafava A, Supuran CT. Unsymmetrical 1,1-disubstituted ferrocenes: synthesis of Co(II), Cu(II), Ni(II)and Zn(II) chelates of ferrocenyl -1thiadiazolo-1-tetrazole,1thiadiazolo-1triazole and -1-tetrazolo-1-triazole with an-timicrobial properties. Journal of Enzyme Inhibition and Me-dicinal Chemistry.; 2002,17(4):261–266.
- **9.** Chohan ZH, Kausar S. Synthesis, structural and biologicalstudies of nickel(II), copper(II) and zinc(II) chelates with tri-dentate Schiff bases having NNO and NNS donor systems.Chemical and Pharmaceutical Bulletin.; 1993,41(5):951– 953.

Figure 11: Inhibition zones for *Staphylococcus aureus* utilizing agar diffusion technique

- Ul-Hassan M, Chohan ZH, Scozzafava A, Supuran CT. Car-bonic anhydrase inhibitors: Schiff's bases of aromatic and het-erocyclic sulfonamides and their metal complexes. Journal ofEnzyme Inhibition and Medicinal Chemistry. 2004, 19(3):263–267.
- **11.** Ul-Hassan M, Chohan ZH, Supuran CT. Antibacterial Zn(II)compounds of Schiff bases derived from some benzothiazoles.Main Group Metal Chemistry. ; 2002;25(5):291–296.
- Chohan ZH, Scozzafava A, Supuran CT. Zinc complexes ofbenzothiazole-derived Schiff bases with antibacterial activ-ity. Journal of Enzyme Inhibition and MedicinalChemistry. 2003;18(3):259-263.
- Seven MJ, Johnson LA. Metal Binding in Medicine. 4th ed.Philadelphia, Pa: Lippincott; 1960.
- Srivastava.RS. Studies on some antifungal transition metalchelates of 2-(2hydroxybenzylideneamino) benzimidazole.Indian Journal of Chemistry. ; 1990;29A:1024.
- **15.** Patel VK, Vasanwala AM, Jejurkar CN. Synthesis of mixedSchiff base complexes of copper(II) and nickel(II) and theirspectral, magnetic and antifungal studies. Indian Journal of Chemistry. ; 1989;28A:719.
- 16. Maggio F, Pellerito A, Pellerito L, Grimaudo S, Man-sueto C, Vitturi R. Organometallic complexes with biological molecules II. Synthesis, solid-state characterization andin vivo cytotoxicity of diorganotin(IV)chloro and triorganotin(IV)chloro derivatives of penicillin G. Applied Organome-tallic Chemistry; 1994, 8(1): 71–85.
- 17. Vitturi R, Mansueto C, Gianguzza A, Maggio F, PelleritoA, Pellerito L. Organometallic complexes with biologicalmolecules. III: in vivo cytotoxicity of diorganotin (IV) chloro

and triorganotin (IV)chloro derivatives of penicillin g on chro-mosomes of aphanius fasciatus (pisces, cyprinodontiformes) . Applied Organometallic Chemistry ; 1994;8(6): 509–515.

- 18. Pellerito L ,Maggio F ,Consigilo A ,Pellerito A ,Stocco G C, Gremaudo S. Organometallic complexes with biologicalmolecules. IV: Diand trorganotin (IV) amoxicillin deriva-tives: solution-phase solid-state and investigations. spectroscopic Applied Organometallic Chemistry.; 1995 ;9(3) : 227-239.
- Narayanan VA, Nasr M, Paull KD. In: Tin Based Antitumour Drugs. Vol H 37. Berlin, Germany: Springer; 1990: NATO ASI Series. 1990.
- **20.** Crowe AJ. The antitumour activity of tin compounds. In:Metal Based Antitumour Drugs. Vol. 1. London, UK: Freud; 1988; 103–149.
- **21.** A.Thabet , and co-workers "Synthesis and characterization of novel ligand type N_2O_2 and its complexes Co(II), Cu(II), Ni(II), and Zn(II) and Cd(II) , ions" ,Ibn Al-Haithem journal for pure and applied science , 2009,2,22.
- Cruickshan K, J.P.; Duguld, P.; Marmion, R.H.; Swain HA, Tests for sensitivity to antimicrobial agents. In: Medical Microbiology, 12th edition. Churchill living stone, Edinburgh: 1975, 190-204.
- 23. Clinical and laboratory standards institute (CLSI), performance standards antimicrobial susceptibility testing. Fifteenth informational supplement, CLSI document M100-S15, Wayne, USA, 2005.
- 24. V. M. Parikh , "Absorption spectroscopy of organic molecules " Translated by Abdul Hussain Khuthier , Jasim M. A. AlRawi , and Muhammed A. Al-Iraqi (1985).
- Robert M. Silver Schtein , Bassler and Morril , "Specrophotometer identification of orqanic compound" Translated by Dr. Hadi Khazem Awad , Dr. Fahad Ali Hussain and Sabri – Azawi , (1981) ,5th.
- **26.** M. Silver and G. C. Bassler , spectrometric identification of organic compounds 4thed J. wiely and sons (1981).
- **27.** S. C. Singh, and V. P. Tyagi, Inorg. Met. Org. Chem., (2001) ,31(10), 1759.
- **28.** William Kemp "Organic spectroscopy " 2^{end}edition, (1987).
- **29.** A. B. P. Lever, "Inorganic electronic spectroscopy", Newyork . (1968), 6, 121.
- **30.** Bellamy,L. J., "The Infrared spectra of complexmolecules",Hasted press,Division

of John Willey and Sons, Inc.,New york ,(1975).

- **31.** Cooper,J.W., "Spectroscopic Techniques for organic Chemistry",John Willey and sons, New York, (1980).
- **32.** Nakamoto "Infrared spectra of inorganic and coordination compound" 4thed. J. wiely and sons, New york (1996)
- **33.** R. K. Agarwal , S. Prased and N. Gahlot. Turk . J. Chem. , , (2004), 28 , 415 .
- **34.** M. J. Al-Geboori , National Jowmal of chemistry , (2006) , 23 , 352.
- **35.** K. C. Raju and P. K. Radhakrishan "complexes of copper with 2,3-dimethyl-4-formyl(benzhydrazide)-1- phenyl-3pyrazolin-5-one" synthesis and reactivity in inorganic and metal – organic chemistry, (2003), 33, no.8, (1307-1318).
- **36.** A. S. El-Table and T. I Kasher , polish J. Chem , (1998) ,72 , 519.
- N. N. Green wood and A. Earnshow "Chemistry of the elements " J. wiely and sons Inc. New York (1998).
- **38.** Geary , W. J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds . Coord. Chem. Rev. ; 1971, 7 , 81-115.
- **39.** J. E., Huheey, "Inorganic Chemistry : principles of stracture and Reactivity" Harper International Edition, Harper and Row publishers, New York (1994).
- **40.** Ali M.M, Ismail M.M.F., Al-Gaby M.S.A., Zahram M.A., and Ammar Y.A. Molecules. ; (2000), 5:864-873.
- **41.** Zahid H. Choton , M. Arif , Muhammed A. Akhtar and Claudiu T. supuran , "Metal-Based Antibacterial and Antifungal Agents:Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds" Bioinorganic chemistry ; (2006) , 5: 3.
- 42. Baron , E. J. ; Chang , R. S. :" Howed ,H. D. Medical Microbiology". Wiely Liss. Publication , New York .(1994).
- **43.** www.bactwise.edu?bact330.html.(2002).
- 44. P. R. Murray , E. J. Baron , M. A. P. Faller , F. C. Tenover R. H. Yken (ed.) Manual of clinical microbiology , 7th ed , Asapress , Washington , USA (1991).
- **45.** Hopper D. C.: Quinolones. In. G. L. Mandell , J. E. Bennett , R. Dolin(ed.) Mandell , Douglas and Bentell , S:" principles and practice infections disease". 5thed. Churchill Livingstone , Philadelphia , (2002), 404-423.