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Abstract. A line of research in Positive Mathematical Programming (PMP) has pur-
sued the goal of estimating a cost function capable of reproducing the base-year results 
in a sample of farms. Originally, the PMP approach estimated a “myopic” cost function, 
that is, a cost relation depending only on the output levels observed during a production 
cycle. No input price entered this type of cost function. In this paper we define and esti-
mate a proper cost function that calibrates the economic results of a sample of farms. In 
the process, we demonstrate the existence of a unique solution of the PMP problem when 
observed output quantities and limiting input prices are taken as calibrating benchmarks. 
Furthermore, the paper shows how to obtain endogenous output supply elasticities 
that calibrate with available exogenous information in the form of previously estimated 
elasticities for an entire region or sector. This framework is applied to a sample of Ital-
ian farms that admit no production for some of the crop activities. This PMP model can 
be used to explore farmers’ response to various policy decisions involving output prices, 
environmental constraints, limiting input supply, and other government interventions.

Keywords. Positive mathematical programming, solution uniqueness, supply elas-
ticities, calibrating model
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1. Introduction

A cost function embodies the technological and market conditions facing a rational 
entrepreneur in the production of given output levels. Shephard lemma (1953) established 
the duality between a cost function and the underlying production technology. Under 
restrictive conditions, it may be possible to obtain an explicit expression of the underlying 
production function (Cobb-Douglas, CES, Generalized Leontief). In other cases, however, 
the derivation of an explicit production function may be impossible (Translog cost func-
tion). From an empirical and policy viewpoint, however, this lack of explicit duality is not 
a serious deficit since the cost function – as stated above – summarizes all the technologi-
cal and market conditions. 
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The methodological contribution of this paper – with reference to a sample of farms – 
can be outlined in four connected objectives. First, we assume the availability of informa-
tion regarding a sample of farm production plans that were realized in the most current 
production cycles, as in the traditional approach of Positive Mathematical Programming 
(PMP). We also assume the availability of the price of limiting inputs (either at the farm 
or regional level). These important pieces of information are treated symmetrically and 
are used in a model that generates a unique calibrating solution. Second, we define and 
estimate a complete (non myopic) cost function that includes calibrating output quantities 
and limiting input prices. This cost function, then, can be used in the analysis of policy 
scenarios. Third, we calibrate the PMP farm model using exogenously determined (via 
econometric studies or expert judgement) output supply elasticities. Fourth, we extend the 
PMP methodology to the realistic case where not all farms cultivate all crop activities. The 
pursuit of these four objectives is the content of the following eight sections.

The paper proposes an approach to Positive Mathematical Programming that guaran-
tees the uniqueness of the calibrating solution, a result that relies upon the use of all the 
available information, including prices of limiting inputs. This is the starting point of the 
paper. Toward the goal of dealing also with calibrating input prices we discuss first the 
PMP approach as often practiced to date (Qureshi et al., 2014, Arfini et al., 2013, Howitt 
et al., 2012, Henseler et al., 2009, Cortigiani et al., 2009).

The original formulation of the PMP methodology (Howitt, 1995a, 1995b) was based 
upon the estimation of the marginal cost associated with the observed production plan 
(or the difference between known per-output unit accounting costs and effective economic 
marginal costs). Phase I of this model took on the following specification (Howitt, 1995a, 
p. 151):
Primal  maxTNR = p’x - c’x (1)
subject to Ax ≤ b   structural constraints  (2)
  ε+x x≤    calibration constraints (3)
and x ≥ 0 where A is a matrix of technical coefficients of dimensions (I×J, I<J) and all 
the other vectors are conformable to it. In particular, x  > 0 is a vector of realized and 
observed levels of outputs whose utilization qualifies the positive feature of the PMP 
approach. Vector b refers to limiting input supplies. Vectors p and c represent market 
output prices and unit accounting costs, respectively. The parameter vector ε is com-
posed of small, positive (user-determined) numbers whose role is to guarantee that the 
dual variables of the binding structural constraints achieve a positive value. In Howitt’s 
words (1995a, p. 151): “The ε perturbation on the calibration constraints decouples the 
true resource constraints from the calibration constraints and ensures that the dual values 
on the allocable resources represent the marginal values of the resource constraints.” This 
statement implies that, without the user-determined ε perturbation, the solution might 
result in the undesirable occurance of a zero dual variable for a binding resource con-
straint. Typically, the determination of the magnitude of the ε parameters requires a trial 
and error approach that is performed by solving repeatedly the phase I model until the 
user finds that the shadow (dual) prices of the binding resource constraints achieve posi-
tive values. With these stipulations, the dual of model (1)-(3) is stated as
Dual  minTC =b'y+ ʹλ [x +ε]  (4)
subject to ʹA y+λ +c ≥ p  (5)
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with y ≥ 0, λ ≥ 0 where y represents the (I×1) vector of shadow prices of the structural 
constraints and the (J×1) vector λ represents the shadow prices of the calibration con-
straints. In the dual constraints (5) there are J constraints and (I×J) variables. At the opti-
mal primal solution x* relation (5) is satisfied with the equality sign by complementary 
slackness conditions given that x* = x  + ε > 0. Hence, the traditional specification of the 
PMP model is underdetermined (ill posed). It admits an infinite number of (y*,λ*) solu-
tions because there are more unknown variables than equations.  This is the reason why 
the parameter ε was introduced in model (1)-(3) in order to elicit a dual solution with 
positive values of the shadow price y of the binding structural constraints. This means that 
I components of the vector λ assume a zero value. 

Another criticism of the original PMP approach regards the specification of the cali-
bration constraints. Why is the solution vector x of model (1)-(3) stated as less-than-or-
equal to the observed vector of output levels (x ≤ x  + ε) in the calibration constraints (3)? 
The answer was (is): to guarantee a nonnegative dual vector of shadow prices λ ≥ 0 inter-
preted as variable marginal cost levels of x . Admittedly, this is an unsatisfactory answer. 
Given that vector x  represents observed (by the econometrician) output levels that were 
realized by the producer in a previous economic cycle, the observed vector x  may contain 
some deviations that either overstate or understate the levels of economically efficient pro-
duction for a given farmer. A more plausible specification of the calibration constraints, 
therefore, could be x = x  + h where h is a conformable vector of unrestricted deviations 
from x .

Furthermore, a measure of the limiting input price vector y  may be available at either 
a regional or more local level. For example, the price of agricultural land is surely availa-
ble, either by region or by area. The regional estimate may not be fitting every single farm 
but it can be assumed that it will fall within a reasonable range of the actual optimal land 
value of each farm as obtained by solving model (1)-(3). If the information on land price 
and other important limiting inputs is available, it should be used in a PMP approach in 
order to avoid violating the principal tenet of the methodology: all the available informa-
tion should be used.  Also in this case, therefore, it seems plausible to state a calibration 
constraint for the dual variable vector as y = y  + u where u is a conformable vector of 
unrestricted deviations from y .

Within this alternative PMP framework, the notion of a calibrating solution 
assumes a different structure from the original formulation of model (1)-(3). In that 
model, a calibrating solution achieves the obvious values of x* = x  + ε. Many critics 
of PMP have objected that this equation represents a tautology. In fact, the equality 
between the optimal solution of model (1)-(3) and the vector of observed output levels 
(adjusted by the ε parameter) is achieved because the – presumably – available infor-
mation on the limiting input prices is ignored. With the more general specification of 
the calibration constraints in the form of x = x  + h and y = y  + u, a calibrating solu-
tion (x*,y*) will not, in general, be tautologically equal to (x , y ). But it can be arranged 
to make the solution (x*,y*) as close as possible to the observed quantities and prices 
by using, for example, a least-squares minimization goal. This approach, then, resem-
bles an econometric estimation where the goal is to minimize the residuals of a system 
of regressions. The objective of this alternative PMP methodology, therefore, is to make 
deviations (h,u) as small as possible. 
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2. The use of x  and y  in PMP

To justify the structure of the novel phase I PMP model we begin with two prelimi-
nary analyses. First, suppose that a preliminary phase I of the PMP methodology is con-
cerned with solving the following problem
maxTNR = p’x - c’x (6)
subject to Ax ≤ b  dual variables y (7)
  x = x  + h dual variables λ (8)
with x ≥ 0 and h unrestricted. Furthermore, we wish to minimize the sum of squared 
deviations, h’Wh/2 as in a weighted least-squares approach. The W matrix is diagonal with 
elements pj > 0 on the main diagonal, j = 1,…,J. The effective objective function, there-
fore, will be expressed as an auxiliary function such as maxAUX = p’x - c’x - h’Wh/2. The 
purpose of the weight matrix W is to measure each component of the auxiliary objective 
function in the same measurement units, that is, in dollars. Forming the Lagrange func-
tion and stating the relevant Karush-Kuhn-Tucker (KKT) conditions will give
L = p’x - c’x - h’Wh/2 + y’[b - Ax] + λ’[x  + h - x] (9)

∂L
∂x

= p−c− ʹA y−λ≤0  (10)

λλ  
∂

∂
= − +

h
hL W 0=  (11)

From relation (11), λ = Wh and, thus, we can dispense from using the λ symbol 
explicitly. Relation (10), then, can be reformulated as
A’y + Wh + c ≥ p. (12)

Relation (11) represents a case of self-duality, where a dual variable is equal (up to a 
scalar) to a primal variable.

Analogously, and still in a preliminary stage of analysis, let us consider the following 
problem
minTC = b’y (13)
subject to A’y + c ≥ p dual variables x (14)
  y = y  + u dual variables ψ (15)
with y ≥ 0 and u as unrestricted deviations. Again, we wish to minimize the sum of 
squared deviations, u’Vu/2 as in a weighted least-squares approach. The matrix V is diag-
onal with elements b yi i/ > 0  on the main diagonal, i I=1,..., . The effective objective, 
then, will be expressed as an auxiliary function to be minimized such as minAUX2 = b’y 
+ u’Vu/2. The purpose of the V matrix is to render homogeneous the measurement units 
of all the terms in the objective function and to scale the deviations u according to the 
size of the input constraints. Forming the Lagrange function and stating the relevant KKT 
conditions give
L* = b’y + u’Vu/2 + x’[A’y + c - p] + ψ’[y - y  - u] (16)

ψ
∂

∂
= − + ≥

y
b x 0L A

*

 (17)
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u
u 0L V

*

ψψ
∂

∂
= − =  (18)

From the self-dual relation (18), ψ = Vu and, again, we can dispense from using the 
symbol ψ explicitly. Thus, relation (17) can be reformulated as 
Ax ≤ b + Vu (19)

This discussion leads to a specification of a phase I PMP model that combines the 
duality relations of a LP problem together with the least-squares necessary conditions 
involving deviations h and u. Combining constraints (12) and (19) with the calibration 
relations (8) and (15), we can write the relevant phase I PMP model as the problem of 
finding nonnegative vectors x ≥ 0, y ≥ 0 and unrestricted vectors h and u such that
Ax ≤ b + Vu  dual variables y (20)
A’y + Wh + c ≥ p  dual variables x (21)
x = x  + h  dual variables Wh (22)
y = y  + u  dual variables Vu (23)
together with the associated complementary slackness conditions. This PMP approach 
avoids the necessity of searching for the user-determined parameter ε. The solution of 
model (20)-(23) generates estimates of the effective marginal cost levels ( ʹA ŷ+Wĥ+c)  and 
the input demand levels xAˆ.

3. Solution uniqueness of the phase I PMP model

A least-squares (LS) solution is unique if and only if the matrix of “explanatory” 
variables has full rank. To verify this crucial condition in relation to model (20)-(23) we 
assume that vectors x  and y  have all positive components and thus x > 0 and y > 0 (this 
assumption will be relaxed in section 8). This implies – via complementary slackness con-
ditions associated to relations (20)-(21) – that 
Ax = b + Vu (24)
A’y + Wh + c = p (25)

Substituting constraints (22) and (23) into (24) and (25), and rearranging terms in 
order to have all the unknowns on one side and the constant parameters on the other side 
of the equal sign, we obtain

u h b xV A A− + = −  (26)
ʹA u+Wh= p− ʹA y −c  (27)

and in matrix notation

−V A
ʹA W

⎡

⎣
⎢

⎤

⎦
⎥

u
h

⎡

⎣
⎢

⎤

⎦
⎥=

b−Ax
p− ʹA y−c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

         M             z     =           q

 (28)

The matrix M is of full rank because the nonsingular weight matrices V and W are on 
the main diagonal. Hence, the least-squares solution û and ĥ is unique.  It follows that the 
solution x̂ and ŷ  of model (20)-(23) is also unique. Given the structure of the M matrix, 
an inverse of M exists even if the A matrix is not of full rank.

The explicit least-squares solution of (28) is
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û
ĥ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−(V +AW −1 ʹA )−1 V −1A( ʹAV −1A+W )−1

W −1 ʹA (V +AW −1 ʹA )−1 ( ʹAV −1A+W )−1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

b−Ax
p− ʹA y −c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (29)

The optimal and calibrating LS levels of the primal and dual variables x and y then, 
are obtained as a simple addition according to the specification given in constraints (22) 
and (23) with x x hˆ ˆ= +  and y y uˆ ˆ= + .

4. Phase II: specification of a general cost function

Phase II of this PMP approach deals with the derivation of output marginal cost 
and input demand functions to be used in a calibrating model for the analysis of various 
policy scenarios.  Following economic theory, we postulate that the total cost function of 
interest takes on the following symmetric and extended Leontief specification:
C(x,y) = (g’y)(f ’x) + (g’y)x’Qx/2 + (f ’x)[(y1/2)’Gy1/2] (30)
where the (J×J) matrix Q is symmetric and positive definite, the (I×I) matrix G has ele-
ments Gi,i’ = Gi’,i ≥ 0, i≠i’. The elements Gi,i can take on positive or negative values. The 
components of vectors f and g are free to take on any value. We require, however, that f ’x 
> 0 and g’y > 0. From theory, a cost function is non-decreasing in output levels and input 
prices and, furthermore, it is homogeneous of degree one in input prices. This require-
ments drive to a large extent the specification of the cost function presented in relation 
(30).  The vector of output marginal cost functions is stated as

MCx =
∂C
∂x

= (g'y) f +(g'y)Qx+ f [(y1/2 )́Gy1/2]= ʹA y+Wh+c  (31)

while, by Shephard lemma, the vector of demand functions for inputs is stated as

∂C
∂y

= ( f'x)g + g(x'Qx)/ 2+( f'x)Δ(y−1/2 )́Gy1/2 =Ax  (32)

where the matrix ∆(y-1/2) is diagonal with terms yi
−1/2  on the main diagonal.

The vector of output supply functions comes from relation (31) by equating it to the 
vector of market output prices, p and inverting the marginal cost function to obtain
x = -Q-1f -Q-1f[(y1/2)’Gy1/2]/(g’y) + Q-1p/(g’y) (33)
that leads to the supply elasticity matrix

Η≡Δ(p) ∂x
∂p
⎡

⎣
⎢

⎤

⎦
⎥Δ(x−1)=Δ(p)Q−1Δ(x−1)/(g'y)  (34)

where matrices ∆(p) and ∆(x-1) are diagonal with elements pj and xj
-1, respectively, on the 

main diagonals. Relation (34) includes all the own- and cross-price elasticities for all the 
output commodities admitted in the model. 

The demand elasticities of limiting inputs can be easily measured from the input 
demand functions of relation (32). Suppose two limiting inputs form the structural con-
straints of the model. Then, the portion of the demand function that involves input prices 
can be stated as
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b1 + u1 = K1 + (f ’x)[G11 + y1
-1/2G12y2

1/2] (35)b2 + u2 = K2 + (f ’x)[G22 + y1
1/2G12y2

-1/2]
where K1 and K2 do not involve input prices. The  matrix of derivatives of the demand 
functions results in

∂(b1+u1)
∂y1

∂(b1+u1)
∂y2

∂(b2 +u2 )
∂y1

∂(b2 +u2 )
∂y2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
−

1
2
y1
−3/2G12y2

1/2 1
2
y1
−1/2G12y2

−1/2

1
2
y1
−1/2G12y2

−1/2 −
1
2
y1

1/2G12y2
−3/2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( f'x)  (36)

This means that with only one limiting input, its demand elasticity will be equal to 
zero (as in a Leontief fixed coefficient specification) since the term G11 drops out of the 
derivative in (36).

An intuitive idea of how the estimated production plan x̂ lies on the cost function 
(30) is illustrated in Figure 1. For simplicity, given two outputs (x1,x2) and two inputs 
(b1,b2), Figure 1 shows the transformation possibility set, TPS, defined by two linear con-
straints involving the known levels of inputs b1 and b2. Assuming that the production plan 
x̂ maximizes the farm total revenue, it is possible to fit a cost function C x x y y( , , )1 2 1 2  
through the point x̂ where y y1 2,  are given prices of inputs b1 and b2. The TPS is in gen-
eral a convex set that is limited by known levels of inputs b1 and b2. Hence, the produc-
tion plan x̂ must also be on the boundary of the true TPS(b1,b2) no matter what is the 
underlying technology corresponding to the cost function C x x y y( , , )1 2 1 2  because the 
true TPS(b1,b2) is defined by the same known input levels b1 and b2 that define the TPS in 
Figure 1 and must go through the point x x xˆ ( ˆ , ˆ )1 2=

Figure 1. Transformation possibility set and cost function.
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5. Exogenous and disaggregated output supply elasticities

PMP has been applied frequently to analyze farmers’ behavior to changes in agri-
cultural policies. A typical empirical setting is to map out several areas, say T areas, in 
a region (or state) and to assemble a representative farm model for each area (or to treat 
each area as a large farm). 

When supply elasticities are exogenously available (say the own-price elasticities 
of crops) at the regional (or state) level (via econometric estimation or other means), a 
connection of all area models with these exogenous elasticities can be specified by estab-
lishing a weighted sum of all the areas endogenous own-price elasticities and the given 
regional elasticities. The weights are the share of each area’s revenue over the total revenue 
of the region. 

Let us suppose that exogenous own-price elasticities of supply are available at the 
regional level for all the J crops, say jη , j = 1,…,J. Then, the relation among these exog-
enous own-price elasticities and the corresponding areas’ elasticities can be established as 
a weighted sum such as 

wj tj tj
t

T

1
∑η η=

=
 (37)

where the weights are the areas’ revenue shares in the region (state)

w
p x

p x
tj

tj tj

sj sj
s

T

1
∑

=

=

 (38)

and
ηtj = ptjQt

jjxt
-1/(g’t yt) (39)

where Qt
jj  is the jth element on the main diagonal in the inverse of the Qt  matrix.

6. Estimation of the cost function parameters 

Using the optimal LS solutions of x,y,h and u for each of the T areas, x y hˆ , ˆ , ˆ
t t t  and 

ût  obtained from solving phase I model (20)-(23), it is possible to proceed to the estima-
tion of parameters Q,G,f and g of the cost function (30). The programming model that 
executes the estimation of the marginal cost (31) and input demand (32) functions in the 
presence of exogenous supply elasticities for a region (state) that is divided into T areas 
takes on the following least-squares specification:
minLS = (dt

ʹdt +rtʹrt )/ 2
t=1

T
∑  (40)

subject to

( ʹg t ŷt ) ft +( ʹg t ŷt )Qt x̂t + ft[( ŷt
1/2 )'Gt ŷt

1/2]+dt = ʹAt
' ŷt +Wtĥt +ct  marginal cost function

( ʹft x̂t )g t + g t ( ˆʹxtQt x̂t )/ 2+( ʹft x̂t )Δ( ŷt
−1/2 )'Gt ŷt

1/2 +rt =At x̂t
 input demand function

Qt = LtDtLt’ positive semidefinitenes of Qt

Qt Qt
-1 = Lt definiteness of Qt

ηtjk =Δ(ptj )Qt
jkΔ(x̂tk

−1)/( ʹg t ŷt )  endogenous own- and cross-supply elasticities
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w
p x

p x

ˆ

ˆ
tj

tj tj

sj sjs

T

1∑
=

=

 revenue shares

ηtj = ptjQt
jj x̂tj

−1 / ( ʹg t ŷt )  endogenous own supply elasticities

η j = wtj
t=1

T

∑ ηtj  disaggregation of exogenous elasticities

with Dt > 0, gt and ft unrestricted parameters; ftʹx̂t >0  and gtʹŷt > 0, dt ≥ 0, rt ≥ 0. Vector 
variables dt ≥ 0, rt ≥ 0 perform the role of auxiliary slack variables that will equal to zero 
identically when minimized by the GAMS solver (the GAMS solver requires an explic-
it objective function). In this way, the system of relations involving the specification of 
marginal cost and demand functions for inputs will be estimated as they appear in equa-
tions (31) and (32). To limit the number of estimated parameters it may be convenient 
to assume that matrices Q and G belong to the entire area (or state) and do not carry the 
index t identifying each individual farm.

Model (40) is highly nonlinear in the constraints and a successful solution of it 
depends crucially on the proper scaling of the data series and on the choice of an ini-
tial point that falls in the neighborhood of the equilibrium solution. This specification was 
applied to three samples of T = 14 Italian farms (areas), classified according to acreage 
size, each producing four crops (sugar beet, soft wheat, corn and barley) using only land 
as a limiting input. The GAMS software program achieved an equilibrium solution in all 
the three cases.  

In this paper we present the result for the class of farms of size greater than 100 hec-
tares. Table 1 exhibits the observed output levels and the percent deviation obtained from 
solving model (20)-(23) (alternatively solving model (28)). The primal solution x̂ is almost 
equal to the observed output levels x  for every farm. All the percent deviations of the pri-
mal solution (except two) are well below the one percent level.

The same event characterizes the dual solution. Table 2 presents the deviations from 
the observed land input prices and the percent deviation of the optimal dual solution, ŷ . 
Also in this case, the percent deviation is minimal in every farm.

The weighted LS minimization of the primal and dual deviations (h,u) has produced 
a largely satisfactory result in this sample.  This goal is accomplished also by virtue of the 
diagonal weight matrices W and V. 

The estimated parameters of the cost function are reported in Tables 3 and 4. For rea-
sons of space, only three Q matrices are reported.

All 14 farms achieved a nonsingular Q̂  matrix. This feature is instrumental in defin-
ing the matrix of endogenous supply elasticities. Table 5 presents the endogenous own- 
and cross-price supply elasticities for three farms.

We stipulated that regional, exogenous own-price supply elasticities were available in 
the magnitude of 0.5 for sugar beet, 0.4 for soft wheat, 0.6 for corn and 0.3 for barley. The 
endogenous own-price elasticities of all farms were aggregated to be consistent with the 
regional exogenous elasticities according to relation (37). Table 6 presents the farms’ own-
price supply elasticities and the revenue weights used in the aggregation relation.
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7. Calibrating equilibrium model 

With the estimates of the cost function parameters f g Q Gˆ, ˆ , ˆ , ˆ  it is possible to formu-
late a calibrating equilibrium model for each farm (sector, area) of the following structure
minCSCt = ʹzpt yt + ʹzdtxt =0  (41)

Table 1. Observed output levels, x  and percent deviation (dev) of the LS calibrated solution, x̂.

Farm
Sugar Beet 

x1

Soft Wheat 
x2

Corn 
x3

Barley 
x4

Sugar Beet 
% dev

Soft Wheat 
% dev

Corn 
% dev

Barley 
% dev

1 1133.4240   305.4032 341.3693 18.2398 0.026 0.060 0.157 1.341
2 3103.7830   861.7445 478.4465 59.8025 0.016 0.042 0.052 0.637
3 1547.9780   450.7937 881.9748   7.6887 0.010 -0.003 0.011 0.164
4 3488.3540   821.3934 1493.332 51.1247 0.002 0.019 0.023 0.526
5   959.1102   468.2848 478.9261 28.2406 0.032 0.001 0.091 1.136
6   942.2039   801.1288 1283.591 152.581 0.049 0.059 0.046 0.384
7 1600.7310   695.8293 899.4739 66.9718 0.023 0.068 0.061 0.683
8 3507.5490 1212.8550 1237.584 98.0497 0.006 0.047 0.048 0.388
9 1050.5370   332.3773 498.0150 63.6696 0.043 0.188 0.120 0.846
10 3473.6780   952.5199 774.7402 84.0070 0.010 0.039 0.062 0.444
11 1245.7220   765.1689 501.9673 59.5366 0.030 0.047 0.101 0.718
12 3276.1450 1100.1680 742.9419 177.974 0.014 0.031 0.074 0.326
13   877.0970   380.9171 564.6091 76.2122 0.048 0.055 0.105 0.683
14 1430.9460   768.6901 1309.392 67.7906 0.026 0.038 0.035 0.604

Table 2. Deviations of ŷ  from y : vector û.

Farm
Absolute Deviation 

û
Observed Land Prices 

y
Percent Deviation 

%

1 0.0053817 4.42 0.122
2 0.0026860 4.38 0.061
3 0.0004449 6.98 0.006
4 0.0018006 5.73 0.031
5 0.0031117 4.40 0.071
6 0.0014600 1.86 0.078
7 0.0032416 3.65 0.089
8 0.0018922 3.36 0.056
9 0.0052767 2.75 0.192
10 0.0027213 4.28 0.064
11 0.0029836 3.28 0.091
12 0.0011904 1.93 0.062
13 0.0028811 2.32 0.124
14 0.0022795 4.03 0.057
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Table 3. Intercepts f̂ , ĝ  and Ĝ matrix of the marginal cost and input demand functions.

Farm
f̂

ĝ Ĝ ʹf̂ ŷ ʹĝ ŷ
Sugar Beet Soft Wheat Corn Barley

1 0.1110 0.0912 -0.0727 0.6183 0.00191 -1.2669 140.294 0.00847
2 -0.0112 0.6636 -0.0784 0.7116 0.00110 -0.9190 542.721 0.00484
3 0.5937 0.6745 0.4603 1.0948 0.00222 -0.0313 1637.550 0.01550
4 -0.0549 0.2153 0.2302 1.0018 0.00061 -1.0016 380.591 0.00350
5 0.0174 0.5424 -0.0297 0.6213 0.00361 -0.5182 274.242 0.01589
6 -0.7008 1.6163 6.0416 1.0965 0.01073 -0.2639 8561.452 0.01998
7 0.2155 0.2852 0.2414 0.9854 0.00328 -0.7473 827.362 0.01198
8 -0.0769 0.7406 0.4971 0.9387 0.00791 -0.9633 1336.688 0.02660
9 -0.0559 0.7323 0.3863 0.8988 0.00941 -1.2263 435.449 0.02592
10 0.0300 0.8861 -0.2342 0.9465 0.00055 -0.6090 846.879 0.00234
11 0.2427 0.4817 -0.0555 0.9430 0.00638 -0.7449 699.825 0.02095
12 0.0796 0.8584 0.4385 1.0428 0.00650 -1.4001 1717.901 0.01255
13 0.7831 0.3158 -0.3314 0.8222 0.00711 -0.9164 683.351 0.01651
14 0.1802 0.6635 0.1982 0.9977 0.00925 -1.2669 1095.888 0.03732

Table 4. Matrices Q̂  and D̂ for three farms.

Matrix Q̂ Matrix D̂

Sugar Beet Soft Wheat Corn Barley Sugar Beet Soft Wheat Corn Barley

Farm 1
S. Beet 0.90363 -1.97461 -0.88227 0.06447   0.90363
S.Wheat -1.97461 5.83223 2.23097 0.35591 1.51732
Corn -0.88227 2.23097 1.49261 0.17779 0.57068
Barley 0.06447 0.35591 0.17779 21.75286 21.55051

Farm 2
S. Beet 0.71517 -2.04607 -0.76495 -0.00159 0.71517
S.Wheat -2.04607 7.25493 2.41519 -0.05663 1.40123
Corn -0.76495 2.41519 1.53268 -0.03759 0.67780
Barley -0.00159 -0.05663 -0.03759 18.98344 18.97949

Farm 3
S. Beet 1.24597 0.24597 -2.27223 -0.42147 1.24597
S.Wheat 0.24597 1.95471 -1.25809 -0.02225 1.90615
Corn -2.27223 -1.25809 4.76858 0.85444 0.28099
Barley -0.42147 -0.02225 0.85444 6.78018 6.59126
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Table 5. Endogenous own- and cross-supply elasticities for three farms.

Sugar Beet Soft Wheat Corn Barley

Farm 1
S. Beet 0.2001 0.1952 0.1321 -0.1091
S. Wheat 0.2815 0.6056 -0.2563 -0.1763
Corn 0.2052 -0.2760 1.2485 -0.1514
Barley -0.0089 -0.0100 -0.0079 0.5927

Farm 2
S. Beet 0.2487 0.2182 0.1855 0.0133
S. Wheat 0.3081 0.4399 -0.2513 0.0162
Corn 0.1454 -0.1395 1.5539 0.0191
Barley 0.0012 0.0011 0.0023 0.4196

Farm 3
S. Beet 0.1839 0.1379 0.1727 -0.1676
S. Wheat 0.2347 0.3725 0.2474 -0.5665
Corn 0.4893 0.4121 0.4952 -0.9548
Barley -0.0044 -0.0087 -0.0088 2.5417

Table 6. Disaggregation/aggregation of the regional, endogenous supply elasticities.

Farms

Endogenous Own-Supply Elasticities Revenue Weights

Sugar Beet: 
0.5

Soft Wheat: 
0.4 Corn: 0.6 Barley: 0.3 Sugar Beet Soft Wheat Corn Barley

1 0.2001 0.6056 1.2485 0.5927 0.0406 0.0291 0.0295 0.0165
2 0.2487 0.4399 1.5539 0.4196 0.1334 0.0937 0.0489 0.0628
3 0.1839 0.3725 0.4952 2.5417 0.0527 0.0446 0.0699 0.0070
4 0.2225 0.4774 0.5665 0.9868 0.1000 0.0893 0.1383 0.0536
5 0.1599 0.4512 0.8430 0.5691 0.0326 0.0413 0.0385 0.0256
6 0.6932 0.9332 0.5011 0.1080 0.0371 0.0828 0.1151 0.1601
7 0.0990 0.2906 0.3522 0.1918 0.0502 0.0688 0.0769 0.0606
8 0.1347 0.2714 0.2307 0.0823 0.1288 0.1292 0.1022 0.0931
9 0.1303 0.2670 0.3384 0.1544 0.0376 0.0335 0.0426 0.0576
10 0.2954 0.3940 1.9745 0.9603 0.1027 0.0930 0.0649 0.0825
11 0.1085 0.3682 0.2755 0.2195 0.0424 0.0737 0.0417 0.0539
12 0.1843 0.2692 0.2407 0.1197 0.1555 0.1079 0.0685 0.1868
13 0.0947 0.2861 0.4050 0.1486 0.0299 0.0336 0.0454 0.0689
14 0.0883 0.2455 0.3772 0.1349 0.0564 0.0795 0.1175 0.0711
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subject to ( ʹf̂txt )ĝ t + ĝ t ( ʹxtQ̂txt )/ 2+( ʹf̂txt )Δ(yt
−1/2 )́ Ĝt yt

1/2 + z pt =bt +Vtût

  ( ʹg t yt ) f̂t +( ʹg t yt )Q̂txt + f̂t[(yt
1/2 )́ Ĝt yt

1/2]= pt + zdt
with xt ≥ 0, yt ≥ 0, zpt ≥ 0, zdt ≥ 0. The variables zpt and zdt are slack-surplus variables of 
the primal and dual constraints, respectively. The objective function (CSC) of model (41) 
combines all the complementary slackness conditions of the farm (region, area). Hence, its 
optimal value must be equal to zero. The solution of the equilibrium model (41) produces 
optimal values of the primal and dual variables, xt and yt that are identical to the solution 
values of model (20)-(23).  Notice that the matrix of constant technical coefficients, At, no 
longer appears in the calibrating equilibrium model (41). This elimination removes the last 
vestige of a linear structure that has been considered too rigid for representing the choices 
of a producer. Model (41) can be used to perform response analysis to variations in prices, 
subsidies, quotas, input quantities, and other parameters for a variety of policy scenarios.

8. PMP uniqueness with missing observations

Empirical reality compels a further consideration of the above methodology in order 
to deal with farm samples where not all farms produce all commodities. It turns out that 
very little must be changed for obtaining a unique and calibrating solution in the presence 
of missing commodities, their prices and the corresponding technical coefficients. 

To exemplify, suppose that the farm sample displays the following Table 7 of observed 
crop levels.

Table 7. Observed Output Levels, x  with non produced commodities.

Farm
Sugar Beet Soft Wheat Corn Barley

x1 x2 x3 x4

1 1133.4240 0.0 341.3693 18.2398
2 3103.7830 861.7445 0.0 59.8025
3 0.0 450.7937 881.9748 0.0
4 3488.3540 821.3934 1493.332 51.1247
5 959.1102 468.2848 0.0 28.2406
6 942.2039 801.1288 1283.591 152.581
7 1600.7310 0.0 899.4739 66.9718
8 0.0 1212.8550 1237.584 98.0497
9 1050.5370 332.3773 0.0 63.6696

10 3473.6780 952.5199 774.7402 0.0
11 0.0 765.1689 501.9673 59.5366
12 3276.1450 1100.1680 0.0 177.974
13 877.0970 380.9171 564.6091 76.2122
14 1430.9460 0.0 1309.392 0.0

Other missing information deals with prices and unit accounting costs associated 
with the zero-levels of crops.  Furthermore, the technical coefficients of the farms not pro-
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ducing the observed crops also equal to zero. Hence, we can state that, for t = 1,…,T, the 
number of farms, and j = 1,…,J, the number of crops, if xtj = 0  also p ctj tj= =0 0,   and 
Atij = 0 . Furthermore, suppose that only one input, land, is involved in this farm sample. 

Then, the land price is observed for all farms. 
As to the solution of the Phase I PMP specification, we expect that x x htj tj tj= +  

for xtj > 0  and h xtj tj= = 0  for xtj = 0 . It turns out that the least-squares computa-
tion of the deviations uti and htj expressed by equation (29) produces the desired esti-
mates of the deviations htj and crop levels xtj when the observed level of those crops 
equals zero, xtj = 0 . This is so because the first term on the RHS of (29) is equal to 
zero by construction, bi − Aijj=1

J
∑ x j =bi − (acresijj=1

J
∑ / x j )x j =0 . The second term on the 

RHS of (29) reduces to zero because of the zero information about non-produced crops, 
pj − Aiji=1

I
∑ yi −c j =0−0yi −0=0  Therefore, h xˆ ˆ 0tj tj= =  for xtj = 0 and the least-squares 

PMP solution is unique also in this more elaborate case. 
The estimation of the cost function carries through as in section 6 without modifica-

tion.  Also the phase III calibrating model expressed in (41) needs no adjustment.  

9. Results for a farm sample with missing production of some crops

The observed crop production of a 14-farm sample is given in Table 7. Also the corre-
sponding output prices, ptj = 0 and accounting costs, ctj = 0 are part of the data sample for 
the no-production levels xtj = 0  as reported in Table 7. Furthermore, Atij = 0 for the same 
activities of no-production.

Table 8 presents the unique least-squares estimates of the crop levels and the corre-
sponding percentage deviation from the observed sample data. 

Table 8. Estimated Output Levels, x  and Percent Deviation (dev) for the sample with missing crop 
production (compare with Table 7).

Farm
Sugar Beet 

x1

Soft Wheat 
x2

Corn 
x3

Barley 
x4

Sugar Beet 
% dev

Soft Wheat 
% dev

Corn 
% dev

Barley 
% dev

1 1133.7140 0 341.9053 18.4843 0.0256 0 0.1570 1.3400
2 3104.2820 862.1098 0.0000 60.1834 0.0161 0.0424 0 0.6369
3 0 450.7820 882.0680 0 0 -0.0026 0.0106 0
4 3488.4150 821.5529 1493.6830 51.3938 0.0017 0.0194 0.0235 0.5264
5 959.4208 468.2891 0 28.5614 0.0324 0.0009 0 1.1360
6 942.6667 801.6001 1284.1790 153.1671 0.0491 0.0588 0.0458 0.3840
7 1601.1000 0 900.0223 67.4290 0.0231 0 0.0610 0.6825
8 0 1213.4210 1238.1750 98.4298 0 0.0466 0.0478 0.3876
9 1050.9910 333.0022 0 64.2084 0.0433 0.1880 0 0.8463
10 3474.0410 952.8955 775.2208 0 0.0105 0.0394 0.0620 0
11 0 765.5305 502.4727 59.9640 0 0.0473 0.1007 0.7179
12 3276.6110 1100.5140 0 178.5547 0.0142 0.0314 0 0.3260
13 877.5201 381.1268 565.2019 76.7330 0.0482 0.0550 0.1050 0.6833
14 1431.3200 0 1309.8500 0 0.0261 0 0.0350 0
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Except for two cells, the percent deviations of the estimated crop levels from the 
observed production quantities are below 1 percent. The cells with a zero estimated quan-
tity level correspond to the cells with observed zero level of production, as in Table 7.  
Table 9 presents the estimated land price and the percent deviation from the observed 
input price.

Table 9. Deviations of ŷ  from y .

Farm
Estimated Land Prices 

ŷ
Observed Land Prices 

y
Percent Deviation 

%

1 4.428035 4.42 0.1818
2 4.382827 4.38 0.0645
3 6.980315 6.98 0.0045
4 5.731801 5.73 0.0314
5 4.402587 4.40 0.0588
6 1.861460 1.86 0.0785
7 3.653809 3.65 0.1044
8 3.362198 3.36 0.0654
9 2.756308 2.75 0.2294
10 4.281756 4.28 0.0410
11 3.283229 3.28 0.0984
12 1.931129 1.93 0.0585
13 2.322881 2.32 0.1242
14 4.031362 4.03 0.0338

The deviations of the estimated land prices from the observed prices are all below one 
percent. Table 10 presents the estimates of the parameters of the cost function under the 
condition of zero production for some crops in various farms.

Table 11 presents the own price elasticities of the 14 farms that correspond to the 
observed and exogenous price elasticities of the four crops.

The calibrating model (41) applies also to this data sample without any modification.

10. Conclusion

We have achieved the objective of using all the available information about output 
quantities and limiting input prices, and the formulation of a calibrating PMP model that is 
free of the rigidities of a linear programming structure. In the process, we dispense with the 
necessity of dealing with the user-determined vector of small and arbitrary positive numbers 
ε that is required by the traditional PMP methodology. We also demonstrate the uniqueness 
of the calibrating solution. Two empirical examples were presented.  In the first sample of 
14 farms and 4 crops, all farms produce every commodity. In the second sample, some of 
the farms do not produce all the commodities. This is the typical case. It is shown that the 
uniqueness of the calibrating solution is maintained also in this more elaborate case.  
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Table 10. Intercepts f̂ , ĝ  and Ĝ matrix of the marginal cost and input demand functions for the case 
of zero production of some crop in various farms.

Farm
f̂

ĝ Ĝ ʹf̂ ŷ ʹĝ ŷ
Sugar Beet Soft Wheat Corn Barley

1 -0.15426 0.00274 0.73961 -0.11144 0.00686 -1.9508 75.930 0.03038
2 0.07435 -0.14574 0.03714 0.32875 0.00495 -3.1350 124.945 0.02171
3 0.03532 0.27086 -0.11507 0.03964 0.00052 -1.0871 20.595 0.00363
4 -0.02920 0.07372 0.10372 0.85513 0.00441 -2.4222 157.570 0.02530
5 0.02132 0.01858 0.11481 0.06645 0.00754 -2.3602 31.051 0.03318
6 0.22974 0.22787 -0.02587 0.26590 0.01186 -5.3411 406.732 0.02208
7 0.13824 -0.00074 -0.14506 0.29086 0.00273 -3.6725 110.382 0.00997
8 0.01525 0.40319 -0.12078 -0.17109 0.01373 -3.0222 322.849 0.04616
9 0.11620 -0.08339 0.00722 -0.03553 0.00499 -2.9037 92.071 0.01375
10 -0.00636 0.36252 -0.14708 0.00406 0.00076 -2.4324 209.320 0.00325
11 0.00236 0.30162 -0.12984 -0.24600 0.00764 -2.8158 150.906 0.02507
12 0.10700 0.16788 0.00002 0.57873 0.00004 -2.6811 638.676 0.00001
13 0.24139 0.42193 -0.25400 -0.19708 0.01046 -2.9149 213.946 0.02431
14 0.05358 0.06649 0.07745 0.01622 0.00686 -2.6086 178.140 0.03038

Table 11. Disaggregation/aggregation of the regional, endogenous supply elasticities when some 
crops are not produced in various farms.

Farms

Endogenous Own-Supply Elasticities Revenue Weights

Sugar Beet: 
0.5

Soft Wheat: 
0.4 Corn: 0.6 Barley: 0.3 Sugar Beet Soft Wheat Corn Barley

1 0.257 0 0.385 0.722 0.0523 0 0.0368 0.0198
2 0.289 0.409 0 0.251 0.1719 0.1139 0 0.0748
3 0 0.515 1.740 0 0 0.0542 0.0871 0
4 1.873 0.262 0.428 0.333 0.1288 0.1086 0.1726 0.0639
5 0.381 0.577 0 0.445 0.0421 0.0502 0 0.0306
6 0.052 0.221 0.322 0.120 0.0479 0.1007 0.1437 0.1904
7 0.149 0 0.656 0.225 0.0647 0 0.0960 0.0723
8 0 0.329 0.294 0.122 0 0.1571 0.1275 0.1108
9 0.212 0.407 0 0.335 0.0485 0.0408 0 0.0688
10 0.241 0.309 0.794 0 0.1323 0.1130 0.0810 0
11 0 0.399 0.313 0.268 0 0.0896 0.0520 0.0643
12 0.487 0.714 0 0.531 0.2004 0.1311 0 0.2220
13 0.142 0.325 0.837 0.259 0.0385 0.0409 0.0567 0.0822
14 0.305 0 0.583 0 0.0727 0 0.1465 0
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The central piece of the methodology is the estimation of a non-myopic cost function 
defined over output levels and input (shadow) prices. This cost function is not associated 
with an explicit functional form of the underlying technology. For this reason, the phase 
I procedure estimates the output and limiting input shadow price levels that are consist-
ent with a linear technology and the observed information about output levels and input 
prices. These levels, then, are used to estimate the parameters of the cost function. 

This model is akin to an econometric model that is estimated for prediction without 
regards to the identification of the structural parameters of the cost function. The model 
“goodness,” then, depends on the ability to predict outside the sample observations. This 
test can be executed with multiple observations per farm.

When several observations per each sample farm are available, the estimation procedure 
becomes a proper econometric approach.  In this case, it will be convenient to split the sam-
ple observations in two parts: say, ninety percent (or whatever share of the observations the 
researcher would prefer) for estimating the cost function and ten percent for evaluating the 
prediction ability of the PMP methodology. This approach is a goal of further research.

The PMP procedure presented in this paper uses also exogenous information about 
supply elasticities assumed to be available at a regional or state level. It shows how to cali-
brate the endogenous elasticities to this additional information while achieving a unique 
calibrating solution. 
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