
ISSN 2280-6180 (print) © Firenze University Press 
ISSN 2280-6172 (online) www.fupress.com/bae

Bio-based and Applied Economics 1(2): 125-150, 2012

Tools for Integrated Assessment in Agriculture.
State of the Art and Challenges

Wolfgang Britz1, Martin van ittersuM2, alfons oude lansink3, thoMas heckelei1

1 Bonn University, Institute for Food and Resource Economics, Germany
2 Wageningen University, Plant Production Systems group, The Netherlands
3 Wageningen University, Business Economics group, The Netherlands

Abstract. The increased interest in Integrated Assessment (IA) of agricultural sys-
tems reflects the growing complexity of policy objectives and corresponding impacts 
related to this sector. The paper contemplates on the status of quantitative tools for 
IA in agriculture, drawing on recent European experiences from the development and 
application of large-scale integrated modelling systems which are both multi-dimen-
sional/disciplinary and covering multiple spatial scales. Specific challenges arise from 
the numerous roles of agriculture with societal relevance, the heterogeneity of farms 
and farming systems across a geographical region and the multitude of environmen-
tal impacts of interest associated with agricultural production. Conceptual differences 
between typical bio-physical and economic models as well as deficiencies regarding 
validation and uncertainty analysis require continued efforts to improve the tools.
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1. Introduction

Porter and Rossini (1980) introduced the term “Integrated Impact Assessment” 
(IAM) for activities which, based on quantitative and qualitative approaches, inform 
policy processes about economic, social and environmental consequences of changes in 
policy instruments. The term “integrated” stresses both the interdisciplinary nature and 
the importance of coherence and consistency of this activity. They raised in their semi-
nal paper issues such as the need to “integrate component contributions from profession-
als of diverse disciplinary backgrounds”, of “validation of analytical techniques” and of 
“evaluation of study approaches”, issues which are still relevant today as our paper will 
show. Based on newer developments, we prefer however to distinguish between “Inte-
grated Assessment” (IA) and “Impact Assessment” (ImA), where the former describes a 
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scientific activity and the latter a formal evaluation procedure of legislative proposals in 
public administrations.

Following The Integrated Assessment Society (TIAS) we define Integrated Assessment 
as “the scientific ‘meta-discipline’ that integrates knowledge about a problem domain and 
makes it available for societal learning and decision making processes” (TIAS, 2011). Other 
definitions, such as the one by Rotmans and Asselt (1996) see it as a process of combin-
ing and communicating interdisciplinary knowledge on complex phenomena. The term 
“Impact Assessment” has gained importance in recent years due to the fact that the EU and 
some national governments require a formal assessment of new legislative proposals (EU 
Commission, 2009). Following the famous Brundtland report of 1987 (UN, 1987), impact 
assessment addresses three pillars of economic, environmental and social sustainability, and 
consequently is “integrated” or “interdisciplinary” by nature. From this follows a recently 
increased policy relevance of quantitative IA tools. In addition to this ‘pull’ effect, scientists 
themselves increasingly acknowledge the fact that global challenges related to agriculture 
cannot be usefully analysed by sticking to separate, disciplinary approaches. 

The aim of our paper is to reflect on the status of tools for Integrated Assessment in 
agriculture drawing on recent experiences from the SEAMLESS project (System for Envi-
ronmental and Agricultural Modelling - Linking Science and Society; Van Ittersum et 
al., 2008), the development and application of the CAPRI model (Common Agricultural 
Policy Regional Impact; Britz and Witzke 2008) as well as related European projects, and 
to derive key challenges and research questions for the future. Accordingly, our focus is 
on quantitative large-scale approaches in the European research community focusing on 
agriculture which integrate components operating on different spatial scales and assessing 
both economic and environmental impacts.

SEAMLESS aimed to develop concepts and procedures for ex-ante policy impact 
assessment, and, connected to that, an Integrated Framework called SEAMLESS-IF for 
multi-level and multi-dimensional analysis including flexible model chains. It also devel-
oped some new model components such as APES (Agricultural Production and Externali-
ties Simulator, Donatelli et al. 2010) and FSSIM (Farming Systems Simulator, Louhichi et 
al. 2010a,b) and generated the infrastructure to link some existing ones such as CAPRI. 

The paper is organized as follows. In the next section we will discuss features of agri-
culture and agricultural policies which underline the need of a specific approach and spe-
cific tools in this area. Expanding on that, section 3 focuses on farm heterogeneity as a 
key issue in IA of agricultural systems and discusses the current available approaches, cov-
ering micro and macro approaches and their linkage. The subsequent section is devoted 
to environmental impact assessment, specifically how to properly capture technology and 
technology choice and adoption. Section 5 discusses challenges in component linkage 
including Information Technology (IT) questions, followed by a section on model cali-
bration, validation and uncertainty analysis. Then we conclude and mention some aspects 
and challenges not covered by the paper.

2. IA of agricultural systems: specific challenges

Agriculture differs from other economic sectors in terms of its environmental and 
economic dimensions. From an environmental viewpoint, an important distinctive fea-



127Tools for Integrated Assessment in Agriculture

ture of agriculture is its strong dependency on land as production factor. Consequently, 
the impact of agricultural production on the environment, the landscape and land-use 
is much more prominent than the impact of other economic sectors and in that respect 
only comparable to forestry. More generally, agriculture has substantial interactions with 
soil, water and air as well as with habitats (EEA, 2007: 294-305). A second distinct attrib-
ute of agricultural production is its direct reliance on production with living species in 
open biological systems, introducing inter alia questions of animal and plant health, ani-
mal welfare and bio-diversity into agricultural impact assessment, a feature again shared 
with forestry. The pre-dominantly open production systems based on biological processes 
more often cause non-point-source environmental externalities compared to other eco-
nomic sectors. Mass and nutrient flows are harder to manage than in non-agricultural 
production processes and nutrient and agro-chemical losses to the environment are to 
a certain extent unavoidable. Emissions of nutrients or agro-chemicals into soil, air and 
water are subject to complex biological transformation processes and show a high spatial 
and temporal variability. Technical solutions to reduce emissions applied in other sectors 
such as spatial confinement combined with the use of filters is usually infeasible in agri-
culture. Accordingly, environmental externalities can often not easily be separated from 
the production of market output. A specific further challenge is given by the multitude 
of environmental impacts of interest – such as emissions to ground and surface water of 
nitrogen and phosphorus compartments, ammonia emissions and emissions of gases rel-
evant to climate change (Galloway et al., 2008).

From an economic perspective, the agricultural sector also differs in several ways from 
most non-agricultural sectors. It is characterized by an atomistic structure, with many 
small family operated enterprises and considerable farm heterogeneity due to cross-farm 
differences in management quality as well as natural and infrastructural location fac-
tors. Albeit agriculture’s contribution to GDP in the European Union as a whole is small 
(1.8% in 2008, Eurostat, 2010: 100), it is still a core economic activity in rural regions with 
important up- and downstream linkages, especially in the new Member States (EU Com-
mission, 2008: 103ff). Accordingly, a strict separation between rural development poli-
cies and agricultural policies is not possible, as acknowledged by integrating rural devel-
opment related policy instruments (Pillar II) in the Common Agricultural Policy (CAP) 
of the European Union. Beyond its role in the rural economy, farming also shaped land-
scapes and settlements over centuries, forming cultural heritage and generating touristic 
attractiveness (Daugstad et al., 2006). From a wider perspective, agriculture is increasingly 
integrated in what is termed the “bio-economy” (EU Commission 2012) which requires a 
multi-sector perspective in IA.

The role of the agricultural sector in the overall economy is fundamentally different 
in developing countries, where agriculture typically provides food security in subsistence 
settings as well as a large share of employment and corresponding income to the rural 
population. At the same time, food expenditures constitute a major part of urban house-
hold budgets. With agriculture’s growing integration into international markets, spill-over 
effects of agricultural policies on developing country markets regularly occur. According 
to the EU’s Policy Coherence for Development approach (EU Commission, 2007), assess-
ment of European agricultural policies should hence cover impacts on developing coun-
tries, reflecting the fact that the EU is world-wide the largest importer of agricultural and 
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food products from developing countries. The recent food price crisis has underlined 
again the importance to assess the impact of developed countries’ (agricultural) policies 
on developing countries and that a careful distinction between households that are net-
consumer or net-producers of food is necessary.

Another more recent specific challenge for IA of agriculture vis-à-vis other eco-
nomic sectors is the dual role it plays in managing greenhouse gas emissions. On the 
one hand, agriculture is a major emitter of gases contributing to global warming such 
as N2O and CH4. On the other hand, agriculture may contribute to the solution of 
the global warming problem by carbon sequestration or the production of renewable 
energy (Lee et al., 2007). At the same time, climate change will have profound impacts 
on agriculture and will require adaptation to maintain agriculture’s production capac-
ity for food, feed, fibre and energy (Schmidhuber and Tubiello, 2007; Quiroga and 
Iglesias, 2009).

In the European Union, agriculture is one of the few sectors for which most rel-
evant policies are defined and managed at the EU level. Impact assessment of EU agri-
cultural policies is thus inherently Pan-European and the relevance of assessments 
requires addressing the whole EU with its diversity of farms and farming systems. At 
the same time, it faces the challenge that not all policies are uniformly implemented 
across the EU, such as the agri-environmental measures under Pillar II of the CAP 
which are programmed and implemented by national/regional governments using a 
rather diverse portfolio of instruments. Finally, many developed countries including 
the EU provided income support to agriculture over decades by shielding the sector 
from world markets through trade policy instruments and, often, guaranteed minimum 
prices. The EU’s opening of the domestic agricultural sector to international markets 
in the past two decades still causes adjustment processes, for example the change of 
private and public risk management under an increasing volatility of prices. Parallel 
to opening domestic markets, the income support in the form of direct payments is 
increasingly linked to management requirements. In order to receive the full payment, 
farmers have to comply with certain practices relevant for the environment, animal/
human health, or animal welfare (for the newest suggestions on “greening”, see EU 
Commission 2011). These types of measures not only increase the need for IA per se 
but also require reflecting farm heterogeneity in the analysis as the measures’ impacts 
at the national or EU level strongly depend on the distribution of farm characteristics 
– an aspect focused on in the next section.

Summarizing, it is evident that the agricultural sector differs in several aspects from 
other sectors of the economy, asking for specific tools to evaluate policies impacting on the 
agricultural sector. Science has responded to that challenge by developing and applying a 
highly specialized and diverse set of quantitative approaches and tools. These are differen-
tiated by resolution in space (plot, farm, regions, country, globe), by system components 
and processes they focus on (bio-physical, economic or social), by time horizon and other 
attributes. The integrated view in impact assessment requires tools aiming at a more holis-
tic analysis of policies, such as the integrated assessment tools developed in SEAMLESS 
and SENSOR (Sustainability Impact Assessment: Tools for Environmental, Social and Eco-
nomic Effects of Multifunctional Land Use in European Regions; Helming et al., 2008).
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3. Farm heterogeneity as a core challenge in agricultural IA

3.1 Farm heterogeneity and scaling-up

The foregoing discussion showed that many policy issues nowadays require an inte-
grated assessment, i.e. an assessment that accounts for the interrelated economic, environ-
mental and social effects at country, regional, farm or even plot levels. Therefore, integrat-
ed assessments need methods for scaling up economic, environmental and social variables 
from the field/farm level to higher aggregation levels (region, country). Scaling methods 
should account for (i)  heterogeneity in time and space, (ii)  existence of ecological and 
economic feedback loops (e.g. endogenous prices), and (iii)  the non-linearity of many 
functional relationships (van Gardingen et al., 1997; Wossink et al., 2001).

Figure 1. Overview of IA concept
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Heterogeneity in time and space can be accounted for by invoking the hierarchy 
concept (Ewert et al., 2009) according to which individual agents and their situations 
are the building blocks of an agro-economic system, in Figure 1 highlighted by the 
central position of the farm as core decision unit. Quantification of an agro-econom-
ic system requires that individuals are characterized by their attributes and that rela-
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tionships governing interactions among individuals are described (Weston and Ruth, 
1997). Each individual (i.e. farm operated by a farmer) can be characterized at time t 
by the attributes: state of nature (St), fixed endowments (Bt), and technology set (Φt). 
Also, farmers may generally differ in whether and how they evaluate different objec-
tives such as profit, risk, preferences for on-farm work or specific farming system or 
management practices and future utility e.g. expressed by discount rates. The state of 
nature at time t is determined by market and institutional mechanisms at higher eco-
nomic scales that determine prices and market conditions for primary factors, inputs 
and outputs, the supply of new techniques and policy constraints, incentives and dis-
incentives. The values of all attributes and the farmer’s objectives at time t determine 
Yt, representing the actual farmer’s choices on the use of inputs and the production of 
outputs, which determine the farm’s impact on the environment. Antle and McGuck-
ing (1993) included scaling-up in a general spatio-temporal model by statistical aggre-
gation. Their method accounts for nonlinearity in agricultural production and assumes 
that the characteristics of individual farms in the population (St, Bt, Φt) induce a joint 
distribution y(St, Bt,Φt) of the aggregate outcomes, e.g. input use and environmental 
impacts. An expected value for aggregate output, input and environmental indicators 
is obtained by integrating over the joint distribution of St, Bt and Φt, i.e. if Yt is the 
measure of interest we get.

Economic feedback to lower scales may take place through prices of input and out-
puts determined in regional or world markets. Regional and world-wide economic 
models of market processes are common (i.e. Partial Equilibrium models, Computable 
General Equilibrium models) but often have to be redefined in order to incorporate the 
behaviour of micro level (field/farm) simulation tools (Just, 1993: 38). 

Scaling up should also account for ecological feedback mechanisms if aggregate envi-
ronmental impacts of agriculture affect e.g. the technology set and its effectiveness and 
efficiency, such as agriculture’s impact on climate change, nutrient deposition or the devel-
opment of resistance of pests to pesticides as a result of continued pesticides application.

3.2 Current approaches to capture farm (including location) heterogeneity

This section describes three categories of models that account for farm heterogene-
ity in time and space, i.e. farm type models, regional models and hybrid approaches. The 
approaches are summarised in Table 1.

3.2.1 Farm scale and farm type models

This category of models consists of a diverse set of (non)-linear programming and 
econometric models that have in common that they model the behaviour of a single farm 
or farm type. Among the EU wide (non)-linear programming models that capture farm 
heterogeneity are AROPAj, FSSIM and the farm type models in CAPRI.

AROPAj (De Cara and Jayet, 2000; De Cara et al., 2005) represents the supply and on-
farm consumption of agricultural products for the European Union (EU) based on 1307 
representative farm-types, aggregated from several FADN (Farm Accouncy Data Network) 
farms and differentiated by FADN region, specialization, economic size, and altitude class. 
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Each farm type is represented by an independently solved linear programming model. 
Results can be aggregated to the regional (120 regions within the EU), national and Euro-
pean levels. AROPAj represents most crop and animal activities and their interactions at 
farm level (mixing farming system like multiple crops with cattle breeding for example). 
Moreover, it includes several greenhouse gas emission (GHG) indicators related to agri-
cultural activities.

FSSIM is a non-linear programming model template developed within SEAMLESS, 
covering the most important annual and permanent crop activities and various livestock 
activities (Louhichi et al., 2010a; Louhichi et al., 2010b). FSSIM’s farm typology extends 
the existing EU typology (Decision 85/377/EEC, 1985) which classifies farms accord-
ing to their income and specialization with the farm’s land use and intensity of farming 
(Andersen et al., 2007). Furthermore, a spatial allocation procedure was developed to geo-
reference farm types allowing the aggregation of model results at farm type level to both 
natural (territorial) and administrative regional level (Elbersen et al., 2006; Kempen et al., 
2010). The FSSIM model template, as with AROPAj, is applied to an “average farm” con-
structed by averaging input and output data of FADN farms of the same type according 
to the farm typology. Detailed information on crop management stems from surveys and 
the FADN records and generates feasible input-output combinations, currently available 
for 109 farm types in 12 major EU production regions.

The CAPRI farm type models (Gocht and Britz, 2010) are described below in the con-
text of the CAPRI regional models.

Econometrically estimated farm type models usually consist of a set of input 
demand and output supply equations based on duality theory. FADN data have been 
employed in numerous studies to estimate such models. Specific econometric tech-
niques account for farm heterogeneity in the data. Fixed-effects, random effects and 
the Hausman-Taylor model (Baltagi, 1995; Gardebroek and Oude Lansink, 2003) 
assume farm-specific intercepts in each of the supply and demand equations (Oude 
Lansink and Peerlings, 2001). Applications in Europe cover both instruments from 
the CAP (e.g. Oude Lansink and Peerlings, 1996; Boots et al., 1997) or environmental 
ones (e.g. Oude Lansink and Peerlings, 1997). Generalised Maximum Entropy (GME) 
estimation (Oude Lansink, 1999) and the now more often preferred Bayesian methods 
allow for estimating a full set of farm-specific parameters also in cases where the num-
ber of observations is smaller than the number of parameters to be estimated by intro-
ducing prior information regarding model parameters. Gardebroek (2006) showed that 
Bayesian random coefficient models are superior to classic random coefficient models 
as they allow for incorporating prior information and avoid estimation problems in 
panels with a small time series component.

Most farm scale models regularly applied to policy impact assessments assume either 
profit maximizing behaviour (AROPAj, duality based approaches) or take also risk atti-
tudes into account (FSSIM).

3.2.2 Regional models

Regional models for agriculture are usually comparative static supply models of the 
agricultural sector in a country, where typically administrative regions are treated as rep-
resentative farms. This regional `farm` pursues a large number of arable crop and live-
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stock activities and produces marketable outputs and intra-sectorally produced inputs. 
Since the lowest resolution level is the region (usually level III of the Nomenclature des 
unités territoriales statistiques (NUTS), i.e. about 1300 regions for EU 27 which repre-
sent bigger cities or smaller regions with a population size between 150000 and 800000 
inhabitants), the extent to which heterogeneity is represented is limited. Two regional 
models which integrate economic and environmental aspects are RAUMIS (Gömann et 
al., 2007) and DRAM (Helming, 2005). Both are to a large extent comparable to CAPRI 
(see below for a more detailed description), being comparative-static and employing Pos-
itive Mathematical Programming (PMP) to steer the allocation. A specificity of DRAM is 
a differentiation of the dairy herd by milk yield. RAUMIS uses a full cost approach where 
investment goods are depreciated by operating hours and labour can be sold and bought. 
Both models can be solved at national level to simulate trade in manure.

3.2.3 Hybrid models integrating farm level and regional level models

Hybrid models integrate farm level models into regional level models. Two examples 
of hybrid models are CAPRI and SEAMLESS-IF. 

The CAPRI model (Britz and Witzke, 2008; Gocht and Britz, 2010) consists of a 
supply and a market module. The supply module comprises independent aggregate 
non-linear programming models representing approximately 50 crop and animal activ-
ities of all farmers at either regional (NUTS II) or farm type level. The farm type lay-
er provides for the whole EU2 a consistent dis-aggregation from the regional level to 
about 1850 farm type models differentiated by farm specialization and economic size. 
Prices for agricultural outputs are rendered endogenous based on sequential calibra-
tion between the supply models and a global, spatial multi-commodity model. CAPRI 
allows for modular applications as e.g. regional supply models for a specific Member 
State may be run at fixed exogenous prices without market feedback. The farm type 
model layer may be switched on or off, in the latter case turning CAPRI into a regional 
model. Another important feature of CAPRI is its ability to spatially scale down results 
to clusters of 1x1 km grid cells, covering crop shares, crop yields, animal stocking den-
sities and fertilizer application rates and allowing for linkage with the bio-physical 
model DNDC (Britz and Leip, 2009).

The SEAMLESS integrated framework shares many of the characteristics of the 
hybrid CAPRI model; CAPRI is integrated within SEAMLESS-IF. In SEAMLESS-IF, 
the farm level model represented by FSSIM has a richer underpinning of crop man-
agement practices and environmental impacts than the farm level model in CAPRI. 
Using a link to an agronomic component, FSSIM allows the introduction of new activi-
ties making technological innovation scenarios possible. However, due to data limita-
tions, it only covers a few representative farm types so far. For those, an explorative link 
between FSSIM and the regional programming models in CAPRI is made by the mod-
ule EXPAMOD (Dominguez et al., 2009).

2 Versions until spring 2012 do not break-down Bulgaria and Romania to individual farm types due to missing 
FADN data.



133Tools for Integrated Assessment in Agriculture

Table 1. Overview of approaches to model farm heterogeneity, scaling up and feedback loops

Type Examples Major data sources Major properties

Representative Bio-
Economic Farm model FSSIM Own surveys, FADN

Crop rotations, parameterized 
from crop growth model; explicit 
consideration of location factors 
such as soil; current and future 
practices; focus on important 
farming systems; risk attitude

Representative Farm 
type models AROPAj FADN

Focus on current practices, 
no rotations; typically profit 

maximizing behaviour assumed

Duality based 
econometric models

FADN or similar single 
farm records

Only implicit representation of 
technology, simulation of all 

farms in samples; typically profit 
maximizing / cost minimizing 

behaviour assumed

Regional programming 
model RAUMIS, DRAM Regional statistics

Implicit / explicit representation 
of interaction between farms at 
regional level; focus on current 

practices; no crop rotations; often 
calibrated based on PMP

Hybrid CAPRI, SEAMLESS Regional and global 
statistics, FADN

Supply side: regional or farm 
type models; link to global Multi-

Commodity model allows for 
endogenous prices based on 

sequential calibration

3.3 Limitations of current approaches

As discussed above, integrated assessment of agricultural and environmental policies 
has to capture heterogeneity at the field/farm level and requires methods for scaling up 
field/farm level responses to regional and higher levels in order to capture economic and 
ecological feedback loops. The three approaches discussed, i.e. farm level models, regional 
models and hybrid models differ in the way they represent heterogeneity, scaling up and 
feedback loops. 

Farm level models allow for modelling the behaviour of individual farms. However, in 
practice only a limited number of representative farms are modelled, due to a lack of infor-
mation on individual farms and in order to preserve the empirical tractability. Farm level 
models do not scale up responses and do not account for feedback loops at higher levels of 
aggregation (e.g. prices, environmental impacts). Models that operate at regional levels are 
more suited for representing aggregate behaviour of a region and some models account for 
feedback loops, such as exchange of agricultural inputs between regions and price adjust-
ments in markets of inputs and outputs. However, regional models poorly address the 
heterogeneity at the farm and field level. Instead, each region is considered as one ‘farm’. 
Hybrid models combine the strengths of farm level and regional level approaches. They 
account for heterogeneity at the level of representative farms and account for economic 
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feedback loops (i.e. prices are determined within the model), that typically need iterative 
procedures to ensure consistency in the feedback loop. Generally, all operational approach-
es mentioned above are of a comparative-static nature and do not assess structural change. 
The conceptual approach of updating farm type weights (number of farms in certain class-
es) in baseline and scenario simulation for future years was developed in the SEAMLESS 
project (Zimmermann et al. 2009b) and the empirical analysis was performed (Zimmer-
mann et al. 2009a), but it was not implemented in simulation. Finally, ecological feedback 
loops are presently not accounted for in any of the models discussed.

3.4 Challenges for future research 

Current approaches for modelling heterogeneity among farms have several shortcom-
ings that can be addressed by future research. First, current approaches generally lack a 
proper account for environmental impacts emerging through spatial relations or interac-
tions between different farms, such as those related to the occurrence of pests and dis-
eases, green and blue ecological corridors or hydrology and nutrient emissions. Clearly, 
including such spatial interactions is complicated and requires a thorough understanding 
of the mechanisms themselves and the involvement of the proper disciplines.

Furthermore, current approaches for modelling heterogeneity suffer from a lim-
ited availability of data on e.g. environmental impacts, management, local climate and 
geographical conditions. Accordingly, spatial variability in location factors (soil type, 
climate, slope, surrounding land cover, accessibility etc.) is typically not explicitly 
(AROPAj, CAPRI farm types) or only partially (FSSIM) covered. Bio-physical processes 
and interaction between farm management and the environment are however strong-
ly depending on these location factors, and are often highly non-linear. Collecting the 
necessary data is very time consuming and costly and integrating this information in 
models adds to the model complexity. Although spatially referenced data on soil, cli-
mate and land use are increasingly available, thanks to e.g. satellite information, these 
data generally miss a link to on-farm management practices. Also, it is still not known 
whether the benefits of a greater resolution outweigh the costs of collecting and inte-
grating more data. A more general intriguing question for future research is conse-
quently, what the minimum complexity level of modelling is for various agricultural 
and environmental policy issues? And finally, dynamics and structural changes are so 
far often not covered. Here, agent-based models have clear advantages compared to 
traditional equilibrium models (Happe et al. 2006), but current concepts are limited to 
regional case studies due to resource and data requirements and empirical validation is 
still not sufficiently developed (Zimmermann et al., 2009b).

4. Modelling technology and technology adoption to quantify environmental impacts 
and economic modernization

Environmental impacts of agriculture are strongly related to bio-physical character-
istics of agricultural production processes and management decisions. Therefore, an inte-
grated assessment of policies at an aggregate level, in order to feed bio-physical models 
and approaches with an appropriate level of detail, requires a detailed technology and 
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agro-management representation at the micro level for determining environmental effects 
of policies. The latter is generally not needed for determining economic impacts in the 
narrow sense, i.e. without attempting to value externalities, where dis-continuities at the 
farm level are smoothed at the aggregated level. Also, many integrated assessments aim 
to assess future changes, sometimes with a time horizon of decades. Hence, knowledge 
of current and future production technologies is relevant. However, data on current and 
future production technologies are usually not available; even for current activities real-
ized on farms, basic information such as the amount and timing of fertilizer use on spe-
cific crops are typically not available from official statistics. There are three interlinked 
approaches to overcome this missing data problem:
• Own data sampling. SEAMLESS conducted own surveys to sample the necessary, 

relatively detailed, data on agricultural management in ca. 15 regions in the EU 
(Zander et al., 2009).

• Use of engineering information as for example found in farm management hand-
books.

• Statistical estimators which combine own data and engineering information with sec-
toral statistics or farm accounting data to derive process and region specific attributes 
consistent to observed aggregated quantities, for example on total fertilizer or feed use.

It is obvious that limited data availability at farm and regional level introduces a high 
uncertainty about technical coefficients of models.

4.1 New technologies and their adoption

One main challenge in integrated assessments lies in incorporating technologies, i.e. 
elements of the production set, which are currently not yet or rarely used by farmers, or 
are even not yet fully developed, usually referred to as “alternative activities” (Van Itter-
sum and Rabbinge, 1997; Hengsdijk and Van Ittersum, 2003). Some examples of alterna-
tive activities are no-tillage systems, precision agriculture technologies, technologies with 
more targeted input application which might increase yields or low-input alternatives such 
as organic farming. If their process details are spelled out in details, then their perfor-
mance as measured by economic, social and environmental indicators can be evaluated. 
However, even in win-win situation where no obvious dis-advantages to farmers from 
implementing innovative processes are visible, the adoption by farmers might be slow. 
Positive Mathematical Programming (Howitt, 1995) and variants thereof used to over-
come the normative character of programming based approaches (for example in FSSIM 
and the CAPRI supply models) cannot deal with alternative activities if the farmers’ choic-
es with regard to them are still unobserved. Promotion of alternative activities, is how-
ever an often proposed measure to mitigate negative externalities from agriculture or to 
strengthen positive externalities. Impact assessments then need to quantify the impact of 
policy measures such as subsidies on the implementation of alternative activities. Defining 
which farm management options will be chosen under certain future conditions (policy 
and market environment, climate change etc.) seems to be a core question for many agri-
environmental policy assessment studies and can so far hardly be answered with the tools 
discussed by us; hence future research should address this. New methodologies such as 
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agent based modelling describing knowledge diffusion (Berger, 2001) and belief formation 
(Hegselmann and Krause, 2002) in the farming population might be linked to existing 
tools to improve simulation of adoption processes. 

To capture different agro-management options for one type of production such as 
cropping wheat, different production activities need to be formulated such as fertilization 
through chemical fertilizers only or combined use of chemical and organic (e.g. manure) 
fertilizers. Most classical aggregate programming models working at the regional or farm 
type group level include only one production activity variant characterized by current 
average input and output coefficients. Higher detail in technology is the domain of so-
called bio-economic models (e.g. Brown, 2000; Janssen and Van Ittersum, 2007) where 
the economic model is linked to bio-physical process models (see e.g. Jame and Cutforth, 
1996) describing e.g. the interaction between soil, climate, farm management, crop growth 
and water and the nutrient cycle. FSSIM (Louhichi et al. 2010b) provides an example of 
such a bio-economic model. It can be linked to a crop-growth model (Belhouchette et 
al., 2011) which delivers inter alia crop rotation related environmental indicators such as 
nutrient surpluses to FSSIM. Estimation of biotic stresses from pests, weeds and diseases 
is generally not possible with crop growth models. Here, expert-based rules are generally 
applied (e.g. Dogliotti et al., 2004). A key challenge with respect to alternative activities 
refers to the decision on how many and which must be identified to adequately capture 
future options and secondly how to assess these in where crop growth or other bio-physi-
cal models  crop growth models are not available or tested. There are often many activities 
which may theoretically be relevant, and due to non-linear relationships between inputs 
and outputs these could all be relevant for inclusion in programming models.

4.2 Temporal scales

The currently available agro-technology rich programming models are typically com-
parative static in nature with a medium-term planning horizon, whereas many environ-
mental process models are formulated (recursive) dynamically. Biophysical processes usu-
ally take a long time until steady state solutions are achieved or until variation has been 
captured adequately. Therefore, crop growth models often perform simulation over dec-
ades, assuming no-change in farm management regarding the timing or rates, but typi-
cally taking stochastic variation of weather into account. The long-term simulations often 
target accumulation or depletion processes of nutrients in soils and their feedbacks on 
crop growth and environmental indicators (Tittonell et al., 2010; Dogliotti et al., 2004; 
Hengsdijk and Van Ittersum, 2003). Typically, averages over the simulation period are 
then used to parameterize the economic models. So far, there is little scientific work on 
integrating changes in farm management over time, which are underlying e.g. past yield 
increases, with the dynamic bio-physical feedback processes as described in crop-growth 
models (cf. Barbier and Bergeron, 1999). It thus remains challenging to consistently simu-
late processes across different time scales.

To summarize, technologically rich simulation models are necessary to spell out envi-
ronmental impacts, though also economic and social ones, which is challenging both due 
to low data availability and with respect to consistent links to market models. Specifically, 
more research on the simulation of adoption of alternative technologies and the underly-
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ing spatial-dynamic processes is desirable to improve IA by including technological inno-
vations which are promising from an engineering point of view.

5. Modules, models, tools and data

5.1 Challenges in combined model usage

The coherent application of different model components in an impact assessment 
remains a challenge, even if tools such as SEAMLESS-IF have generated technical infra-
structure for combined application of components. In most applications, the linkage is 
uni-directional bottom-up or top-down. That easily leads to inconsistencies if, to take a 
classical example, the supply response to price changes in a detailed supply model at the 
bottom of the chain is different from the market model at the top used to derive market 
clearing prices. That consistency issue is found in all applications where components show 
overlap in endogenous variables, and clearly reaches way beyond the question of differ-
ences in reactions to price changes in combined tool use.

There are three ways for achieving consistency – with their specific pros and cons. 
Firstly, the components can be merged into one simultaneously solved model. How-
ever, that solution proves often hard or even infeasible from a computational point of 
view, especially if the components involved work on different spatial and temporal scales 
or employ different numerical solution strategies. It is for instance clearly impossible to 
embed the actual simulations with a fully specified crop growth model into a bio-econom-
ic farming model based on constrained optimization. It is also quite challenging to debug 
and to systematically analyse the outcome of the evolving super-models.

Secondly, the components can be sequentially linked so that the e.g. supply behav-
iour of the market model is updated based on the results of the supply model such as in 
CAPRI (Britz, 2008). That approach was further explored in SEAMLESS, to link CAPRI 
and GTAP (Global Trade Analysis Project, a global economic data base with a matching 
Computable General Equilibrium model template) (Jansson et al., 2009). The iterative 
solution requires however a rather stringent IT integration and might fail if not all com-
ponents show rather smooth, convex reactions to changes in the update process.

And thirdly, modules in components can be parameterized such as to summarize 
results or the behaviour of some other component. An example is the approach adopt-
ed in SEAMLESS to summarize simulations of a specific farming activity with a crop 
growth model into a vector of input/output coefficients and eventually a co-variance 
matrix of yields (in FSSIM). An example from the economics domain is EXPAMOD 
(Dominguez et al., 2009) in SEAMLESS where allocation responses of farm type mod-
els are extrapolated to the regional scale. Meta modelling is also an often applied strat-
egy to summarize the behaviour of a model and to avoid the high computational load 
of performing simulations with e.g. complex bio-physical models for a large number of 
locations and technological alternatives (e.g. in CAPRI-Dynaspat, Britz and Leip, 2009). 
It has been applied in SENSOR to build a tool which only consists of meta-models and 
hence no longer requires the original components in applications (Sieber et al., 2008). 
In SEAMLESS, meta-modelling was to a large extent avoided, to keep the full function-
ality offered by the individual components.
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The experiences gained both from the work on EXPAMOD, from linking CAPRI-
GTAP (Jansson et al., 2009; Britz and Hertel, 2009), from combining economic and Land-
Use Cover Change modelling (Britz and Verburg, 2010), as well as from sequential cali-
bration in CAPRI underline again the crucial role of harmonized data bases (cf. Janssen 
et al., 2009) for combined model application. Harmonization encompasses common clas-
sifications for different dimensions such as time, space, products or processes as well as 
numerical consistency where required. In CAPRI, the data underlying the market and the 
supply models are fully harmonized enabling a swift combined application. In many other 
cases, applications suffer both from differences in definitions, numerical inconsistencies or 
incomplete coverage of the data underlying the components.

We might thus conclude (again) that integrated impact assessment requires increased 
efforts to harmonize data bases of tools from different domains. That harmonization 
requires the combined expertise of modellers and those responsible for official statistics.

5.2 How much and what type of software is needed in IA?

The components underlying the assessment must be operated in an IT environment, 
and especially SEAMLESS investigated into novel IT approaches to host and link com-
ponents (cf. Rizzoli et al, 2008; Wien et al., 2010) and promoted the use of a declarative 
approach, i.e. an approach that describes components and models as well as their relations 
in a formal way outside the procedural software code implementing the linkage. Integra-
tion of components from different disciplines provides a challenge due to diverging tradi-
tions in IT use. Economic modellers often rely on Algebraic Modelling Languages (AMLs) 
which offer a compact, declarative way to code economic models and a transparent link 
to performing solvers for different problem formats (Britz and Kallrath 2012), or use sta-
tistical packages for estimation and simulation of econometric models. The community 
of Agent Based Models has developed its own libraries in object oriented programming 
languages (cf. Luna and Stefansson, 2000)). SEAMLESS has invested in building similar 
libraries for crop-growth models (Donatelli et al., 2010).

SEAMLESS started with a far reaching vision to develop a generic approach allow-
ing to link components, bringing together tool developers from different domains to 
exchange knowledge and visions about concepts and technical realizations. For those 
involved, it was a beneficial process which led to a broader, better informed view on 
existing solutions in the different domains as well as cost and feasibility of harmoniza-
tion in IT across those domains and automated tool usage. A possible conclusion is the 
fact that the existing diversity in technical realization reflects, at least to a certain extent, 
comparative advantages. Some core functionalities offered by the specific solutions in 
use are very hard to replace by generic approaches – licensing of and building interfaces 
to performing numerical solvers for constrained non-linear optimization provides an 
example from economic modelling. Additionally, the investments of the different com-
munities into coding their models and into human capital to efficiently use the underly-
ing software platforms lead to large sunk cost. IT solutions for combined component 
use must be capable of integrating the existing diversity of tools. Therefore, SEAMLESS 
did not reprogram larger pre-existing components such as CAPRI or GTAP in another 
language compatible with the Open Modelling Interface (OpenMI), but rather devel-
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oped OpenMI compliant wrapper applications which call these components (Wien et 
al., 2010; Gijsbers et al., 2007). 

Based on the experiences with SEAMLESS two conclusions can be made. First, bet-
ter and more harmonized documentation of components across disciplines is needed for 
combined applications. At least for those outputs and inputs subject to linkage with other 
components, clear definitions of units used, underlying product and process classification, 
and clear spatial reference must be provided to avoid errors and to ease communications 
in-between modelling communities and with the client. Secondly, fully automated linkage 
across components from different domains is very hard to achieve, and given the dynam-
ics in component development, costly to maintain even with advanced approaches such as 
ontologies (Janssen et al., 2009).

Nevertheless, the paradigm of exchangeable components promoted in SEAMLESS 
could well open the door for further improvements of modelling in other domains as well.

6. Model calibration, validation and uncertainty analysis

6.1 Model calibration, evaluation and validation

IA models are computerized tools to analyse complex real world problems in their 
social, economic, environmental and institutional dimensions. Technically, IA models 
often consist of interlinked sub-models, using outputs from one sub-model as inputs to 
another. In the scientific process of their development each model and preferably the 
entire model chain must be calibrated and evaluated or validated. Model calibration is 
the procedure of parameter adjustments to reproduce the response of the object system 
within a range of accuracy specified by some performance criteria (Refsgaard and Hen-
riksen, 2004; Scholten, 2008); it aims at matching simulation results and measurements 
(observations). Model validation is the substantiation that a model possesses a satisfac-
tory range of accuracy for the intended application of the model (Refsgaard and Hen-
riksen, 2004; Scholten, 2008) and therefore generally requires to specify the purpose of 
the application. Often the terms ‘calibration’ and ‘validation’ have different (operational 
and sometimes even conceptual) meanings across different disciplines. In biophysical sci-
ence, model calibration typically refers to the process of tuning the model parameters, 
each within their theoretically or empirically valid domain such that the simulated values 
best fit the observed values according to some defined statistic (for example minimum 
Root Mean Square Error – Wallach et al., 2011). Generally this is done for observations 
from an experiment in one or several years. Economists would typically term this pro-
cess parameter estimation and use the word ‘calibration’ in contexts where the number 
of observations is not sufficient to identify all model parameters. Consequently, calibra-
tion of complex economic models often implies the use of an exact calibration procedure 
adjusting parameters of a behavioural specification to reproduce observed historical data. 
An example of such a procedure for constrained optimisation models is Positive Math-
ematical Programming (Howitt, 1995).

Biophysical models are typically evaluated or validated by simulating selected pro-
cesses and comparing the results against an independent experimental dataset, not 
used in the calibration exercise. If the validation exercise leads to confidence in the 
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model, it is then often used for simulations in similar conditions without a calibra-
tion procedure, while for dissimilar situations new calibrations must be performed. If 
the model has been calibrated and validated for a representative set of conditions in 
a particular region, it is used in regional studies with regional input data (Therond et 
al., 2011). A complicating factor in regional analyses can be that the biophysical mod-
el does not include all major processes that determine production or environmental 
impacts in the farming reality of a specific region. For instance, cropping system mod-
els generally do not consider pests and diseases, while these are important determi-
nants of farming and regional yields. Then, usually an extra calibration step is used 
to empirically correct for such factor(s) (e.g. Supit, 1997; Wolf et al., 2010 within the 
European Crop Growth Monitoring System).

For (agricultural) economic models, subsequent validation of the model against an 
independent dataset is rare and not the general practice. This is partly due to the fact that 
real human (economic) systems rarely allow performing experiments. Consequently, there 
is often just one historical data set for the model domain, i.e. the data set already used for 
calibration. Models are then often used for forecasting based on the assumption that the 
description of the processes, including the calibrated parameters, also hold for the future. 

Nevertheless, economic models are sometimes tested against out-of-sample histori-
cal data either from the same system used for calibration but a different period of time 
or a similar system for the same time period. Examples in our context are Kanellopoulos 
et al. (2010) who used such a set-up to test the quality of predictions of a bio-economic 
farm model, whereas Heckelei and Britz (2000) assessed different specifications of region-
al supply models regarding their performance in forecasting observed reactions to policy 
changes. Such simulation experiments can be seen as a test of the validity of the calibrat-
ed structural parameters across the time or spatial domain. They also do require, how-
ever, out-of-sample data on all exogenous drivers of the considered tool whose acquisition 
might be costly or prohibitive for complex IA models. Additionally, the trade-off between 
setting observations aside for out-of-sample tests and a more robust estimation of param-
eters due to a larger sample needs to be taken into account. Therefore, such procedures 
have been rarely used for the system models considered here, but we nevertheless plea for 
more ex-post analyses as part of model ‘validation’ exercises.

In a model chain, independent calibration and validation of individual model compo-
nents is adequate as long as no feedbacks exist between the components. If feedbacks do 
exist then also the combined models in the model chain must be calibrated and validated 
adding to the complexity of the task. To our knowledge, examples of such calibration and 
validation exercises are rare in general and in the agricultural system domain they do not 
exist in the literature. Despite these limitations, larger modelling systems such as CAPRI 
have been increasingly applied in policy relevant contexts3. The required acceptance for 
this development could be interpreted as the outcome of an ‘extended peer review’ (Van 
der Sluijs, 2002) created by many iterations of applications, publications and user feed-
back. Such a type of validation might be the only one currently feasible for complex IA 
modelling tools as a whole.

3 For a list of projects and publications with CAPRI applications, see <http//www.capri-model.org>. 
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6.2 Uncertainty analysis

Given the complexity of the problems addressed and the complexity of the models 
themselves, IA models are subject to various types and sources of uncertainties which 
may have important implications for their reliability and acceptance. Proper calibration 
and model validation may take away some of these uncertainties, but models may still 
reproduce observed data for the wrong reasons or may reproduce historical data while not 
making proper forecasts. To become useful tools, therefore, an assessment of uncertainties 
in IA models is essential. Uncertainty analysis may be defined as the assessment of uncer-
tainty in model results due to incomplete knowledge of model parameters, input data, 
boundary conditions and the conceptual model. Ideally, the combined effects of these 
uncertainties are taken into account. Furthermore, the uncertainty originating from the 
decision context (exogenous factors) may be included (Scholten, 2008). Sensitivity analy-
ses can be regarded as a method contributing to uncertainty analysis.

Uncertainty analysis in IA models has received considerable attention within the scien-
tific literature. An important body of literature has focused on typologies of uncertainties. 
One such typology, based on others, is proposed by Walker et al. (2003). They discriminate 
between statistically quantifiable uncertainty, uncertainty in the scenario definition (scenar-
io uncertainty) and uncertainty due to an imperfect understanding of the underlying prob-
lem (recognised ignorance). These three types of uncertainties can pop up at different plac-
es in an IA model, i.e. in the model boundaries (what is endogenous and exogenous to the 
model), model structure (equations) and its technical implementation (code), model inputs 
and model parameters. All these uncertainties will likely accumulate in the model output. 
However, it is unclear if these uncertainties increase or decrease actual quantitative errors.

A second topic in the literature refers to tool catalogues and guidelines for selecting 
appropriate methods (van der Sluijs et al., 2003) and frameworks for the systematic assess-
ment of uncertainties (e.g. Krayer von Krauss and Janssen, 2005; Janssen et al., 2005). 
Since IA models are often developed with the aim to provide scientific input to decision-
making processes, they can also be characterised as “science-policy interfaces” (van der 
Sluijs, 2002; Watson, 2005) or “bridge building tools between science and policy” (Rot-
mans and van Asselt, 2001). This function can only be satisfied if the information sup-
plied by and through the model meets the information requirements of the policy design 
process. In practice, much of the science and literature has focused on uncertainty from 
a modeller’s perspective and generally uncertainty analysis has been treated much more 
extensively in biophysical models, such as cropping system models (e.g. Wallach et al., 
2011; Payraudeau et al., 2007) than in bio-economic and economic models (e.g Hertel et 
al., 2007). Bio-economic farm models typically contain very large numbers of technical 
coefficients varying by site. This renders the uncertainty analysis of relevant model out-
puts difficult because uncertainty information for all model parameters is rarely available. 
Therefore, uncertainties are often only assessed with respect to econometrically estimated 
parameters using standard errors for draws in Monte Carlo analyses. A broader assess-
ment requires use of subjective distributions to include parameters for which no empirical 
uncertainty distributions are available. 

As written above, parameters are not the only source of uncertainty and the number 
and complexity of uncertainties inherent to IA modelling in agriculture suggests to take a 
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more user-oriented approach, where the type of uncertainty analysis and resulting infor-
mation is defined by the final model (result) users (IIASA, 2002; CEC, 2004; Gabbert et 
al., 2010). This helps to focus the uncertainty analysis on the relevant model outputs.

7. Summary and conclusions

IA tools for agriculture are developed and used to inform policy processes about 
social, economic and environmental impacts of legislative proposals. This paper has iden-
tified some key scientific challenges in that respect. Firstly, impacts in all three sustain-
ability dimensions depend to a large extent on attributes which show a high variability 
across farms, both relating to location factors, farm management and further attributes 
such as farm size. Capturing farm heterogeneity while at the same time modelling inter-
actions across time and regional scales remains a challenge. Such interactions encompass 
market interactions, social interactions such as belief formation regarding alternative 
technologies, and environmental interactions such as for example development of pests 
and diseases in landscapes.

Secondly, spelling out environmental impacts, though also economic and social, asks 
for a detailed technology description which can often only be achieved by close integra-
tion of bio-physical and economic models. Challenges here are manifold: (a) bio-physical 
models often work on field scale, whereas economic models typically represent averages of 
administrative regions; (b) bio-physical process models have typically both a high tempo-
ral resolution (often days) and cover long simulation horizons based on recursive-dynam-
ic simulations, whereas most technology rich programming models are comparative static 
with a medium term horizon; (c) assessing alternative technologies requires identification 
of relevant future options which may be numerous and selections are often subjective, 
whereas their simulation requires availability of models; (d) last but not least, data avail-
ability regarding farm management is low, and an inclusion at least of some basic attrib-
utes such as fertilizer application rates and timing, animal housing systems and manure 
management would be highly beneficial.

Thirdly, combined application of tools and models also calls for combined model 
calibration and validation. Different disciplines have different traditions in that respect. A 
potentially promising activity is combined ex-post validation exercises, also to increase the 
common understanding about calibration and validation. At the same time, more research 
on how to assess and communicate uncertainties in combined tool use is necessary.

From the technical side, more focus on the implementation of Quality Assurance in 
the coding process (incl. documentation) of IA tools seems to be beneficial. Component 
and tool linkage while maintaining flexibility in software use for components from differ-
ent disciplines and domains remains a challenge. 

There are many other important aspects and challenges in IAM which could not be 
covered by our paper, and we will mention a few. From an institutional viewpoint: how 
can we ensure maintenance of existing tools without losing scientific impetus and com-
petition? What is the impact of tool use in IA on policy processes? How to understand 
and improve the policy-science interface, i.e. the interaction between scientists involved 
in the IA and various levels of administrations, stakeholders and decision makers? And, 
there are further scientific challenges, for instance on how we can improve knowledge 
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about alternative ways to present agricultural systems by computerized, independent com-
ponents which are integrated into tools. How much detail is needed and what is the trade 
off with flexibility? How to address policies and developments affecting agriculture jointly 
with other sectors while maintaining detail in representing the agricultural system? There 
are many promising, so far more case study type, approaches such as regional CGEs or 
multiplier analysis where it remains to be seen if they can be successfully expanded to 
Pan-European type assessments (Britz et al. 2011, Viaggi et al. 2010).

IAM is a growing research field of high societal relevance with many remain-
ing challenges. It offers not only agricultural economists, but all agricultural scientists 
ample opportunity to demonstrate advantages of an interdisciplinary and theme-focused 
approach to research. It also promotes a healthy balance between further specialization in 
different fields of agricultural sciences and deepened interaction between these fields.
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