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1.0 Introduction 

Processor performance is increasing rapidly as the number of cores on the chip increases at 

each release of a new generation of central processing unit (CPU) and with multicore, CPU 

is becoming not only faster but more powerful and efficient. The emergence of two families 

of computing technology (multicore and cloud computing) has the potential to improve the 

computational system capacity to the average computer user (Nafaa, 2015). Air Force 

Research Laboratory (2012) reported that in the future, computer chips with 1,000 to 

10,000 cores on one slice of silicon will be produced with the recent technological 

advancement. The growth in hardware manufacturing technology and the progressing 

evolution which agrees to Moore’s law, could afford computer microprocessor chip with 

thousands of processor cores on a single microprocessor in the next decade (Wentzlaff and 

Agarwal, 2016). The evolution of multicore processors suggest that single-stream 
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Central processing will be composed of thousands of heterogeneous 

cores in the near future. The existing systems are difficult to scale, adapt 

or tackle the heterogeneous nature of the future multicore technology. 

This study developed a resource performance model for efficient 

distribution of resources to Operating System (OS) services. A Multi-

Agent based method was used to design the architecture of the model 

while the Unified Modeling Language and flowchart were used in the 

detailed design of the proposed model. The model was simulated using 

Java 2 Enterprise Edition. In simulating the model, four (4) variables were 

used to determine the processor core capacity. The result of the 

simulation shows an efficient distribution of 5000 cores to four (4) OS 

services (servers) with each having 1250 fleet of servers. The percentage 

differences in the four of servers from the minimum are 0.11%, 0.09% 

and 0.04% respectively. The result shows that the distribution of 

processor cores to OS services is efficient since the differences in total 

performance function of the fleets of servers were very little. Therefore, 

to maximize the profit that comes with multicore systems, this efficient 

model is needed for processor cores distribution to OS service in a 

Factored Operating System. 
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performance may not get louder in the future. Microprocessor manufacturers have resorted 

to integrating multiple processors onto a single chip (Wentzlaff and Agarwal, 2016).  

 

In respect to the anticipation of exponential increase in a number of cores, the genre has 

fundamentally changed. The question and the problem now is how to efficiently utilize the 

abundant resources available, and not how to contend with scarce system resources. There 

exists a need for the software developers to step up its development technology to produce 

systems that are scalable and adaptable to the ever-changing hardware environment. 

Furthermore, the future central processors will be composed of thousands of 

heterogeneous cores, while the design of the existing systems are such that they are not 

scalable. The benefits that the multicore technology might not be harvested, hence the 

necessity of this research (Nafaa, 2015). 

 

Factored Operating System (FOS) is, therefore, designed with this motive, taking scalability 

and adaptability as the primary design constraints. FOS is a new operating system designed 

for multicore processors and cloud computers. In FOS, OS services are implemented as 

independent distributed systems running on different cores from user applications where 

each service is divided into a fleet or parallel set of collaborating processes that commune 

using messages. FOS aims to design system services that scale from a few to thousands of 

cores (Air Force Research Laboratory, 2012). 

This study is therefore aimed at developing resource performance model for efficient 

distribution of resources to OS services for a FOS to address the inefficiency of the 

conventional OS in utilizing multicore resources. This is allows the resource performance 

model to compute resource capacity, and efficiently distribute these resources to various 

OS services that will form fleets of independent distributed servers. For a better scalability 

to be attained, system resources would be employed as many processor cores running 

simultaneously or as an individual, rapid and potent core for executing a single-threaded and 

serial part of the application processes.  

2. Review of Relevant Literature 

The International Technology Roadmap for Semiconductors, ITRS, (2015) reported that in 

each new generation of technology, the producers of microprocessors often increment the 

relative frequency of the processors, which was possible on account of Moore’s Law. In the 

early twenty-first century, a physical cap in the form of thermal limits was encountered. By 

increasing both the number of transistors on a chip and rising the clock speed was not 

achievable. Attempting increased number of transistors on a chip and rising the clock speed 

induced severe trouble associated with heat dissipation. Therefore, microchip producers 

resolved to go on with Moore’s Law by yet manufacturing microchips with an increased 

number of transistors having insignificant frequency increments. Hence, the main reason 

behind the change of viewpoint, from a single core technology to that of multicore systems.  

Borkar (2007) affirmed that Moore’s Law remains in effect whenever the increment in the 

number of transistors on integrated circuits is maintained. It has, therefore, become 

reasonable to anticipate computer systems with thousands of heterogeneous processor 
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cores in the future. To this end, it becomes critical for operating systems to scale with the 

new hardware technology. The resources of the upcoming multicore systems should be 

managed with efficiency other than expected, else it will be improbable for application 

processes executing on such a platform to take full benefits of the newly available 

technology. 

According to Laplante and Milojicic (2016), the deceleration of processor scaling due to 

Moore’s law resulted in the resurgence research in new types of computing structures, the 

need arises for rethinking operating systems paradigms. It is envisioned that by 2030 

operating systems will be created using a new technology paradigm that would be nearly 

unrecognizable today. 

Wickizer et al. (2008) and Wentzlaff and Agarwal (2009) demonstrated that locks may not 

proffer the wanted scalability sought after by the new technological developments. Thus, a 

study of the factored operating system was incited. Their performance differences were 

made visible depending on core count. Two observations were made in this research, they 

were; (i) with an increase in the number of cores, the lock contention cost factor became 

the largest, and the synchronization overhead was seen to have consumed most resources. 

(ii) the total execution time was heightened with more than eight active cores in the 

benchmark. The research indicated that synchronizing the operating cost induced by locks 

was the reason for performance declined. Thus, if software design remains as it is at present, 

lock contention will continue to be a big problem to multicore processor systems. 

Schart (2016) identified three fundamental design problems of OS for multicore structure: 

they were locks, sharing of processor cores and cache-coherent shared memory. In this 

study, the impact of these challenges on scalability and proposed locks avoidance to counter 

scalability threat was highlighted. This would be achieved via splitting up operating system 

services onto dedicated cores where processes will request for operating system 

functionality in a concurrent manner. The work also proposed the splitting up of application 

and OS, so as to avoid sharing of cores with each other, rather, each core will be dedicated 

to every thread on the system. Lastly, instead of cache coherent shared memory, the work 

proposed message passing to be used for operating system or application communication.  

The work offered some improvements, but it is not clear, how to structure an OS with 

locks that proffer satisfactory design scalability and load scalability as well. Hence, it is 

sensible to name lock as a challenge because of the technological advancement of multicores. 

Reuther et al. (2017) presented a detailed feature analysis of 15 supercomputing and big data 

schedulers. For big data workloads, the scheduler latency was the most critical performance 

characteristic of the scheduler. A theoretical model of the latency of these schedulers was 

developed and used to design experiments targeted at measuring scheduler latency. Detailed 

benchmarking of four of the most popular schedulers Slurm, Son of Grid Engine, Mesos, and 

Hadoop YARN were conducted. The model results indicated that scheduler performance 

could be characterized by two key parameters: the marginal latency of the scheduler ts and a 

nonlinear exponent αs. For all four schedulers, the utilization of the computing system 

decreased to less than 10% for computations lasting only a few seconds, while multi-level 
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schedulers such as LLMapReduce that transparently aggregated short computations could 

improve utilization for these short computations to >90% for the four schedulers that were 

tested. Thus, conventional supercomputing schedules currently filled the role of managing 

heterogeneous resources but have inherent scalability limitations.  

In another study, Asmussen et al. (2016) integrated cores and memories into a packet-

switched network-on-chip (NoC) and equipped each core with a Data Transfer Unit (DTU) 

as the common hardware component. The only means for the core to communicate with 

other cores or memories was through the DTU, offering message passing and memory 

access. Controlling the DTU allowed the control of the core and therefore, the software 

running on the core. OS services like file systems and network stacks were provided based 

on a core-neutral communication protocol between DTUs. The work introduced network-

on-chip-level isolation, presented the design of microkernel-based OS, M3, and the familiar 

hardware interface, and evaluated the performance of the prototype in comparison to Linux. 

The result showed that without using accelerators, M3 outmatches Linux in some 

application-level benchmarks by more than a factor of five. However, this design decreases 

system utilization as the processing element (PE) was idle for a specific time, waiting for an 

incoming message or the completion of a memory transfer. 

Furthermore, Clements et al. (2013) introduced a scalable commutativity rule that provides 

a new approach for software developers to understand and exploit multicore scalability right 

at the software interface. The work introduced COMMUTER to aid programmers to analyze 

interface commutativity and test to ensure implementation scales in commutative situations. 

COMMUTER was applied to 18 POSIX calls and the results were used to guide the 

implementation of a new research operating system kernel called sv6. Linux scales for 68% 

of the 13,664 tests generated by COMMUTER for these calls and COMMUTER finds many 

problems that have been observed to limit application scalability, while on the hand, the sv6 

scales for 99% of the tests. Thus, using sv6, it was observed that it was practical to achieve a 

broadly scalable implementation of POSIX by applying the rule, and that commutativity was 

also essential to achieving scalability and performance on real hardware. However, it became 

hard to identify bottlenecks and impractical to fix problems since product testing was done 

late in the production.  

Rakhee and Garg (2014) provided an overview to multicore processors, multicore 

processor parallelism and performance measurement for multicore Central Processing Units 

(CPUs).and addressed the techniques used to evaluate multicore CPU performance, metrics, 

factors, benchmark tools used to measure multicore CPU performance. The works were 

anticipated new approaches in multicore CPU performance analysis as multicore CPU 

production increases to new levels. 

Baumann et al. (2009) experimented with an Advanced Micro Devices (AMD) system with 

four CPUs and each with four processors, making sixteen processors used for the 

benchmarks. At first processes were devoted to a processor updating the space of a little 

part of memory, and cache coherence techniques on hardware responded by releasing these 

modifications to other processor cores. As core counts grew, it was observed that the 
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performance declined, demonstrating inadequate load adaptation. Efficiency was noticed to 

drop by a factor of 40 when achievements between one core and sixteen cores were 

compared. Subsequently, inter-core communication (messaging) was tested and was 

observed to have performed better. No degradation whatsoever was noticed by the 

increase in number of cores using a message passing method. Where delay was seen is when 

the focus was not on only on passing a message, but on executing it as well. However, in this 

circumstance, a linear increase in time was detected, which is attributed to a queuing delay. 

Figure 1 illustrates the core layout in FOS. It depicts three applications and operating system 

server cores. Two applications denoted as A0 and A2 enjoy the benefit of user-space cache-

coherent shared memory. The operating system servers denoted as S do not utilize cache-

coherent shared memory, but interact via messaging. Application A1 does not require cache-

coherent shared memory. This feature can either be enabled or excluded, depending on the 

specific requirements of an application. 

 

 

 

 

 

 

 

 

Wentzlaff et al. (2011) evaluated fleets within FOS and designed and implemented three 

critical fleets (network stack, page allocation, and file system) and compared with Linux. The 

comparisons showed that FOS achieved superior performance and had better scalability 

than Linux for large multicores. With 32 cores, FOS page allocator performed 4.5 times 

better than Linux, and FOS network stack performed 2.5 times better. Additionally, the 

work demonstrated how fleets could adapt to changing resource demand and the 

importance of spatial scheduling for excellent performance in multicores. Their experiments 

have demonstrated that this design is appropriate for the multicore design architectures of 

the future while proffering improved scalability than the existing solutions. The uniqueness 

of factored operating system design architecture grants operating system the privilege to 

scale to high core counts without meddling with the application.  

Wentzlaff et al. (2011) experiment concerning the impact of proper spatial scheduling on 

performance in multicore processor systems used the read-only file system fleet with ‘good’ 

and ‘bad’ layouts and was executed on a 16-core Intel Xeon E7340. This machine had a 

minimal intra-socket communication cost applying user-space messaging, which revealed 

significant communication heterogeneity between intra-socket and inter-socket 

communication. The file system fleet consisted of four servers, and the clients’ number 

increases from one to ten. Single file system server resides on each socket in the good 

layout experiment. The file system component of libfos was self-aware and selected the local 

file system server for all requests. In the bad layout experiment, all servers resided on a 

single socket and clients were distributed among remaining sockets. The result of the 

experiment showed that good layout is uniformly better than the lousy layout in 

Figure 1:  Cores Layout in a FOS Environment (Source: Schartl, 
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Figure 1: Cores Layout in a FOS Environment (Source: Schartl, 2016) 
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performance. For large multicores with hundreds of cores, it was anticipated that 

communication heterogeneity will increase further. The authors asserted that global 

structures that achieved symmetric performance, e.g., buses, will not scale to large core 

counts and new on-chip will expose heterogeneous communication costs. The work 

maintained that future multicores would feature much more significant heterogeneity and 

commensurately higher end-to-end performance inequality from spatial scheduling. 

To improve the system performance through utilizing the exponential increase in transistor 

hardware, microprocessor industries have reversed to integrating multiple processors onto 

a single die. Some present examples include Intel and AMD’s Quad-core offerings, Tilera’s 

64-core processor, and an 80-core Intel prototype processor. According to major 

microprocessor manufacturers’ suggestion, the trend of integrating more cores onto a single 

microprocessor will go on. By inferring the doubling of transistor resources every one and 

half year, in a short period, over 6000 processor cores on a single microprocessor will be 

integrated (Beckmann, 2010; Wentzlaff and Agarwal, 2016). 

Efforts have been applied to combat heterogeneity problems of hardware as well as 

scalability and adaptability, however, conventional supercomputing schedules currently filled 

the role of managing heterogeneous resources but have inherent scalability limitations. How 

to structure an OS with locks that can proffer satisfactory design scalability and load 

scalability as well remains a challenge. Moreover, some of the proposals design, decreases 

system utilization as the processing element was idle for a specific time, waiting for an 

incoming message or the completion of a memory transfer. Also, a linear increase in time 

was detected, which is attributed to a queuing delay (Salto and Alba, 2015). 

Thus, since caches could be employed to their fullest potency, load scalability can be 

increased. The new method is to maintain operating system services and application code on 

different cores, as free cores becomes a commodity. It is, therefore, beneficial that a set of 

cores be devoted to operating system services only, since the number of cores is in the rise, 

having observed that processor core sharing inflicts extra costs in terms of cache misses. It 

is highly believed that this will result in more efficient use of the available hardware when the 

proposed resource performance model for efficient distribution of resources to OS services 

for a FOS is implemented (Salto and Alba, 2015).   

3. Methodology 

The research methodology adopted in this work is the Multi-Agent Oriented Software 

Development Method. To develop a resource performance model for efficient distribution 

of resources to Operating System (OS) services for a Factored Operating System, a Multi-

Agent based method is used to design the architecture of the model.  A Unified Modeling 

Language (UML) and flowchart were used to design the proposed model. The model is 

simulated using Java 2 Enterprise Edition. In simulating the model, four (4) variables are were 

to determine the processor core capacity, they are: processor type (pt), processor speed 

(sp), register size (rs) and cache size (cs). Random integer numbers were generated between 

1 to 40 to represent the values of the variables, each with an associated weight of 0.4, 0.3, 

0.2 and 0.1 respectively. These were used in order of priority to compute and determine 
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the rank of processor cores capabilities. These processor cores were then logically and 

efficiently distributed to the four (4) OS services using the algorithm proposed for this 

model to form fleets of independent distributed servers. One advantage of agent-based 

architectures is that it is relatively easy to extend and expand, as new conditions are 

discovered or prioritized. The method is an attractive idea for complicated and large 

systems for which there is no manual process or existing system to help determine the 

requirements. 

3.1 Proposed Design of the Resource Performance Model 

The resource performance model computes the capacity resources and distributes it to the 

OS services. This is intended to compute the capacities of processor cores and distributes 

them to OS services (PC security management, file system naming, scheduler and file 

management). This is to enable the schedulers to allocate resources optimally to the 

requesting process jobs, having estimated their resource requirements, to attain efficient 

system throughput. 

Design principles applied in this research are to replaces the traditional OS use of time 

multiplexing in processing with application code via a system call interface with space 

multiplexing. Also, OS services are factored into function-specific services and implemented 

as a parallel independent distributed service. This is because operating system services are 

divided from user application code and executed on separate cores. Moreover, each service 

is divided into a fleet or parallel set of collaborating servers that interact using messages. 

The aim is to develop systems that scale from a few to thousands of cores. 

3.2 The Proposed Architecture of Resource Performance Model 

The architecture of the proposed framework is shown in Figure 2. In this framework, a 

multi-agent method is modeled in the form of a distributed system designed to represents 

resource performance model as a group of autonomous agents. The resource agent extracts 

resource core information, computes capacities of the resource cores and distributes these 

resources to the various operating services to form fleets of servers. 
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Figure 2: The Architecture of the Resource Performance Model 

3.3 The Resource Performance Model 

The proposed resource performance model is depicted in Figure 3, which shows the 

activities performed, such as: computing resource capacity and distributing resources to 

operating system services.  The parameters of both the resources R are input into the 

model. The system begins by extracting the parameters of and Rj; where Rj represents 1 to n 

number of resources each with four parameters as well. The computed resources are then 

distributed to the various operating system services to form fleets of servers. The resource 

performance sub-model shows that for each 1 to n resource (processor cores) performance 

function (PF) were computed and the results generated. Each of the resource was associated 

with its performance capacity. The algorithm described the factors that picture the quality of 

a server processing capability, such as processor type, speed, register and cache size. The 

server performance was calculated to gauge the processing capability of each server. Thus, 

this was used as performance metrics for optimal servers’ distributions. 

For the purpose of this study, four processor variables were used, they include; processor 

type (pt), processor speed (ps), register size (rs) and cache size (cs). Therefore, each 

available server (S) was ranked in accordance with its respective computation capability. The 

server performance function (PF) is expressed as: 

 𝑃𝐹(𝑆) = (β1 x pt) +  (β2 x ps) +  (β3 x rs) +  (β4 x cs)         (1) 

where β1, β2, β3 and β4 are the weights of the first to fourth terms respectively, for 

instance, β1 = 0.4, β2 = 0.3, β3 = 0.2 and β4 = 0.1, this is in descending order of priority. 

Higher PF value for a server means having better performance possibility as opposed to 

other servers. Hence, by applying the ranking method, servers were ranked according to 

their PF values. If the PF value of a server was high, then the server rank was high as well.  
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The resource distribution flowchart module in Figure 3 depicts resource distribution into 

various operating system services. It showed 1 to n number of operating system services 

(e.g. system file naming, file management, scheduling, PC security management and error 

detection), and 1 to n number of processor cores (resources) to be distributed to the 

services. Resource Rj is assigned to service Si, where j = 1 to n and i = 1 to m respectively. 

This algorithm fully distributed resource cores to the operating system services forming 

fleets of servers. The allocation of resources to operating system services was in sequential 

order until all the operating system services were allocated a processor core in the first 

round and also the next. This algorithm addressed the allocation problem pointed out by 

Beckmann (2010) as the current scheduling problem in factored operating system. 

Furthermore, when an additional resource was added to the system at any time, the 

resource agent followed the same procedure to redistribute the processor cores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The Flowchart of the Proposed Model 

 Resource Rj; j=1to n 

No 

Yes 

Compute PerformanceFunction(PF) = 

(β1 x pt) + (β2 x ps) + (β3 x rs) + (β4 x cs) 

Rj = PFj; j=1-m 

Is 

 j < = n? 

Print PFj; j=1-m 

Start 

Get parameter Rj; j=1...n 

 

End  

No 

Yes 

No 

Yes 

OS Service(Si); i=1to 4 

 

Allocate PFj to Si 

Is 
j <= n? 

j = m - 1 

Is 
i <= 4&j>0? 

Update Repository 

http://www.azojete.com.ng/
file:///C:/Users/HP/Documents/Engr%20Oyeniyi/azojete/AZOJETE%20ARCHIVE/UPLOAD/VOL%2018%20NO%203/azojete18no_3firstbatchofpapers/ior.agaji@uam.edu.ng


 

Arid Zone Journal of Engineering, Technology and Environment, September, 2022; Vol. 18(3):413-426. ISSN 1596-2644; e-ISSN 

2545-5818; www.azojete.com.ng 

 

Corresponding author’s e-mail address: ior.agaji@uam.edu.ng      422 

3.4 The Sequence Diagram of the Proposed Model 

Figure 4 depicts a unified modelling language (UML) sequence diagram that described agents’ 

interaction in a manner in which they interacted with each other. The resource agent 

computes the capacity or performance function of each resource and distributes the 

resources to the various operating system services. 

 

 

 

 

 

 

 

Figure 4: The Sequence Diagram of the Proposed Model 

The model was simulated using java-2 Enterprise Edition. The properties of an array were 

used as signals that formed the initial data generation to train the model. The array length 

and the sum values of the array elements were used as the input parameters of the process 

jobs. A randomly generated data between -1 and 1 were used as input weights for the 

network. 

4 The Experiment  

In the experiment, the processor cores performance capacity was computed and distributed 

to the OS services. This experiment computes the capacities of processor cores and 

distributes them to the four OS services identified in the simulation of the model. In this 

experiment, 5000 processor cores were used for the simulation purpose. The data input for 

this experiment include the Processor Type, Processor Speed, Register Size, and Cache Size 

which are used as processor core parameters. These parameters were used to determine 

the capacity of each processor in the simulation. In Figure 5, the input page for the 

experiment is depicted. 

 
Figure 5: Processor Computation and Distribution Input Page 

5 The Result and Discussion 
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The sample results of the computed and distributed processor cores are shown in Tables 1, 

2, 3 and 4, along with the total number of 1250 processors for each server. Where FMA and 

SCH represent the File Manager and Scheduler respectively. 

 

Table 1: File Manager Server    Table 2:  Scheduler Server 

            

FILE MANAGER 

FLEET OF SERVERS INFORMATION! 

Processor Id Performance 

(GHz) 

FMA-1 40.0 

FMA-56 39.0 

FMA-57 38.0 

FMA-120 37.0 

FMA-121 37.0 

FMA-122 36.0 

FMA-249 33.0 

FMA-250 32.0 

FMA-395 27.0 

FMA-1080 6.0 

FMA-1085 5.0 

FMA-1142 4.0 

FMA-1143 4.0 

FMA-1147 3.0 

FMA-1148 3.0 

FMA-1211 2.0 

FMA-1212 2.0 

FMA-1213 2.0 

FMA-1249 1.0 

FMA-1250 1.0 

Total Capacity 25541.0          

  

 

SCHEDULER 

FLEET OF SERVERS INFORMATION! 

Processor Id Performance (GHz) 

SCH-1 40.0 

SCH-2 40.0 

SCH-56 39.0 

SCH-57 38.0 

SCH -120 37.0 

SCH -250 32.0 

SCH -305 31.0 

SCH -306 30.0 

SCH -908 12.0 

SCH -909 12.0 

SCH -910 11.0 

SCH -969 10.0 

SCH -972 9.0 

SCH -1023 8.0 

SCH -1029 7.0 

SCH -1079 6.0 

SCH -1080 6.0 

SCH -1085 5.0 

SCH -1142 4.0 

SCH -1250 1.0 

Total Capacity 25523.0 
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     Table 3: System File Naming Server     Table 4: PC Security Manager Server 

SYSTEM FILE NAMING 

FLEET OF SERVERS INFORMATION! 

Processor Id Performance (GHz) 

SFN-1 40.0 

SFN -121 37.0 

SFN -122 36.0 

SFN -123 36.0 

SFN -184 35.0 

SFN -185 34.0 

SFN -249 33.0 

SFN -785 15.0 

SFN -849 14.0 

SFN -850 13.0 

SFN -851 13.0 

SFN -908 12.0 

SFN -909 12.0 

SFN -910 11.0 

SFN -1079 6.0 

SFN -1080 6.0 

SFN -1085 5.0 

SFN -1142 4.0 

SFN -1143 4.0 

SFN -1147 3.0 

SFN -1249 1.0 

SFN -1250 1.0 

Total Capacity 25513.0 
 

 

 

  

 

PC SECURITY MANAGEMENT 

FLEET OF SERVERS INFORMATION! 

Processor Id Performance (GHz) 

PSM -1 40.0 

PSM -2 40.0 

PSM -56 39.0 

PSM -57 38.0 

PSM -120 37.0 

PSM -122 36.0 

PSM -123 36.0 

PSM -783 16.0 

PSM -784 16.0 

PSM -785 15.0 

PSM -849 14.0 

PSM -969 10.0 

PSM -970 9.0 

PSM -971 9.0 

PSM -972 9.0 

PSM -1023 8.0 

PSM -1029 7.0 

PSM -1079 6.0 

PSM -1080 6.0 

PSM -1085 5.0 

PSM -1142 4.0 

PSM-1250 1.0 

Total Capacity 25533.0 

4.3 Discussions 

Tables 1, 2, 3 and 4 constitute the result of processor cores computed and distributed to 

OS services that included file manager, scheduler, system file naming and PC security 

manager services of the OS. The sever capacities were observed to range from 1GHz to 

40GHz as performance capacity in the tables. Table 1 shows that Processor Id FMA-1, 

Processor Id FMA-395 and Processor Id FMA-1080 with Performance Capacity of 40.0GHz, 

27.0GHz and 6.0GHz respectively were allocated to the File Manager Server. The result in 

Table 1 is the File Manager Server of the OS service that consists of 1250 sets of processors 

allocated to it. This is also observed with the other OS services in Table 2, the Processor Id 

SCH-1, Processor Id SCH-972 and Processor Id SCH-1142 with Performance Capacity of 

40.0GHz, 9.0GHz and 4.0GHz respectively were allocated to the Scheduler Server. The 

result in Table 2 is the File Manager Server of the OS service that consists of 1250 sets of 

processors allocated to it. In Table 3, the Processor Id SFN-1, Processor Id SFN-850 and 

Processor Id SFN-1250 with Performance Capacity of 40.0GHz, 13.0GHz and 1.0GHz 

respectively were allocated to the System File Naming Server. The result in Table 3 is the 

File Manager Server of the OS service that consists of 1250 sets of processors allocated to 

it. In Table 4, the Processor Id PSM-1, Processor Id PSM-970 and Processor Id PSM-1085 

with Performance Capacity of 40.0GHz, 9.0GHz and 5.0GHz respectively were allocated to 

the PC Security Management Server. The result in Table 2 is the File Manager Server of the 

OS service that consists of 1250 sets of processors allocated to it. The performance 
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capacities of these OS services were summed, giving a total of 25541.0GHz for file manager, 

25513.0GHz for scheduler, 25523.0GHz system file naming and 25533.0GHz for the PC 

security manager. Thus, the framework used these results to aid optimal scheduling of 

process jobs concerning their resource requirements. It is observed that the resource 

computation and distribution to various OS services were adequately accurate and nearly 

equal in capacities that can proffer solution to the allocation problem (how many cores 

should be allocated to each OS service) as pointed by (Beckmann, 2010).  
 

Moreover, the result of the simulation shows an efficient distribution of 5000 cores to four 

(4) OS services (servers) with each having 1250 fleet of servers. The percentage differences 

in the four of servers from the minimum are 0.11%, 0.09% and 0.04% respectively. The 

result shows that the distribution of processor cores to OS services is efficient since the 

differences in total performance function of the fleets of servers were very little. Therefore, 

to maximize the profit that comes with multicore systems, this efficient model is needed for 

processor cores distribution to OS service in a Factored Operating System. 

5. Conclusion 

This study was embarked upon because the conventional OS with a single scheduler is 

inefficient in multicore resource utilization, particularly with the advancement of multicore 

hardware technology. The framework has computed resource capacities and efficiently 

distributed processor cores to the various OS services in FOS with a negligible difference in 

capacities. The work enables multiple processes to access scheduling services in parallel, 

enable simultaneous allocation of processor cores to processes, thereby, utilizing the 

abundant system’s processor cores. The model surmounts the scalability and adaptability 

issue that comes with ever growing core counts presented by the advancement in hardware 

technology. A performance processor core resource was developed to compute resource 

capacity and then allocated these processor cores to the various FOS services. This enables 

the framework to function in a distributed fashion and also proffered solution of cores 

allocation to OS services which is a major scheduling problem of FOS identified by 

Beckmann (2010). To improve on the overall performance throughput of the model, a 

process job transfers between the processor cores will be implemented in the future. 
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