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1.0 Introduction 
Steel reinforcement corrosion in concrete structures is a dominant factor causing structural 

failures under short-term and long-term considerations leading to loss of serviceability and 

eventual collapse of concrete structures. Several research works focused on reinforcement 

corrosion, detection, testing and repair (Tuutti, 1982; Broomfield, 1997; Rodriguez et al., 

1997; Val, 2007; Li et al., 2019; Shahid et al., 2020) with the advancement in detection and 

testing methods due to its reoccurrence and increasingly high cost of maintenance repairs in 

many structures including marine structures, bridges, and other structures. For instance, it 

has been reported that corrosion damage costs in the USA is worth about half a million 

dollars and globally about $100 billion per annum (Broomfield, 1991; 1997; Li et al., 2007). 

Reinforcement corrosion is mainly induced by the presence of chloride ions in concrete 

causing complete and localized de-passivation of the rebar and when carbon dioxide in the 

air reacts with cement matrix and the resulting interstitial solution is acidified while in 

contact with rebar (Montemor et al., 2003). Reduced electrical resistivity, permeability issues 

owing to water-cement ratio, microcracks, contaminated concrete mix and inadequate 

concrete cover are other factors influencing reinforcement corrosion propagation in 

concrete (ACI C222, 1996; Bazant, 1979). In addition, Permeation, absorption and diffusion 

are harmful transport in concrete. Concrete under loading leads to microcracks especially as 

stress levels increases (Okenyi 2018), 
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Rebar reduction in its cross-section, loss of the bonding force between rebar and concrete, 

volumetric expansion caused by corrosion producing split-tensile stresses (Coronelli and 

Gambarova, 2004; Auyeung et al., 2000; Broomfield, 1997) including other alterations to 

steel ductility are processes leading to the damage of reinforced concrete structures (Zhu 

and François, 2014). Numerous evaluation techniques for corrosion investigation in 

reinforced concrete have been used over time in both research and practice.  

The goal has always been to be able to establish the relationship existing between corrosion 

growth and time as means of adequately predicting the service life of a structure undergoing 

degradation considering the various methods that are now in use. This paper focused on 

corrosion in reinforced concrete structures holistically with a focus on the review of 

corrosion monitoring techniques used to determine the most effective and how these 

techniques were useful in detecting concrete durability issues and its overall service life 

prediction. 

1.1 Mechanisms of Steel Corrosion in Concrete 

It is important to note that the process of steel reinforcement corrosion in concrete is 

electro-chemical through an exchange of electrons and movement of charges especially as it 

occurs in an aqueous medium (Uhlig and King, 1972). In this scenario, the concrete pore 

water serves as that medium i.e., the electrolyte and the electrode consisting of a composite 

of combined anode and cathode is the corroding steel surface which is electrically connected 

along the body of the steel reinforcement as shown in Figure 1, forming the electrochemical 

cell and the reaction occurring at both electrodes are named “half-cell reactions” (ACI 

C222, 1996). The corrosion formation mechanism is either microcell or macrocell dictated 

by the distance between the anodic and cathodic reactions. 

 

Figure 1: Corrosion formation in concrete (Carino, 1999) 

At the anode, an oxidation reaction occurs causing the degradation of the steel in which iron 

Fe is oxidized to form iron cations affected by aggressive environment conditions, pH of the 

electrolyte as shown in reaction equation (1): 

                     (1) 

While at the cathode, a reduction reaction occurs balancing equation (1) in which hydrogen 

ions are reduced to form hydroxyl anions in reaction equation (2) in the presence of oxygen, 

pH around steel surface and a decreased ambient temperature. 

 
 ⁄            

              (2) 
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The anodic and cathodic reaction products when combined is what produces the surface film 

that passivates the reinforcement steel. Some previous research showed that the passive film 

is favoured by the presence of iron oxides, Fe3O4 (magnetite) and Fe2O3 (Hematite) 

(Hansson, 1985; Kruger and Calvert, 1967) while others claim it is by Ca (OH)2 (Page, 1990; 

Montemor et al., 1998). 

Corrosion breakdown mechanism models include an adsorption-displacement model which 

proposes that passive film is destroyed by its adsorption of chloride ions (Cl¯) with a 

simultaneous displacement of oxygen ions (O2¯) (Böhni and Uhlig, 1969). Also, the chemico-

mechanical model suggests that surface tension is reduced by Cl¯ thereby forming cracks 

(Sato, 1982) while the migration-penetration model proposes the migration of ions of Cl¯ to 

take the place of O2¯ and cause voids leading to pitting formation and pit growth (Chao et 

al., 1981). 

In conclusion, understanding the mechanism by which corrosion of steel occurs in concrete 

helps to study the damage mechanics to see the damage evolution mechanics on a 

microscale and could serve to predict the service life of reinforced concrete experimentally 

or using computational techniques. 

2.0 Methods 

2.1 Steel Corrosion Monitoring Techniques 

Various reinforcement corrosion evaluation techniques have been used and discussed. By 

simply visualizing a concrete structure undergoing corrosion, basic information regarding 

nature of corrosion could be determined such as cracks, concrete spalling, and rusts (Pullar-

Strecker, 1987) although better detection methods were proposed by other scholars 

(Stratfull et al., 1975; Manning and Holt, 1980). In recent times, this method remains non-

economical and takes time as more advanced methods have been developed with minimal 

setbacks. Of all the various factors used in corrosion rate monitoring, including change in 

pH, chloride content monitoring, change in temperature, strain, acoustics etc., the most 

important and quantitative way is measuring the current rate Icorr, owing to the single fact that 

reinforcement corrosion in concrete is an electrochemical process. Thus, both destructive 

and electrochemically non-destructive corrosion assessment method has been considered. 

2.1.1 Galvanostatic Pulse Method (GPM) 

This is a non-destructive transient method where a small amount of anodic current pulse 

usually in the range of 10 to 200 µA is applied between the rebar and a counter electrode 

positioned on the surface of the concrete for 5-10 s. Electrochemical potential Vt from the 

polarization of steel is obtained using equation (3) (Montemor et al., 2003) and plotted 

against time of polarization. It should be noted that when polarization occurs and anodic and 

cathodic current is measured, this method is referred to as Potentiodynamic polarization. 

                [       
  

      
  ]       (3) 

where t is the time, Rp is the polarization resistance and Cdl is the double layer capacitance at 

the reinforcement surface, RΩ is the ohmic resistance between the surface electrode and the 

steel bar while Iap is the applied current.  
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From Figure 3, Rp is obtained from the curved segment by curve fitting and the Stern-Geary 

equation in equation (4) and Faraday’s law of electrochemical equivalence in equation (5) is 

used to obtain the corrosion rate with a typical 2D surface plot in Figure 4.  

      
 

  
           (4) 

                
 

  
      

     

 
        (5) 

B is based on Tafel constants and has values of 52 and 26 mV for passive steel and steel in 

concrete respectively (Andrade et al., 1986). A (cm2) being the area of steel under the 

counter electrode.  

 

Figure 3: Electrochemical potential of steel against time (Sørensen and Frølund, 2002) 

 

 

Figure 4: Corrosion rate using GPM over six years (Sørensen and Frølund, 2002) 

2.1.2 Linear Polarization Resistance (LPR) 

In this method, a polarization potential value of 10-30 mV is applied below the Open circuit 

potential Eocat a scan rate of 0.1 mV/s scan rate and the current density i (current response 

divided by surface area of the electrode) were obtained (Daniyal and Akhtar, 2020). The 

resulting relation is quasi-linear owing to the small potential being applied (Millard et al., 
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2001). Thus, Linear polarization resistance Rp is obtained from the slope of the graph of 

potential against current density depicted in Figure 5 and finally, equation (4) is used to 

determine the corrosion rate. 

 

Figure 5: Typical polarization resistance curve (Karuppanasamy and Pillai, 1995) 

2.1.3 Half-Cell Potential (HCP) 

This qualitative corrosion monitoring technique is otherwise known as open circuit potential 

where a voltmeter measures the potential difference at different points between the steel 

and another half, a reference external electrode usually immersed in copper/copper sulphate 

(Cu/CuSO4) or silver/silver chloride (Ag/AgCl) solution and concrete is kept wet to ensure 

electrical connection (Figure 6). Table 1 indicates the probability of corrosion from HCP 

measurements conforming with ASTM C876 (ASTM C876, 2015). This method does not 

specify the corrosion rate, it only states the probability of corrosion (Yeih and Huang, 1998). 

 

Figure 6: Typical half-cell potential set-up (Verma et al., 2014) 

 

Table 1: Probability of Corrosion for CuSO4 (ASTM C876, 2015) 

S. no. Half-cell potential (mV) Probability of corrosion 

1 >-200 10% 

2 -200 to -350 50% 

3 <-350 90% 
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2.1.4 Time Domain Reflectometry (TDR) 

This method is usually used in steel strands in prestressed concrete structures as well as 

cable in bridges in which a sensor wire is run along the steel forming a parallel conductor line 

and an electromagnetic pulse of voltage is sent through the line in a set up in Figure 7 and 

reflected from the end and the magnitude of reflection is given in equation (6): 

r =
    

    
         (6) 

where r is reflection coefficient, z is impedance and zo is the characteristic impedance of steel 

strand. 

Pitting corrosion, surface corrosion and voids disrupt a change in the electromagnetic pulse 

with p3 (Figure 7) due to high impedance. Thus, the circuit properties such as series 

resistance R, series inductance L, capacitance C and conductance G are monitored (Liu et al., 

2001). Corrosion detection is marked by a reduction in radius at a corrosion location with 

an increase in impedance which is detected by the time domain reflectometry and more 

reflection translates to more damage. This method measures the extent and length of 

corrosion as well as voids. 

 

Figure 7: Pit corrosion monitored by time-domain reflectometry Curve (Liu et al., 2001) 

2.1.5 Ultrasonic Guided Waves (UGW) 

This is a method still in use presently for detecting corrosion progression in steel 

reinforcement in concrete. Mechanical pulse waves are transmitted into the concrete rebar 

by using contact transducers (piezoelectric transducer PZT, Annular series transducer, full, 

electrode transducer) of frequency 0.1 MHz and 1 MHz, one acting as the transmitter of the 

ultrasonic waves and the other is the receiver used in different excitation modes. By 

comparing changes in signal amplitude and pulse velocity, damage in rebar can be quantified. 

Longitudinal placement of transducers at low frequency at 0.1 MHz detects corrosion 

initiation the best because it produces longer wavelength and resolution loss is easily 

detected and while frequency at 1 MHz detects pitting in rebar Sharma and Mukherjee, 

(2010) with a typical response depicted in Figure 8 for two excitation modes. This method 

has other numerous applications and could also be used in freeze-thaw cycle monitoring in 

detecting concrete ageing (Alawode, 2018). 
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Figure 8: Typical ultrasonic time-domain spectra response (Liu et al., 2019) 

2.1.6 X-Ray Diffraction (XRD) 

X-rays and Gamma-rays are radiographic non-destructive method employed in monitoring 

corrosion and other microstructure defects in reinforced concrete structures by evaluating 

its crystallographic structure. These rays are electromagnetic monochromatic radiation 

penetrating concrete through release photons directed to the mapped area which is 

transformed by a fluometallic converter which captures the defects in rebar, its size, 

location, voids in rebar and concrete by measuring X-ray diffraction angle (Song and 

Saraswathy, 2007; Burkett, 2018). Safety precaution should be ensured when in use. A typical 

XRD response (Figure 9) shows corrosion products composition to be rusts. 

 

Figure 9: Typical XRD response spectra for corrosion (Liu et al., 2017) 

2.1.7 Electrochemical Impedance Spectroscopy (EIS) 

This method is otherwise known as alternative current (AC) impedance spectroscopy. An 

alternating voltage of about 10-20 mV which is the excitation potential is applied to the steel 

reinforcement as the AC and phase angle is recorded with their different frequencies f. 

Impedance Z which is the ratio of AC voltage to AC is obtained (Stern, 1957). The graph in 

Figure 10 referred to as either the impedance spectrum or Nyquist plot, impedance has a 

real or resistive (Z’) and imaginary part (Z”) which is capacitive or inductive measured at 

frequencies between 100 kHz and 10 MHz (Daniyal and Akhtar, 2020). This response is 

likened to the one obtained in an electrical circuit (Randels circuit) where corrosion takes 
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place as an electrochemical process. From Figure 10, Rc is the ohmic resistance of concrete 

and the diameter is resistance at which the steel dissolves called transfer resistance Rct.  

 

Figure 10: Basic Nyquist response for steel (Ribeiro and Abrantes, 2016) 

Free elections movement towards steel surface anions and movement towards cathode in 

solution forms two layers capacitance Cdl. Thus, impedance is given in equation (7) (Natarajan 

and Ramakrishnan, 2007) as: 

     
   

          
          (7) 

Where j is √-1 and ɷ is 2πf.  

At low frequency, the circuit becomes a direct current (DC) circuit but when the frequency 

is high i.e. when ɷ is infinity, the circuit becomes AC and from the difference between DC 

and AC, true polarization resistance becomes Rct and a lower Rct value means corrosion 

values are high and the reverse is also true (Ribeiro et al., 2015). 

2.1.8 Gravimetric Weight Loss (GWL) 

This method is a destructive method used in determining the corrosion rate in a concrete 

structure. The test is carried out by guidance of ASTM G1-03 (ASTM G1-03, 2004) where 

the specimen is broken, and rebar is cleaned and immersed in Clarke (solution composed of 

93% concentration of HCl, 5% SnCl2, 2% Sb2O3) after which it is distilled with water and 

dried in air to completely remove corrosion products. Initial weight is taken before 

placement in concrete and after breakage, final weight is recorded. The corrosion rate is 

obtained from equation (8) (Odio et al., 2014) given as: 

      
    

     
          (8) 

Where ΔW is weight loss, A is exposed surface area (cm2), T = Time of exposure (hrs.), K is 

unit conversion constant given as 8.76 × 104 (for mm/year) and ρ = density (g/cm3).  

This method is suitable for long term corrosion detection. 

2.1.9  Electrical Resistivity Method (ERM) 

When the reinforcement steel is de-passivated, the continuity of corrosion rate is influenced 

by concrete’s electrical resistance. This forms the basis of measurement of resistivity which 

is given as the electrical resistance multiplied by the length between probes (Millard and 
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Harrison, 1989). The Wenner four-probe measuring device Wenner, (1915) which is now 

adapted for resistivity measurement as shown in Figure 11 where AC, I is applied to two 

outer probes and a potential difference V between the inner probe is recorded and 

resistivity is determined using equation (9) (Gowers and Millard, 1999). 

                  
 

 
         (9) 

Where a is space between probes and k is a geometric factor given as 2π. 

A review of the relationship between resistivity values and steel reinforcement risk of 

corrosion is still inconclusive from previous research conducted because different factors 

such as concrete ageing, microstructure, water-cement ratio, temperature, and moisture 

content affect resistivity and this shows recommendation for more research on the 

subjecting order to arrive at a more stable scale of resistivity measurement and corrosion 

determination (Chen et al., 2014). 

 

Figure 11: Wenner four-probe device measuring concrete resistivity (Carino, 1999) 

2.2 Monitoring Sensors and Other Monitoring Techniques 

The use of sensors (preferably non-invasive) come to play in cases where the discussed 

known instruments are not practicable, and corrosion needs to be monitored at specific 

regions in concrete materials while it allows for the juxtaposition of parameters to be 

measured to obtain a better understanding of corrosion rate and its effect in assessing 

durability in recent times. Some of the sensors studied in the past by authors include 

chemical microsensors, ring sensors, chloride sensors (Guth et al., 2001; Raupach and 

Schießl, 2001; Yun et al., 2004) as well as other automated mapping sensors in detecting 

rebar location, length of rebar in concrete structures (Chamberlain, 1992; McFee et al., 

1996) and infrared thermography which is now in use in detecting voids and delamination in 

concrete but the challenge is that these methods haven’t given detailed corrosion rate 

analysis. 

Fiber optic sensors are currently more employed in reinforcement corrosion detection 

majorly because they have good sensitivity over a large area, resistant to chemical effects, 

free of electromagnetic influence and are cheap to produce and have and are still being been 

explored by various authors (Grattan et al., 2007; 2009; Zheng et al, 2009; Jagtap and Nayak, 
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2020).  Sun et al. (2014) used optical fiber Brillouin sensor to determine rebar corrosion in a 

concrete column where the Brillouin optical time-domain reflectometer measured the strain 

and cracking pattern and used it in detecting and identifying corrosion location. Piezoelectric 

ceramic (PZT) sensors are also as advantageous as the fiber optic sensors in diagnosing 

corrosion damage shown by previous authors (Park and Park, 2010; Rathod and Mahapatra, 

2011) When necessary, one or more sensors could be combined to see how effectively 

corrosion rate in rebar could be detected as carried out by Rathod and Mahapatra (2011). 

Other monitoring techniques involve the use of Embedded Corrosion Instrument (ECI) 

(Figure 12) which is an intrusive corrosion sensor monitoring LPR, HCP, ESM, temperature 

and chloride ion concentration remotely saving a lot of data manipulation, site visits and 

costs have been considered, including the smart pebble sensor for chloride ion monitoring 

(Reis and Gallaher, 2006; Watters et al., 2003) and others techniques applied to reinforced 

concrete bridges include corrosion penetration monitoring system and V2000 monitoring 

cable (Agrawal et al., 2009).  In conclusion, the use of sensors in corrosion monitoring holds 

great promise especially being able to detect corrosion rate remotely. Thus, it is 

recommended that more research should be conducted especially in combining the sensors 

to be able to cover all parameters needed in accurately predicting timely corrosion impact 

and assessing serviceability of concrete structures. 

 

Figure 12: ECI in operation (Song and Saraswathy, 2007)  

 

3.0 Results and Discussion 

3.1 Overview of Corrosion Monitoring Techniques on Concrete Durability 

To date, corrosion problems caused especially in the infrastructures sector is still major 

concern and various monitoring technique are still being applied. However, the review of the 

methods used so far in detecting corrosion in reinforced concrete structures from rigorous 

work has been reported in Table 2. These provide the benefits and limitation to these 

methods in effectively assessing the serviceability of concrete structures and as a means of 

predicting and discussing the most effective method and giving further recommendations on 

improvement. 
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Table 2: Review of corrosion techniques used 
 

Reference Research Conducted  
Observation on 

durability  
Remark  

Montemor et 

al. (2003) 

Conducted research to 

determine the chlorides 

critical level and factors 

constituting to steel 

corrosion using LPR, 

GPM, EIS and potential 

measurement. 

The critical level was 

reached in concrete as 

Cl¯ reacts with Fe, 

causing pit growth and 

the pH of concrete was 

a major factor. 

EIS provided the most 

effective method under 

consideration although 

measurements took time 

which was compensated for 

by GPM although fluctuations 

were experienced. 

Bäßler et al. 

(2001) 

Presented results from 

the monitoring of steel 

reinforcement corrosion 

rate comparing natural 

corrosion to measured 

corrosion in the 

laboratory using GPM 

device. 

Real-life corrosion 

parameters showed a 

correlation with 

measured parameters 

for short-term 

measurements. 

Long term results for 

corrosion lifetime evaluation 

lost correlation as measured 

parameters became different 

and GPM device could not 

account for that showing 

further need in improving 

sensitivity. 

Sørensen and 

Frølund 

(2002) 

Discussed the 

effectiveness of using the 

GPM technique in 

accurately estimating 

corrosion rate in 

concrete structures. 

Corrosion rate was 

detected quickly in 

steel reinforcement and 

it agrees with 

gravimetric weight loss 

results, although 

identifying active 

corrosion area took 

time. 

The swiftness of GPM could 

help in the timely detection of 

deterioration and chloride 

environment presence will 

affect durability. Thus, GPM 

should be improved to 

consider causative factors. 

Moreno et al. 

(2004) 

Performed an 

investigation to 

determine the effect of 

carbonation and Cl¯ on 

corrosion of steel 

reinforcements using 

LPR technique. 

Critical chloride levels 

were detected above 

which pitting took place 

while increased pH of 

concrete improved 

resistance to localized 

corrosion. 

LPR measurements effectively 

measured chloride-induced 

corrosion rates and were 

effective even at low chloride 

levels although this may be 

due to oxygen evolution 

potential being overestimated. 

Romano et al. 

(2013) 

Worked on monitoring 

the degradation 

occurring in reinforced 

concrete structures in 

chloride environments 

using LPR, ERM and 

potential measurements. 

There was a serious 

decrease in polarization 

resistance value which 

matches the resistivity 

values in the corrosion 

initiation phase as 

chloride content 

increases. 

LPR and ERM measurements 

at different depths in concrete 

also have an impact on the 

corrosion rates obtained and 

more studies could help 

detect the role of depth in the 

mechanism of transportation 

of aggressive materials in 

concrete. 
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Pradhan and 

Bhattacharjee 

(2009) 

Researched on the 

performance of different 

rebar placed in different 

cement type concrete in 

chloride condition using 

LPR, GWL and EIS. 

The dominant factor 

influencing corrosion 

was chloride content 

and admixtures 

improved corrosion 

resistance. 

LPR appeared to have given a 

better value of corrosion 

current density showing its 

better performance over EIS. 

Elsener 

(2001) 

Studied the use of HCP 

mapping in assessing 

localized corrosion 

caused by chloride 

deposit in reinforced 

concrete. 

Results depicted re-

passivation of steel 

after repair work. 

HCP mapping technique was 

only able to ascertain the 

chance of corrosion and was 

marked by the lower negative 

potential which did not 

necessarily indicate corrosion. 

Thus, its ability to predicting 

durability could not be 

completely relied upon. 

Carino (1999) 

Considered the use of 

non-destructive 

techniques including 

HCP, ERM and LPR in 

investigating corrosion in 

concrete. 

For HCP, measuring 

potential gradients was 

a more effective way of 

corrosion 

measurement. ERM 

indicated active 

corrosion although not 

rate and LPR gave quick 

corrosion rate results. 

LPR proved to be a very 

useful means of accessing 

durability but not service life 

due to change in time 

conditions and resistivity 

which is crucial to corrosion 

combined with HCP results 

gives a better understanding 

of reinforced concrete 

corrosion. 

Pour-Ghaz et 

al. (2009) 

Presented work on a 

tool to better interpret 

measurements obtained 

from HCP mapping in 

concrete structures. 

It was recommended 

HCP and resistivity 

values should be 

combined for better 

information on 

corrosion rate. 

This research attempted to 

solve the problem of 

inadequate information 

obtained from using HCP 

alone earlier identified for 

corrosion prediction but 

validation and model 

development on key 

corrosion determining factor 

is needed. 

Liu et al. 

(2001) 

Reported experimental 

results in the novel 

application of TDR to 

monitoring corrosion in 

prestressed high-

performance bridge 

beams 

The method showed to 

effectively locate and 

detect corrosion 

damage levels from in-

situ readings and even 

from application to 

laboratory-scale 

samples. 

TDR is useful although there 

are energy loss issues when 

measuring lengthy samples and 

further research is 

encouraged on reinforced 

concrete samples and how to 

effectively translate results to 

detect corrosion rate on a 

long term basis. 

Furse et al. 

(2009) 

Researched using TDR 

as a non-destructive 

method of determining 

faults in prestressed 

Spectral TDR proved 

to function well even in 

anchors placed in 

concrete and shown to 

Long-range measurement 

issues were addressed 

increasing signal-noise ratio to 

detect invisible faults and the 
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anchors measure faults up to a 

maximum of about 

48m. 

combination of EIS with TDR 

could prove very effective in 

determining corrosion rate. 

Hunsperger 

et al. (2003) 

Performed an 

investigation to 

determine steel 

corrosion in structures 

which are already 

existing externally using 

TDR. 

Voids were shown to 

be critical to corrosion 

propagation as it 

harboured moisture 

and salts and affected 

signal return monitored 

by TDR. 

Internal monitoring of 

corrosion using TDR provides 

a more accurate means. Best 

measurement using this 

method comes from direct 

measurement of steel 

reinforcement and ways to 

ensure this in existing 

structures should be 

improved upon. 

Du et al. 

(2017) 

Studied how corrosion 

developed in steel 

embedded in concrete 

using UGW and 

piezoelectric transducers 

to monitor the stages. 

Wave velocity was 

inversely proportional 

to corrosion rate. Initial 

corrosion, rapid 

corrosion and further 

corrosion development 

were the three stages 

identified. 

The mass loss had to be 

combined with acoustic 

parameters to determine 

corrosion rate although 

piezoelectric was able to 

boost reception of a better 

signal for time and frequency 

domain spectra showing that 

PZT's are important to 

corrosion monitoring 

Yeih and 

Huang (1998) 

Discussed the evaluation 

of corrosion issues in 

reinforced concrete 

members using UGW 

technique. 

Amplitude attenuation 

in ultrasonic testing was 

shown to vary with 

thickness loss giving 

good record of 

corrosion rate when 

combined with the AC 

impedance method. 

If corrosion occurs, rust or 

microcracks will also occur 

changing amplitude. More 

effort is recommended for 

testing larger concrete 

samples and relating amplitude 

with other electrochemical 

parameters to prove 

corrosion detection. 

Sharma and 

Mukherjee 

(2010) 

Reported results from 

the monitoring of early-

stage reinforcement 

corrosion in concrete 

considering UGW and 

acoustic emission 

sensors. 

Acoustic emission 

sensors proved 

effective in detecting 

initial corrosion while 

UGW served to detect 

surface corrosion from 

pitting corrosion 

UGW proved to be able to 

measure the extent of 

corrosion but unable to 

detect corrosion presence at 

early stages although its 

combination with acoustic 

sensors was effective 

Hossain 

(2005) 

Studied the corrosion 

resistance of three types 

of concrete mixes and 

used XRD, HCP, LPR, 

GWL technique in 

monitoring corrosion in 

a steel bar. 

Active corrosion was 

detected using HCP 

and rate by LPR, but 

volcanic admixtures 

were good corrosion 

inhibitors. 

XRD provided quantitative 

measurements in terms of 

composition showing a 

reduction in calcium 

hydroxide content to show 

good performance of volcanic 

admixtures. 
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Takahashi et 

al. (2005) 

Described the 

composition of 

corrosion products 

formed reaction 

between iron and 

sodium chloride using in-

situ XRD analysis  

Iron oxides were main 

constituents formed 

from corrosion affected 

by precipitation and 

dissolution of Fe. 

XRD only provided 

information on the formation 

mechanism of corrosion and 

the quantification of its 

constituents. 

Burkett 

(2018) 

Presented the outcome 

of a study on the 

application of XRD to 

characterize corrosion 

to provide a timely 

solution. 

Natrojarosite and 

akaganeite were found 

to be constituents of 

corrosion using a 

portable XRD device.  

Building upon this device to 

measure rate from quantities 

determined in minutes could 

prove extremely invaluable to 

corrosion monitoring. 

Ribeiro and 

Abrantes 

(2016) 

Performed an 

investigation on the use 

of EIS as a non-

destructive technique in 

studying corrosion in 

reinforced concrete. 

Angular frequency 

theory was applied to 

EIS result interpretation 

and it gave a more 

improved 

interpretation 

EIS provides accurate 

measurement about corrosion 

rate, its mechanism, and 

changes to rebar. This 

research is only a further 

improvement on a well-

established technique to boost 

easier interpretation. 

Ismail and 

Ohtsu (2006) 

Worked on determining 

corrosion rate in both 

high strength concrete 

and ordinary concrete 

using EIS, LPR and 

dynamic polarization in a 

chloride environment. 

High strength concrete 

exhibited lower 

corrosion rate values 

when compared to 

ordinary concrete 

owing to lower w/c 

ratio in high strength 

concrete. 

EIS results were lowest of the 

three, showing a difference in 

the way overall resistance of 

corrosion was measured and 

based on the inverse 

relationship between 

resistance and corrosion rate, 

one could argue the 

effectiveness of EIS method. 

Dhouibi-

Hachani et al. 

(1996) 

Presented results 

obtained from the 

comparison EIS results 

between low frequency 

applied to steel and high 

frequency applied to 

concrete. 

The frequency 

distribution model 

agreed with EIS results 

from the experiments. 

Using EIS here was able to 

expose interaction between 

steel -surface resistances on 

corrosion rate and how it 

helped better measurement. 

Bhaskar et al. 

(2011) 

Studied reinforcement 

corrosion caused by 

chloride in cracked 

concrete and GWL was 

used for quantification as 

a destructive technique. 

GWL readings 

indicated that crack 

presence influenced 

corrosion than crack 

width. Also, lower w/c 

ratio lowers steel 

corrosion. 

This method of corrosion 

monitoring still proves to be 

effective in quantifying 

corrosion rate although it is 

destructive. 

Azarsa and 

Gupta (2017) 

Reviewed various 

relationship between 

electrical resistivity and 

reinforcement corrosion 

The ERM 

measurements were 

affected by moisture 

and temperature and 

 ERM method is good in 

detecting active corrosion 

probability and rate, especially 

when combined with LPR 
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in concrete. further investigation 

was recommended. 

showing. It is also useful in 

detecting corrosion potential 

and this fact is yet to be 

standardized. 

Morris et al. 

(2004) 

Sort to establish a 

standard corrosion 

determination value 

using ERM monitoring in 

reinforced concrete. 

Results indicated active 

corrosion at 10 kΩ∙cm 

and passive corrosion 

at 30 kΩ∙cm 

ERM effectively evaluates the 

severity of corrosion but still 

needs to be combined with 

LPR to determine corrosion 

rate values. 

Sadowski 

(2013) 

Worked on the 

combination of ERM and 

LPR for effective service 

life prediction using a 

reinforced concrete slab 

sample. 

The experiment 

showed three areas of 

slab having a 90% 

probability of 

corrosion, the second 

area showed 

uncertainty while the 

third area gave 10% 

corrosion probability. 

The distribution of active 

corrosion was well depicted 

using this method and this 

method is good in terms of its 

possible application to new 

and existing structures. 

Ha et al. 

(2004) 

Described the use of 

different sensors applied 

to an assessment of 

corrosion and durability 

in concrete. 

The role of sensors 

depended on the 

measurement of 

important factors 

including, chloride 

content, temperature, 

moisture etc. 

As smart materials are being 

introduced, one major 

advantage is the ability to 

place it in structures and it 

holds promising results, and 

more works are being 

authored in this area. 

Muralitharan 

et al. (2006) 

Researched to check the 

electrochemical 

properties of Alkaline 

manganese dioxide, 

metal-metal oxide, and 

graphite sensors. 

Alkaline manganese 

dioxide sensor showed 

the most stable 

potential measurements 

although chloride ions 

showed no effect on 

measurements. 

These sensors were not 

affected by chloride and this is 

an advantage when being 

embedded in concrete and 

long-term research is 

recommended to confirm this. 

Karthick et al. 

(2014) 

Reported the results 

from the comparison 

between embedded 

sensors and sensors 

placed on a concrete 

surface to monitor 

corrosion in reinforced 

concrete. 

The embedded HCP 

sensor gave lesser 

corrosion rate than the 

surface placed LPR 

probe. 

This further proves the fact 

that lower corrosion rates 

when techniques are 

combined shows that method 

producing lower corrosion 

rate has better performance 

and it is affected by steel-

concrete resistance. 

Daniyal and 

Akhtar (2020) 

Reviewed various 

electrochemical method 

for corrosion monitoring 

to see their performance 

in reinforced concrete. 

Electrochemical 

methods were useful 

for both laboratory and 

in-situ measurements, 

GWL was the most 

efficient destructive 

method. 

No individual method proved 

to be the best, but the 

combination of 

electrochemical methods was 

effective in monitoring 

corrosion 
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Verma et al. 

(2014) 

Reviewed the value of 

HCP method and other 

corrosion monitoring 

techniques and their role 

in the durability of 

concrete structures. 

HCP technique was 

shown to be the most 

applied technique and 

was useful in 

determining suitable 

protective 

measurement 

HCP is also affected by 

different factors including 

cover to concrete and its 

combination with resistivity 

yields a better interpretation 

 

Most of the methods considered in the literature has shown that often, different corrosion 

monitoring techniques have always been combined to obtain good results and this shows 

that no one method is most effective. Also, there is a need to consider more application of 

these methods in real-time monitoring and its applicability in offshore concrete structures 

where the impact of various environmental factors and mechanical factors combined impair 

durability. 

4.0 Conclusion 

Based on the review conducted in this study on the previous research and various corrosion 

monitoring technique and their principle of operation that has been applied especially over 

the last two decades, the observation of the results on durability obtained and the overall 

effect these techniques in accurately measuring corrosion rate and prediction, the following 

conclusions were made from the critical review: 

 The electrochemical impedance spectroscopy method proved to be a very 

considerable technique when it comes to understanding the mechanics and kinetics of 

reinforcement corrosion as it provides an accurate polarization resistance value from 

reviewed papers who have applied this technique regardless of its time-consuming 

nature which could be reduced when combined with galvanostatic pulse method. 

 Linear polarization resistance technique provided a very effective means of measuring 

corrosion rate which is also measured by other electrochemical technique including 

galvanostatic pulse, impedance spectroscopy, potentiodynamic tests but what made 

linear polarization unique was its ability to detect chloride content even at very small 

levels in concrete and more future is recommended on establishing an interpretation 

of its results, especially for service life predictions. 

 Other corrosion monitoring techniques including time-domain reflectometry, use of 

piezoelectric transducers, ultrasonic guided waves, electrical resistivity method and use 

of sensors need further improvement in detecting early and long-term corrosion. Also, 

the impact of humidity, moisture and temperature need to be considered in new 

research as they hold the key future degradation assessment in concrete structures for 

different zones. 

 Reinforced concrete corrosion is still a major problem in the civil engineering design 

and construction sector and more smart materials are currently being developed. 

From this review, specific monitoring technique proved excellent when considering 

specific needs such as understanding corrosion processes and monitoring corrosion 

rate and even detection, but no single method encompasses these factors. Thus, future 

work is recommended in combining core measured characteristics of other devices 

into building a workable monitoring unit which can perform all measurements. 
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Notation 

AC Alternating Current 

ASTM American Society for Testing and Materials 

ɷ Angular frequency, rad/s 

Sb2O3 antimony (III) oxide 

A area, m2 

C capacitance 

Cl¯ chloride ions 

G conductance 

Cu copper 

CuSO4 copper sulphate 

Icorr corrosion rate, m/yr. 

I current, A 

DC Direct Current 

ERM Electrical Resistivity Method 

ρ electrical resistivity, Ohm·m 

EIS Electrochemical Impedance Spectroscopy 

Vt electrochemical potential, µ 

ECI Embedded Corrosion Instrument 

f Frequency, Hz 

GPM Galvanostatic Pulse Method 

GWL Gravimetric Weight Loss 

HCP Half-Cell Potential 

Fe2O3 hematite 

HCl hydrochloric acid 

Z Impedance, Ω 

Fe iron 

LPR Linear Polarization Resistance 

Fe3O4 magnetite 

O2¯ oxygen ions 

PZT Piezoelectric ceramic transducer 

V potential difference, v 

pH Potential of hydrogen 

RΩ resistance, ohm 

 

 

 

 

L series inductance 

R series resistance 

Ag silver 

AgCl silver chloride 

B tafel constants, mV/decade 

TDR Time Domain Reflectometry 

SnCl2 tin (II) chloride 

UGW Ultrasonic Guided Waves 

XRD X-Ray Diffraction 
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