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1.0 Introduction 

A plate isdescribed as structural components with thickness smaller than its surface dimensions 

(Shwetha and Subrahmanya (2018). Plates have been widely applied in aerospace engineering, 

structural and mechanical engineering, etc., in building and constructing many engineering 

structures and elements like aircraft wings, ships, buildings, bridges, roof, retaining walls, 

railways, turbine disks etc. (Onyechere et al., 2020; Ozioko et al., 2019; Onyeka et al., 2018). 

Plates have been classified based on thickness (t) as; thin and thick plates (Chandrashekhara 

2001). The edges of plate can have different support conditions which can be fixed, simply 

supported, point, etc. There has been a great deal of research on bending analysis of plates 

from various scholars using theorems with different boundary support conditions. It is the 

depth of plate that mainly affects the bending properties of plate compared with its other 

dimensions like the length and width (Gujar and Ladhane, 2015; Ibearugbulem et al., 2013).  

The analysis of plates involves finding the normal and shear stresses, displacement, moments 

etc., at different points of the plate and it is necessary as it helps to ascertain the plate stability 

and ability to withstand design loads (Roknuzzaman, 2015). The loads which are either static or 

dynamic carried by plates are mostly perpendicular to the faces of the plate, and the load 

carrying capacity of the plate is similar to that of beams as a structural element. Plate theory 

generally known as the classical plate theory (CPT) is commonly used in the analysis of thin 

plates. The CPT was formulated by Kirchhoff (1985) and was applied by Timoshenko and 
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This study presents the application of a new refined plate theory in the bending 
analysis of a thick rectangular plate carrying a uniformly distributed load using the 
direct energy method. The new refined plate theory which is a combination of 
trigonometric shear deformation theory and fourth order polynomial displacement 
function was used to formulate the governing differential equation by employing the 
principle of elasticity.  The total potential energy equation of a thick plate was 
formulated from the constitutive relations thereafter the three general governing 
differential equations for the determination of the deflection and shear deformations 
rotation along the direction of x and y coordinates were obtained. The coefficient of 
deflection and shear deformation were derived by subjecting the energy equation 
obtained to direct variation thereafter the actual deflection, in-plane displacement, 
normal and shear stresses, moment and stress resultants of the rectangular thick plate 
were determined by substituting the derived coefficient of  coefficient of deflection and 
shear deformation into the displacement, shear force, moment and stresses deduced. 
The particular plate boundary condition to be anlysed is free support at the third edge 
and the other three edges simply supported (SSFS). The result shows that thick plate is 
the one whose span-depth ratio value is 4 up to 25. The results obtained from this 
work was compared with those obtained from other refined plate theories with the 
same support condition and obtained showed good agreement with those in the 
literature 
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Woinowsky (1959) and Liessa (1973) for the analysis of plates and shells.  

The CPT theory, which does not address shear deformation transversely as seen in the thin 

plate, is based on the assumption that the normal to the mid-surface remains normal before 

and after deformation. Due to the non-inclusion of transverse shear strains or deformation in 

CPT, it has been found to be inadequate in the analysis of thick plates (Ibearugbulem et al., 

2016). To address the short fall in the CPT, researchers formulated the Refined Plate Theory 

(RPT). This includes, the First Order Shear Deformation Theory (FSDT) (Reissner, 1945; 

Hoang et al., 2019), Second Order Shear Deformation theory (SSDT) and the Higher Order 

Shear Deformation Theories (HSDT) which considers transverse shear deformation (Sayyad et 

al., 2017), in the analysis of plates, using different functions like: trigonometric, exponential, 

polynomial.       

Aghdam and Vafa (2004) researched on bending solutions of rectangular thick plates by the 

application of the extended Kantorovich method (EKM). The EKM involves eight unknowns 

which were solved using governing equations based on Reissner FSDT. They concluded that 

the application of EKM in the thick plate’s analysis was fast and gave similar results for plates 

analyzed by finite element method (FEM).  

Sayyad (2013) worked on the flexural analysis of orthotropic thick plates using refined plate 

theory which takes into account transverse shear deformation effect. They obtained the in 

plane displacement field using an exponential function which was based on broadness 

coordinate, the transverse shear stress directly from the constitutive without the need for 

shear correction factor, while the governing equations and boundary conditions were based on 

the virtual work principle. The results of the displacements, stresses, and frequencies obtained, 

when compared with results from other plate theory and exact theory were found to be 

adequate.  

Ghugal and Gajibhiye (2016) did a study on the analysis of thick isotropic plates in rectangular 

relation to bending with simply supported supports using a form of higher order shear 

deformation theory (HSDT). They obtained the transverse normal strain deformation effect, 

and the proposed displacement field which accounted for non-linear variation of in-plane 

displacements, stresses and the transverse displacements with the plate thickness without the 

need for correction factor which is seen in FSDT. The numerical results which include static 

flexure analysis were done with MATLAB programming and with the results agreed with other 

HSDT and exact 3D elasticity solutions.  

Sayyad et al. (2015) worked on thermos-elastic bending examination of laminated plates with 

matrix reinforced materials, simply supported on all four edges and acted upon by a heat 

related loads changing linearly with the plate’s depth according to various shear deformation 

theories. They investigated thermal related deformations using a combined approach that 

involved different functions in relation to thickness coordinate and shear deformation effects. 

The displacements and stresses they predicted by PSDT, TSDT, and HSDT were similar with 

each other, but FSDT gave higher results of in-plane normal stress compared to other.  

Zhong and Qian (2017) worked on the bending analysis of thick plate with geometry and with 

all ends clamped (CCCC) at supports. They used governing equations derived from the 

Mindlin’s plate theory for their analysis. They found out that their proposed method of analysis 

eliminates the complex derivation for obtaining coefficients and gave accurate results. 
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Ibearugbulem et al. (2018) did a study on the analysis of rectangular thick plate in relation to 

bending with all the plate’s supports clamped (CCCC) by applying polynomial shear 

deformation theory (PSDT). They used a theory formed from Ritz energy method with a 

displacement function relating to a polynomial function in their analysis. They obtained the 

transverse shear stress without the need for shear correction factor, with the total potential 

energy equation formulated from the principle of electricity. They concluded their study by 

comparing their results for: displacements and stresses with other studies, and found out that 

there were similarities.  

Eze et al. (2018) investigated the use of shear deformation theory in analyzing rectangular 

isotropic thick plate with two different boundary conditions. They derived a theory for 

determining shear deformation without the need for correction factor, and displacement 

coefficients by using total potential energy in direct variation on the boundary conditions of: 

simply support at the third edge with other three edges clamped (CCCS) and fixed at the third 

edge with other three edges simply supported (SSFS) respectively. The results they obtained 

were satisfactory results when compared with results from other studies.  

Onyeka and Edozie (2020) analyzed the moments and stresses of thick rectangular plate with 

clamped at three edges and simply supported at the remaining one edge (CCCS) and subjected 

to uniformly distributed load, using third order shear deformation theory by formulating the 

total potential energy equation. Their formulated theory which didn’t put shear correction 

factor into consideration gave mathematical expressions for the determining maximum 

deflection, moment, stresses and in-plane displacements. Their theory was error free when 

they carried out numerical comparism with other studies.  

Literatures reveals that there have been a lot of research efforts by many researchers on the 

bending analysis of plates using different shear deformation theories based on different 

mathematical functions and not energy method in determining the bending effects of thick plate 

that are rectangular in nature with support conditions of different kinds. This study is aimed at 

addressing this gap in literatures by presenting a new refined plate theories (NRPT) using 

energy method to obtain the deflection, moment, stress, in – plane displacements of thick plate 

with rectangular geometry under uniformly distributed loads with free support at the third 

edge and the other three edges simply supported (SSFS). This NRPT circumvent the use of 

shear correction factor which is associated with first order shear deformation theory. 

2. Materials and Methods 

Following the sketch as presented in Figure 1 and the assumption made as shown below, the 

governing equation of thick plate under pure bending is made. 

 

Figure 1: A rectangular thick plate element carrying a uniformly distributed load 
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2.1. Assumptions 

Considering the following assumptions, the general governing equation of a thick rectangular 

plate will be formulated. They include: 

I. The material of the plate is homogeneous, isotropic and elastic. 

II. The strain and stress normal to x-y plane is so small that it can be neglected.  

III. The vertical line that is initially normal to the middle surface of the plate before bending 

is no longer straight nor normal to the middle surface after bending. 

2.2. Kinematics and Constitutive Relationships 

In the formulation of the kinematics and constitutive relation, the in-plane displacement 

components along x-axis     and in-plane displacement components along y axis     are 

derived by Onyeka et al. (2020) as presented in the equations (1) and (2) : 

   
   

  
                                                                                                                                        

   
   

  
                                                                                                                                        

Let the shear deformation profile of plate section (S   )                  be:  

     
 

 
   ( 

 

 
)                                                                                                                                     

and; 

                                                        

Considering the assumptions in the previous section (assumption II), the stress normal to the 

x-axes gives: 

    
  

  
                                                                                                                                                       

Similarly, the stress normal to the y-axes becomes: 

    
  

  
                                                                                                                                                       

The curvature in x-z plane is defined as: 

    
  

  
 

  

  
                                                                                                                                           

The curvature in x-z plane is defined as: 

    
  

  
 

  

  
                                                                                                                                          

The curvature in x-z plane is defined as: 

     
  

  
 

  

  
                                                                                                                                         

The constitutive Equations for five stress and strain components according to Onyeka et al. 

(2020) includes: 

The normal stress along the direction of x-axes: 

   
 (      )

    
                                                                                                                                     

The normal stress along the direction of y-axes: 
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 (      )

    
                                                                                                                                    

The shear stress along (x-y), (x-z) and (y-z) respectively are given in the Equation (1), (2) and 

(3) respectively as: 

    
 

      
                                                                                                                                     

    
 

      
                                                                                                                                      

    
 

      
                                                                                                                                      

Where; 

                                           

Substituting Equation (1), (2), (4) and (5) into Equation (9), we have: 
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Substituting Equation (1), (2), (4) and (5) into Equation (10), we have: 
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Substituting Equation (1), (2) and (6) into Equation (11), we have: 
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Substituting Equation (1), (2) and (7) into Equation (12), we have: 
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Substituting Equation (1), (2) and (8) into Equation (13), we have: 
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)+                                                                                   

             

2.3. General Energy Equation 

The total potential energy expression    , was formulated in accordance with the kinematics 

and constitutive relation in the previous section (Onyeka et al., 2018). 

                                                                                                                                                        
where:  

   ∫ ∫             
 

 

 

 

                                                                                                                

where w is the uniformly distributed load. 
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Thus: 
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2.4. Direct Governing Equation           

The direct variational approach was applied to obtain the direct governing differential equation 

by differentiating the total potential energy with respect to the coefficient of deflection    , 

coefficient of shear deformation with respect to x-axis      and coefficient of shear 

deformation with respect to y-axis     .  

In non-dimensional form, let:  

                                                                                                                                  

where: 

                                                   

                                                                                 

                                         
 

 
                                                                                  

                             
 

 
                                                                                                          

Deflection    , is the product of shape function of the plate and deflection coefficient: 

                                                                                                                                                            
where,   is the shape function of the plate. 

Similarly; 

The shear deformation rotation along x-axis becomes: 

    [
  

  
] [  ]                                                                                                                                     

Similarly, the shear deformation rotation along y-axis becomes: 

   [
  

  
] [  ]                                                                                                                                       

By substituting Equation 23, 24, 25, 26, 27 and 28 into 22, gives: 
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where the                       are the stiffness coefficients. 

 

Therefore, differentiating the total potential energy     with respect to the coefficient of 

deflection    , coefficient of shear deformation with respect to x-axis      and coefficient of 

shear deformation with respect to y-axis     : 

  

  
 

  

   
 

  

   
                                                                                                                            

These gives the three Equations of equilibrium as presented in Equation (29), (30) and (31): 
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The three Equations of equilibrium is presented in matrix form as: 
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Solving the matrix in the Equation (40), gives Equation (50), (51) and (52): 

  
   

 
                                                                                                                                                 

                                                                                                                                                         

                                                                                                                                                         

where: 
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2.5. Displacement, Stresses and Stress Resultant Analysis of the Plate 

The expressions for the moment             , shear force             , in-plane 

displacement           , deflection     and stress of isotropic rectangular thick plate were 

derived according to Onyeka and Edozie (2020) by substituting the values of             as 

obtained from the previous section. 

Substituting Equation (50) into (26), gave: 

   ̅ (
   

 
)                                                                                                                                          

where: 

 ̅   

   
   

        
                                                                                                                                     

The bending moment along x-axes: 
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where: 
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The shear force along x-axes: 
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That is: 

     
̅̅̅̅                                                                                                                                                

where: 
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The in-plane displacement along x-axes: 
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The in-plane displacement along y-axes: 
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The normal stress along x-axes: 
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The shear stress along x-y axes: 
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The shear stress along x-z axes: 
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The shear stress along y-z axes: 
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2.6 Numerical Problem 

The particular shape function for rectangular plate with their respective boundary is shown in 

Figure 2. 

  

 

 

 

 

 

                    

Figure 2: SSFS rectangular plate 
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Considering Figure 2, the numerical analysis of SSFS rectangular plate at various span-thickness 

SSFS rectangular plate was derived according to Onyeka et al. (2019) as presented in Equation 

79: 
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Substituting Equations (80 to 84) into Equation (  ) and solving gives the following constants: 

         
   

  
            

    

 
               

 

 
              

  

 
     

  
   

 
                                                                                                                          

Substituting the constants of Equation (85) into Equation      gives; 

  
   

  
           

  

   
                                                                      

That is: 
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Recall from Equation 26, that; 
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and; 
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Therefore: 
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2. Results and Discussion 

The numerical results of stiffness coefficient of the plate as obtained from Equation (30) to (35) 

are presented in the Table 1. 

Table 1: Values of stiffness coefficient, s for various support (boundary conditions) 

Table 2 contains the result of bending moment, shear force and their resultants of a square 

SSFS rectangular plate at different span to thickness aspect ratio. These numerical values were 

obtained from the Equation (56) to (71). 

Theory                         
Present (NRPT) SSFS                                                        00 
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Studying the results as presented in the Tables 2, it is shown that the non-dimensional out-of-

plane displacement ( ), bending moment (           and shear force   
 
      

 
  decreases as 

the span to thickness ratio increases. This decrease continue until failure occurs in the plate 

structure. This means that, the load that causes the plate to deflect also causes the plate 

material to bend simultaneously. It is observed that the value of deflection varies less as the 

span to thickness increase, this becomes constant and equal to the value of CPT at span to 

thickness ratio of 90. 

Tables 2 to 5 show that the value of deflection ( ) decrease with increases in the value of the 

span-thickness ratio. It is also observed in the Tables that the displacement (u, v and  ) and 

stresses characteristics increase as the value of the length to breadth ratio increases. This 

means that, the in-plane displacement are functions of x, y and z as it vary with the plate 

thickness while the deflection is only a function of x and y and did not varies linearly with the 

thickness of the plate thickness.  

Table 2: Bending Moments, Shear Force and Stress resultants of SSFS plate for b/a = 1. 0 

  

  (m)                                  

 ̅   
̅̅ ̅̅    

̅̅ ̅̅    
̅̅̅̅    

̅̅̅̅  

4 0.010037 0.799188 0.430417 0.071685 0.151504 

5 0.009371 0.799611 0.429855 0.063705 0.134751 

6 0.009013 0.799846 0.429543 0.059413 0.125742 

7 0.008798 0.799990 0.429352 0.056839 0.120340 

8 0.008659 0.800084 0.429227 0.055174 0.116847 

9 0.008564 0.800149 0.429141 0.054035 0.114458 

10 0.008496 0.800195 0.429079 0.053221 0.112751 

15 0.008336 0.800306 0.428932 0.051299 0.105579 

20 0.008280 0.800345 0.428880 0.050628 0.105546 

25 0.008254 0.800363 0.428856 0.050317 0.105530 

30 0.008240 0.800373 0.428843 0.050149 0.105522 

35 0.008231 0.800379 0.428835 0.050047 0.105517 

40 0.008226 0.800383 0.428830 0.049981 0.105514 

45 0.008222 0.800386 0.428826 0.049936 0.105511 

50 0.008219 0.800387 0.428824 0.049903 0.105510 

55 0.008217 0.800389 0.428822 0.049879 0.105509 

60 0.008216 0.800390 0.428820 0.049861 0.105508 

65 0.008215 0.800391 0.428819 0.049847 0.105507 

70 0.008214 0.800391 0.428818 0.049836 0.105506 

75 0.008212 0.800392 0.428817 0.049819 0.105506 

80 0.008212 0.800392 0.428817 0.049819 0.105506 

85 0.008212 0.800393 0.428817 0.049813 0.105505 

90 0.008211 0.800393 0.428816 0.049808 0.105505 

95 0.008211 0.800393 0.428816 0.049804 0.105505 

100 0.008211 0.800393 0.428816 0.049800 0.105505 

CPT 0.008211 0.800393 0.428816 0.049800 0.105505 
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From Table 3, it is shown that the non-dimensional displacement (u, v and  ) characteristics 

decrease with increases in the value of the span-thickness ratio. It is also observed in the Tables 

that the displacement (u, v and  ) and stresses characteristics increase as the value of the 

length to breadth ratio increases. This means that, the in-plane displacement are functions of x, 

y and z as it vary with the plate thickness while the deflection is only a function of x and y and 

did not varies linearly with the thickness of the plate thickness.  

Similarly, it was deduced that the normal stress             and shear stress characteristics 

                    also decrease as the span-thickness ratio increases. It is also observed in the 

Table 3 that the stresses characteristics (                      )increase as the value of the length 

to breadth ratio increases.  

It is observed that, at span to thickness ratio between 4 and 30, the value of vertical shear 

stress along y and z axes       varies between 0.007323 and 0.000128. These values of vertical 

shear stress       turns to 0.0000934 and 0.0000115 at the span to thickness between 35 and 

100 respectively. This value is as negligible as its equal to when corrected to 5 decimal places. 

The value becomes almost constant or equal to the value from CPT at span to thickness ratio 

of 100. 

Tables 3 show that the non-dimensional displacement (u, v and  ) characteristics decrease with 

increases in the value of the span-thickness ratio. It is also observed in the Tables that the 

displacement (u, v and  ) and stresses characteristics increase as the value of the length to 

breadth ratio increases. This means that the in-plane displacement are functions of x, y and z as 

it vary with the plate thickness while the deflection is only a function of x and y and did not 

varies linearly with the thickness of the plate thickness.  

Similarly, it was deduced that the normal stress             and shear stress characteristics 

                    also decrease as the span-thickness ratio increases. It is also observed in the 

Table 3 that the stresses characteristics (                      )increase as the value of the length 

to breadth ratio increases.  

In summary, there are two categories of rectangular plates. The plates whose vertical shear 

stress do not vary well from zero will be classified as thin plates because its value are almost 

equal to the value of the CPT. Whereas, the plate whose transverse shear stress varies very 

much from zero is categorized as thick plates. Therefore, the span-to-depth ratio for these 

categories of rectangular plates are: Thick plate∶       , while thin plate:               . 

This confirmation can be used to show the boundary between thin and thick plate (. Thus, it 

can be deduced from this research work that thick plate is the one whose span-depth ratio 

value is 4 up to 30. 
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Table 3: Displacement and Stresses of SSFS plate for length to breadth ratio of 1.0 

      

  

                                                                    

 ̅  ̅  ̅   ̅̅ ̅   ̅̅ ̅    ̅̅ ̅̅     ̅̅ ̅̅     ̅̅ ̅̅  

4 0.010037 -0.013505 -0.005441 0.527400 0.283306 -0.113809 0.019409 0.007323 

5 0.009371 -0.013067 -0.005254 0.510233 0.273845 -0.110005 0.012349 0.004653 

6 0.009013 -0.012832 -0.005152 0.500997 0.268751 -0.107957 0.008549 0.003219 

7 0.008798 -0.012691 -0.005092 0.495458 0.265694 -0.106727 0.006269 0.002360 

8 0.008659 -0.012600 -0.005052 0.491875 0.263716 -0.105932 0.004794 0.001804 

9 0.008564 -0.012537 -0.005026 0.489424 0.262363 -0.105388 0.003784 0.001424 

10 0.008496 -0.012493 -0.005006 0.487674 0.261396 -0.104999 0.003064 0.001152 

15 0.008336 -0.012387 -0.004961 0.483537 0.259111 -0.104080 0.001360 0.000511 

20 0.008280 -0.012350 -0.004945 0.482093 0.258313 -0.103759 0.000764 0.000287 

25 0.008254 -0.012333 -0.004938 0.481424 0.257944 -0.103610 0.000489 0.000184 

30 0.008240 -0.012324 -0.004934 0.481062 0.257743 -0.103530 0.000340 0.000128 

35 0.008231 -0.012319 -0.004931 0.480843 0.257622 -0.103481 0.000250 9.34E-05 

40 0.008226 -0.012315 -0.004930 0.480701 0.257544 -0.103449 0.000191 7.18E-05 

45 0.008222 -0.012312 -0.004929 0.480604 0.257490 -0.103428 0.000151 5.67E-05 

50 0.008219 -0.012311 -0.004928 0.480534 0.257452 -0.103412 0.000122 4.60E-05 

55 0.008217 -0.012309 -0.004927 0.480482 0.257423 -0.103401 0.000101 3.80E-05 

60 0.008216 -0.012308 -0.004927 0.480443 0.257402 -0.103392 8.49E-05 3.19E-05 

65 0.008215 -0.012308 -0.004927 0.480413 0.257385 -0.103385 7.23E-05 2.72E-05 

70 0.008213 -0.012307 -0.004926 0.480389 0.257371 -0.103380 6.24E-05 2.34E-05 

75 0.008212 -0.012306 -0.004926 0.480353 0.257352 -0.103372 4.78E-05 1.80E-05 

80 0.008212 -0.012306 -0.004926 0.480353 0.257352 -0.103372 4.78E-05 1.80E-05 

85 0.008212 -0.012306 -0.004926 0.48034 0.257344 -0.103369 4.23E-05 1.59E-05 

90 0.008211 -0.012305 -0.004926 0.480329 0.257338 -0.103367 3.77E-05 1.42E-05 

95 0.008211 -0.012305 -0.004926 0.480319 0.257333 -0.103365 3.37E-05 1.27E-05 

100 0.008211 -0.012305 -0.004926 0.480311 0.257329 -0.103363 3.06E-05 1.15E-05 

CPT 0.008211 -0.012305 -0.004926 0.480311 0.257329 -0.103363 3.06E-05 1.15E-05 

 

Table 4 reveals that at span to thickness ratio between 4 and 25, the value of vertical shear 

stress along y and z axes     varies 0.005611 and 0.000141. These values of vertical shear stress 

become 0.0000981 and 0.0000109 in the span to a thickness between 30 and 85 respectively. 

Meanwhile, the value of vertical shear stress     is about 0.00000978 and 0.00000883, in the 

span to a thickness between 85 and 100, which is about 0.0000001 when corrected to 5 

decimal places. This negligible value become almost constant or equal to the value from CPT.  

In summary, there are three categories of rectangular plates. The plates whose vertical shear 

stress do not vary well from zero will be classified as thin plates because its value are almost 

equal to the value of the CPT. In between the thin and thick plate is the classified as moderate 

thick plate. Since the plate whose transverse shear stress varies very much from zero is 

categorized as thick plates. Therefore, the span-to-depth ratio for these categories of 

rectangular plates are: Thick plate∶       ; moderately thick plate:              ; thin 

plate:       . This confirmation can be used to show the boundary between thin and thick 
plate (Ezeh et al., 2019). Thus, it can be deduced from this research work that thick plate is the 

one whose span-depth ratio value is 4 up to 25. 
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Table 4: Displacement and Stresses of SSFS plate for length to breadth ratio of 1.5 

      

  

                                                                    

 ̅  ̅  ̅   ̅̅ ̅   ̅̅ ̅    ̅̅ ̅̅     ̅̅ ̅̅     ̅̅ ̅̅  

4 0.012406 -0.016876 -0.004517 0.630375 0.258342 -0.121237 0.021665 0.005611 

5 0.011658 -0.016380 -0.004380 0.611797 0.250664 -0.117610 0.013791 0.003570 

6 0.011255 -0.016112 -0.004306 0.601791 0.246528 -0.115655 0.009549 0.002471 

7 0.011013 -0.015952 -0.004261 0.595787 0.244045 -0.114482 0.007003 0.001812 

8 0.010856 -0.015848 -0.004232 0.591901 0.242439 -0.113723 0.005356 0.001385 

9 0.010749 -0.015777 -0.004213 0.589242 0.241339 -0.113203 0.004229 0.001094 

10 0.010672 -0.015726 -0.004199 0.587343 0.240554 -0.112832 0.003423 0.000885 

15 0.010492 -0.015606 -0.004165 0.582853 0.238697 -0.111954 0.001519 0.000393 

20 0.010428 -0.015564 -0.004154 0.581284 0.238048 -0.111647 0.000854 0.000221 

25 0.010399 -0.015544 -0.004148 0.580559 0.237748 -0.111505 0.000547 0.000141 

30 0.010383 -0.015534 -0.004146 0.580165 0.237585 -0.111428 0.000380 9.81E-05 

40 0.010368 -0.015523 -0.004143 0.579773 0.237423 -0.111352 0.000213 5.52E-05 

45 0.010363 -0.015521 -0.004142 0.579668 0.237379 -0.111331 0.000169 4.36E-05 

50 0.010360 -0.015519 -0.004141 0.579592 0.237348 -0.111316 0.000137 3.53E-05 

55 0.010358 -0.015517 -0.004141 0.579536 0.237325 -0.111305 0.000113 2.92E-05 

60 0.010356 -0.015516 -0.004141 0.579494 0.237307 -0.111297 9.49E-05 2.45E-05 

65 0.010355 -0.015515 -0.004140 0.579461 0.237294 -0.111291 8.08E-05 2.09E-05 

70 0.010354 -0.015514 -0.004140 0.579434 0.237283 -0.111285 6.97E-05 1.80E-05 

75 0.010352 -0.015513 -0.004140 0.579396 0.237267 -0.111278 5.34E-05 1.38E-05 

80 0.010352 -0.015513 -0.004140 0.579396 0.237267 -0.111278 5.34E-05 1.38E-05 

85 0.010352 -0.015513 -0.004140 0.579381 0.237261 -0.111275 4.73E-05 1.22E-05 

90 0.0103512 -0.015513 -0.004140 0.579369 0.237256 -0.111273 4.22E-05 1.09E-05 

95 0.0103508 -0.015512 -0.004140 0.579359 0.237252 -0.111271 3.78E-05 9.78E-06 

100 0.0103505 -0.015512 -0.004139 0.579350 0.237248 -0.111269 3.42E-05 8.83E-06 

CPT 0.0103505 -0.015512 -0.004139 0.579350 0.237248 -0.111269 3.42E-05 8.83E-06 

Studying the results as presented in the Tables 5, it is shown that the non-dimensional 

displacement (u, v and  ) characteristics decrease with increases in the value of the span-

thickness ratio. It is also observed in the Tables that the displacement (u, v and  ) and stresses 

characteristics increase as the value of the length to breadth ratio increases. This means that, 

the in-plane displacement are functions of x, y and z as it vary with the plate thickness while the 

deflection is only a function of x and y and did not varies linearly with the thickness of the plate 

thickness.  

Similarly, it was deduced that the normal stress             and shear stress characteristics 

                    also decrease as the span-thickness ratio increases. It is also observed in the 

Table 3 that the stresses characteristics (                      )increase as the value of the length 

to breadth ratio increases. These decreases continue until failure occurs in the plate structure. 

Furthermore, from Table 5 it can be seen that at span to a thickness ratio between 4 and 25, 

the value of vertical shear stress along y and z axes       varies between 0.004447 and 
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0.000112. These values of vertical shear stress become 0.0000779 and 0.0000109 in the span to 

a thickness between 30 and 80 respectively. Meanwhile, the value of vertical shear stress       

is about 0.0000097 and 4.184E-05, in the span to a thickness between 85 and 100 which is 

about 0.00000701 when corrected to 5 decimal places. The value become almost constant or 

equal to the value from CPT.  

In summary, there are three categories of rectangular plates. The plates whose vertical shear 

stress do not vary well from zero will be classified as thin plates because its values are almost 

equal to the value of the CPT. In between the thin and thick plate is the classified as moderate 

thick plate. Since the plate whose transverse shear stress varies very much from zero is 

categorized as thick plates. Therefore, the span-to-depth ratio for these categories of 

rectangular plates are: Thick plate∶       ; moderately thick plate:              ; thin 

plate:       . This confirmation can be used to show the boundary between thin and thick 

plate (Ezeh et al., 2019). Thus, it can be deduced from this research work that thick plate is the 

one whose span-depth ratio value is 4 up to 25. 

Table 5: Displacement and Stresses of SSFS plate for length to breadth ratio of 2.0 

      

  

                                                                    

 ̅  ̅  ̅   ̅̅ ̅   ̅̅ ̅    ̅̅ ̅̅     ̅̅ ̅̅     ̅̅ ̅̅  

4 0.013471 -0.018397 -0.003688 0.676285 0.245283 -0.09906 0.022623 0.004447 

5 0.012689 -0.017877 -0.003582 0.657137 0.238316 -0.096229 0.014404 0.002831 

6 0.012267 -0.017596 -0.003525 0.646820 0.234560 -0.094703 0.009975 0.001960 

7 0.012014 -0.017428 -0.003490 0.640627 0.232306 -0.093786 0.007316 0.001437 

8 0.011850 -0.017319 -0.003468 0.636618 0.230847 -0.093193 0.005595 0.001099 

9 0.011738 -0.017244 -0.003453 0.633876 0.229849 -0.092788 0.004417 0.000868 

10 0.011658 -0.017191 -0.003442 0.631916 0.229136 -0.092498 0.003576 0.000702 

15 0.011469 -0.017065 -0.003416 0.627284 0.227450 -0.091812 0.001587 0.000312 

20 0.011403 -0.017021 -0.003407 0.625665 0.226860 -0.091573 0.000893 0.000175 

25 0.011372 -0.017001 -0.003403 0.624917 0.226588 -0.091462 0.000571 0.000112 

30 0.011355 -0.016990 -0.003400 0.624510 0.226440 -0.091402 0.000397 7.79E-05 

35 0.011345 -0.016983 -0.003399 0.624265 0.226351 -0.091365 0.000291 5.72E-05 

40 0.011339 -0.016979 -0.003398 0.624106 0.226293 -0.091342 0.000223 4.38E-05 

45 0.011334 -0.016976 -0.003398 0.623997 0.226253 -0.091326 0.000176 3.46E-05 

50 0.011331 -0.016973 -0.003397 0.623919 0.226225 -0.091314 0.000143 2.80E-05 

55 0.011329 -0.016972 -0.003397 0.623861 0.226204 -0.091306 0.000118 2.32E-05 

60 0.011327 -0.016971 -0.003397 0.623817 0.226188 -0.091299 9.91E-05 1.95E-05 

65 0.011326 -0.016970 -0.003396 0.623783 0.226175 -0.091294 8.45E-05 1.66E-05 

75 0.011323 -0.016968 -0.003396 0.623716 0.226151 -0.091284 5.58E-05 1.09E-05 

80 0.011323 -0.016968 -0.003396 0.623716 0.226151 -0.091284 5.58E-05 1.09E-05 

85 0.011322 -0.016968 -0.003396 0.623701 0.226146 -0.091282 4.94E-05 9.70E-06 

90 0.011322 -0.016967 -0.003396 0.623689 0.226141 -0.091280 4.41E-05 8.65E-06 

95 0.011321 -0.016967 -0.003396 0.623678 0.226137 -0.091279 3.95E-05 7.76E-06 

100 0.011321 -0.016967 -0.003396 0.623669 0.226134 -0.091277 3.57E-05 7.01E-06 

CPT 0.011317 -0.016964 -0.003395 0.623587 0.226104 -0.091265 3.57E-05 7.01E-06 
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The result of the comparison made as presented in Table 6, Figures 3 and 4, shows that the 

present study predicts slightly higher values for all aspect ratios. This proves some level safety 

and reliability of this method as it will not put the structure into danger. The total average 

percentage difference between the present study and that of Ezeh et al. (2018) is 3862.8%. This 

reveals that the work of Ezeh et al. (2018) produces error and cannot be reliable for thick plate 

analysis. This can be proven as the total average percentage difference between the present 

study and that of Gwarah (2019) is 6.9%. This means that at about 93 % confidence level, the 

values from the present study are the same with those of Gwarah (2019). This value has been 

sufficient in the statistical analysis showed that the present method can be used with confidence 

for analysis of deflection on a SSFS rectangular plate. 

Table 6: Comparison of results from the present work and literature values of square thick rectangular 

plate 

 

 

  

     

Present 

work 

     

Gwarah 

(2019)  

 

Percentage 

difference 

    

     

Present 

work 

     

Ezeh et al. 

(2019)  

 

Percentage 

difference 

    

4 0.010037 0.009370 7.118463 0.010037 0.000253 3867.194 

5 0.009371 0.008766 6.901666 0.009371 0.000236 3870.763 

10 0.008564 0.007959 7.601457 0.008564 0.000215 3883.256 

20 0.008280 0.007757 6.742297 0.008280 0.000209 3861.722 

30 0.008240 0.007719 6.749579 0.008240 0.000208 3861.538 

40 0.008226 0.007706 6.747989 0.008226 0.000208 3854.808 

50 0.008219 0.007700 6.74026 0.008219 0.000208 3851.442 

60 0.008216 0.007697 6.742887 0.008216 0.000208 3850.000 

70 0.008213 0.007695 6.731644 0.008213 0.000208 3848.558 

80 0.008212 0.007693 6.746393 0.008212 0.000207 3867.150 

90 0.008211 0.007693 6.733394 0.008211 0.000207 3866.667 

100 0.008211 0.007691 6.761149 0.008211 0.000207 3866.667 

CPT 0.008211 0.007691 6.761149 0.008211 0.000207 3866.667 

Average % 

difference 

 

6.9 

 

3862.8 
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Figure 4: Deflection versus span to thickness ratio used to compare present work with 

literature 

 

Figure 4: Deflection versus span to thickness ratio used to compare present work with 

literature                                               
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3. Conclusion 

Application of a new refined shear deformation theory for the analysis of thick rectangular plate 

has been investigated with the following conclusion: 

i. The values of the transverse shear stresses obtained by this theory achieve accepted 

transverse shear stress to the thickness of plate variation and satisfied the transverse 

flexibility of condition of the plate while predicting the be characteristics for the 

CSSS isotropic rectangular thin or thick plate.  

ii. The governing differential equations and associated boundary conditions obtained are 

variationally consistent and can be used with confidence in the analysis of isotropic 

rectangular. 

iii. The deflection and stresses obtained by present theory are in good agreement with the 

other order theories. This validates the efficacy and reliability of the present new 

refined plate theory (NRPT). 
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