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Abstract
Historically, the study of phyllotaxis was greatly helped by the simple description 
of botanical patterns by only two integer numbers, namely the number of helices 
(parastichies) in each direction tiling the plant stem. The use of parastichy num-
bers reduced the complexity of the study and created a proliferation of generaliza-
tions, among others the simple geometric model of lattices. Unfortunately, these 
simple descriptive method runs into difficulties when dealing with patterns pre-
senting transitions or irregularities. Here, we propose several ways of addressing 
the imperfections of botanical reality. Using ontogenetic analysis, which follows 
the step-by-step genesis of the pattern, and crystallographic analysis, which reveal 
irregularity in its details, we show how to derive more information from a real 
botanical sample, in particular, about its irregularities and transitions. We pres-
ent several examples, from the first explicit visualization of a normal Fibonacci 
parastichy number increase, to more exotic ones, including the quasi-symmetric 
patterns detected in simulations. We compare these observations qualitatively with 
the result of the disk-packing model, presenting evidence for the relevance of the 
model.
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Introduction

In the first part of this study [1], we used a disk-stacking iterative model on the cyl-
inder to reproduce the successive appearances of primordia in phyllotactic patterns. 
This model assumes, in its very geometric nature, that a new primordium position is 
determined locally by only two older ones. As a result of the local determination of 
positions, irregularities of the initial condition do not get resorbed easily, and some 
never at all. Irregularity inevitably occurs when, as the disk size changes, the pattern 
undergoes transitions.

If the irregularities are small, and the speed of variation of the relative size of the 
primordia to the circumference slow, one obtains a normal Fibonacci pattern, with 
the numbers of helices in the pattern successors in the Fibonacci sequence. If the 
speed of decrease is too large and/or the irregularity too large, one tends to obtain 
a quasi-symmetric pattern, where the parastichy numbers are closer to one another 
(such as (n, n+2), (n, n−1), or even (n, n)). To our knowledge, these quasi-symmetric 
patterns, as a whole, were never explicitly mentioned in the literature before.

In this second paper, we provide evidence that the phenomena observed in the 
model’s simulations do indeed occur in nature. Not only do we present regular plant 
patterns that exhibit the monotone Fibonacci transitions common in the model, and 
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irregular quasi-symmetric plant patterns from irregular initial conditions or fast tran-
sient, but we show, building on the work of Hotton et al. [2] in our plant pattern 
analyses, markers of the local, iterative nature of the pattern formation process.

To do so, we have to look carefully at the actual phyllotactic patterns. The descrip-
tions of phyllotactic patterns are often reduced to the measurements of few numbers, 
as the parastichy numbers [3], or even only one, the divergence angle between two 
successive elements, often assumed to be essentially constant. Recent work [4,5] has 
tackled the large fluctuations in divergence angles often observed in plants, explaining 
them as switches in the order of onset of the primordia. Larger irregularity makes the 
divergence angle sequence look random however [6]. This is because it implies local 
changes of parastichy numbers. Such local changes were highlighted by Zagórska-
Marek, who pointed out similarities with dislocations in crystals [7]. However, not 
many attempts followed to quantify such large irregularities.

We find these classical tools (parastichy numbers, divergence angle or its devia-
tion from the golden angle) too focused on global aspects of idealized patterns, and 
thus inadequate to fully analyze patterns in transitions and with irregularities. In this 
paper, in order to perform the analyses of the plant patterns in the details needed 
to account for the local nature of the process, we develop the method used in [2] 
(ontogenetic graph) and introduce a new one (crystallographic graph). These graph 
concepts, that encapsulate all the local contact parastichies and their transitions, arise 
naturally from the disk-stacking model, as they consign the topological information 
of the disk contacts (ontological graph) or of the contacts of the Voronoї cells cor-
responding to the disk centers.

In plant patterns, these concepts translate into graphs that account for the contacts 
between the botanical elements (scales, seeds, leaf domains) constituting the pattern. 
Our focus on contacts, and not distance, enables us to consider mature plant samples, 
as we make the reasonable assumption that the contacts of mature organs reflect those 
in their juvenile state. The ontogenetic graph as applied to plant patterns, while it 
contains the information about the usual set of two parastichies, is a little subjective, 
especially at transitions, as it relies on determining which contacts are the two relevant 
ones. The crystallographic graph, on the other hand, keeps all the contact informa-
tion, and reveals a third, secondary parastichy. From all the observations made pos-
sible with these tools, and the many cases observed, we then have a good, topological, 
evaluation for the botanical reality, and compare it with the model, either in detail 
as for the artichoke and birch catkin, or more loosely as with the graphs from our 
manual analysis of other patterns.

In Part I [1], our fundamental concept was that of fronts [2,8]. These are zigzagging 
lines of primordia in contact, encircling the stem. A front contains, at a given time of 
the pattern’s evolution, all the primordia necessary and sufficient to determine the 
position of the next one. Fronts are subsets of the ontogenetic graph, and in turn the 
graph can be reconstructed iteratively from the fronts. Several fine measures can be 
made on fronts (see Part I), such as local parastichy numbers, resultant, front-aver-
aged divergence and more. The irregularity of a pattern was also measured at the front 
level in Part I, as a combination of the deviations from their means of the “zigs” and 
the “zags”. Because this measure of irregularity is based on lengths and distances, one 
runs into difficulties when adapting it to pictures of grown botanical samples. Indeed, 
secondary growth deforms the relative distances between the botanical elements. To 
come back to the front at its juvenile state, when its geometry (and its irregularity) de-
termined the subsequent pattern formation one has to reverse engineer the supposed 
anisotropic growth. While it is possible to approximate such a process, it remains tied 
to uncertainties and subjectivity difficult to control.

Instead of pursuing the route of a numerical measure of irregularity in this article, 
we focus on topological markers of irregularity, that we discovered both by observing 
plants and by comparing disk-stacking simulations of regular and irregular patterns. 
These markers concern the types and respective locations of transitions in both the 
ontogenetic and crystallographic graphs.

One of the findings of this article is that irregularity is prevalent in plants. And 
while little irregularity coexists nicely with the usual Fibonacci transitions, our analy-
ses of plant samples show that indeed irregularity drives the drift toward quasi-sym-
metry. Moreover the persistence of irregularity along a pattern, and the recognizable 
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topological markers it induces may be a sign of the relevance of the hard disk iterative 
stacking paradigm versus a more global, softer element paradigm in the determina-
tion of the pattern. In a further article, we will look more globally at the various types 
of patterns observed and the botanical conditions that may explain their genesis.

This paper is organized as follows: after the “Material and methods”, we first introduce 
the concepts of ontogenetic and crystallographic graphs. We then use these tools to 
analyze a series of samples, each one showing different qualitative aspects, many of 
which were detected in the disk-stacking simulations of Part I. We start with a cab-
bage stem (monotone increase of Fibonacci parastichy numbers), continue with an 
artichoke flower bud (monotone decrease of Fibonacci numbers) and birch catkin 
(rhombic tiling). We then perform analyses of increasingly irregular Pinus female 
cones (regular Fibonacci patterns and irregular patterns in the same species). The 
Cedrus male cone shows a remarkable example of a drift from Fibonacci to quasi-
symmetric, as predicted in Part I and a peteh inflorescence shows a solidly quasi-
symmetric pattern, originated from a rapid transition. Next, we discuss the relation of 
these observations with the model of Part I. Finally we conclude, with some appendi-
ces and supplementary information.

Material and methods

Material

Pinus nigra femalle cones and Cedrus libani male cones were collected at Parc Mont-
souris, Paris, France (48.82186 N, 2.339 E). More irregular Pinus nigra female cones 
were collected at the pine “9”, near Forêt Domaniale Notre Dame de Parlatges, on 
the side of D25 road (43.7824 N, 3.41329 E). For the pine cones, care was taken to 
humidify them in order to close them again in the position they had during their 
development, before imprinting (or unrolling) them. Looking at the detailed pattern 
of the scales, one can check that the expansion of the scales during their second spring 
does not change the contacts, as for turtle shells.

The decorative cabbage was bought in a Paris flower shop. The picture of the arti-
choke inflorescence come from [2]. The birch catkin from Harvard Forest, MA. The 
peteh Parkia speciosa inflorescence, with pods and beans, were bought in Bogor Mar-
ket (Indonesia), in front of the Botanical Garden (6.60272 S, 106.80029 E) .

Plasticine (or modelling clay) imprinting

This method of imprinting consists in rolling the stem on a flat layer of plasticine. 
Rolling it with the right amount of oblique force allows the stem to roll while imprint-
ing the plasticine. Then put a tangential light to reveal the relief in a photography. To 
have a good perception of the volume of the stem (and not its reverse) from the im-
print, the best is to put the light in the lower position (or to put the light in the upper 
position, and inverse the picture). This technique works well for nearly cylindrical 
stems, with developed enough surface corrugation, to leave an imprint, but not too 
much, in order not to tear out the plasticine when rolling out. It can work even for not 
too cylindrical stems, such as conical slightly deformed pinecones. One problem is to 
maintain a constant force so that some parts are not unrolled more quickly, or leaving 
fewer imprints.

Mechanical unrolling

Mechanical unrolling used in this work consists to separate, in the spring, the still 
fresh and soft sapwood from the older hard wood. In the case of a pine branch, one 
can simmer for few days the removed part in essence, for instance turpentine. Once 
the sap is dissolved, one can remove the sapwood from the bark, containing the trace 
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of the leaf domains, and put it to dry flat. One can cut the sapwood and bark along 
a line parallel to the stem axis, and perpendicular, or along the contact parastichies 
themselves. The problematic point is to keep a record of the connection between the 
two unrolled sides, so that the periodicity is well kept. This work well for regular 
cylindrical stems. See supplementary material for an example.

Video unrolling

Video unrolling consists, for this work, in rotating regularly a stem in front of a cam-
era. For this, a slowly rotating plate, with a motor, is best. The resulting movie can be 
imported in ImageJ, which opens it as a “stack” (pile of pictures). This pile of pictures 
can be interpreted as a 3D scan, and “resliced”. If resliced along the axis of the stem, 
and the resulting picture taken around the image of the axis is chosen, this gives an 
unrolled projection of the surface. To reduce the time computation and searching 
for the correct middle picture, one can first crop the movie to around the stem axis, 
before reslicing. In the absence of a motor, one can take several side pictures of the 
stem, and them glue them together using anti-deformation computations, as is done 
for the reconstruction of panoramic pictures.

This works well even for not perfectly cylindrical stems and independently of the 
surface indentation (as long as there is a visual clue of the pattern). However, one 
then observes some local dilations/contractions of the surface, since being closer/
further away from the rotation axis gives a slower/quicker rotation, and consequently 
an image that is (locally) enlarged/compressed in the horizontal direction. Ultimately 
these local deformations could be corrected. But in any case this optical projection 
preserves the original topology of contacts. One advantage is also that it produces a 
picture over more than a circumference period, allowing one to be sure of the period 
identification, and to choose the phase for the best drawing.

How to read phyllotactic patterns

Phyllotaxis patterns, from infancy to maturity

For our analysis of mature phyllotactic patterns, we make the following 
assumptions:

■■ At their microscopic onset, primordia are roughly circular, and of roughly the 
same size.

■■ Each new primordium is in contact with two older “parent” primordia on opposite 
sides of it. Exceptionally, a primordium can have three parents.

■■ Primordia first expand at a uniform rate to fill in the space left between them, 
forming polygonal units, whose edges mark the contacts between future organs.

■■ The polygonal units expand into leaf domains, scales or seeds as the plant grows. 
These grown and deformed polygons retain the contacts they had at their onset [9].

All these assumptions have to be taken with a grain of salt, of course. Primordia 
may have an elongated shape closer to ellipses, for instance. And the polygonal units 
they grow into might have edges that are not quite perfectly straight. The intuitive fact 
that contacts of polygonal units (leaf domains, etc.) remain during growth, probably 
helped by the rigidity of plant cell walls, would have to be substantiated experimen-
tally [10]. This was shown in the case of Magnolia by Zagórska-Marek [11]. This being 
given, the phenomena we observe are qualitatively robust under deformation: they 
pertain more to the topology (with its notions of neighborhood and connectedness) 
of the pattern than to its geometry (which relies on distances). For this reason, we base 
our analysis of adult phyllotactic patterns on contacts of botanical elements.
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Crystallographic and ontogenetic graphs

Our assumption of uniform rate of expansion of primordia means that a polygon’s 
edge forms midway between the primordia it separates. If the primordia are perfectly 
circular and of equal size, the polygons can then be described as the Voronoї cells of 
the primordia centers: each cell contains exactly one center, and each point in the cell 
is closer to that center than to any other one (Fig. 1). It is a known fact that Voronoї 
cells of any set of points in the plane have in average six edges (see supplementary 
material).

Because of the extra regularity of the phyllotactic pattern, originating from the 
stacking of similar size primordia, most of the Voronoї cells associated to the primor-
dia are indeed hexagons, with the rarer “defects” consisting mostly of pentagons and 
heptagons. The pairs of linked hepta and penta cells become prominent actors in the 
crystallographic pattern transitions [12,13].

In general, three edges of the Voronoї cells meet together. Only exceptionally one 
could have a meeting of four edges, or locally a square contact. But a careful examina-
tion then often allows decomposing a degree 4 connection into two very close Degree 
3 connections. There is exceptionally even Degree 5 connections that are visible on 
real pinecones, as in Fig. 7. One can marvel at this exceptionally rare case (as we do 
in this figure), or decompose it into three close Degree 3 connections, which is easily 
done when zooming in.

We can connect the centers of adjacent cells by line segments. We obtain a planar 
graph (a set of points and non intersecting edges connecting them) called the Delau-
nay triangulation, because the regions that its edges bound are all triangles (with the 
above assumption of only Degree 3 vertex in the Voronoї graph). In our context, we 
can think of the edges of the Delaunay triangulation as “local” contact parastichies. 
We call the collection of primordia centers and local parastichies connecting them the 
crystallographic graph.

The regularity of the pattern implies that opposite sides of the hexagonal Voronoї 
cells are roughly parallel, and consequently, the Delaunay edges crossing these op-
posite sides are roughly aligned. Through each center of hexagonal Voronoї cell, then, 
there passes three pairs of these roughly aligned Delaunay edges. By extension, in a re-
gion where all the Voronoї cells are hexagonal, we can draw three sets of piecewise lin-
ear curves in three distinct directions. These curves are the contact parastichies.

In a phyllotactic pattern formed by circular primordia, with the assumption that 
each primordium is tangent to two older ones, two pairs of contact parastichies cor-
respond to contacts of the circular primordia themselves. In the third direction, the 
primordia generally do not touch. We call the two pairs corresponding to primordia 
contacts the main local contact parastichies and the third pair the secondary local 
contact parastichy. In a regular pattern of circular primordia of equal size, the main 
parastichies connect nearest neighbor primordia and the secondary local parastichy 
corresponds to the two smaller sides of the Voronoї cell.

We call the graph formed by the primordia centers and the main local contact 
parastichies the ontogenetic graph. Hence, the ontogenetic graph connects each pri-
mordium to its parents (and not more). The ontogenetic graph is thus obtained from 
the crystallographic graph by removing the secondary contact parastichies. In a re-
gion of the pattern where the pattern sees no transition, the ontogenetic graph con-
sists of the two families of parastichies one perceives the most, and that are counted 
to classify the pattern.

The notions we’ve introduced in the context of perfectly circular primordia of equal 
size can generalize to more realistic situations where primordia are not quite circu-
lar, and not of equal size. The Voronoї cells are further deformed during secondary 
growth into leaf domains, seeds or scales. We will call these generalized Voronoї cells. 
Because of our assumptions in section “Phyllotaxis patterns, from infancy to matu-
rity”, the topologies of the crystallographic and ontogenetic graphs remain unchanged 
by these deformations as they are based on the contacts of botanical elements. We will 
see that, even though the ontogenetic graph is a subgraph of the crystallographic one, 
the two graphs provide complementary information about a pattern’s transitions and 
regularity.
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Fig. 1  Ontogenetic and crystallographic analyses of regular and irregular patterns. The green vertical lines show a period of the 
cylindrical patterns. The patterns show continuous transitions from (3, 5) to (8, 13) obtained from disk-stacking simulations as in 
Part I, with identical decrease of relative primordia size with height. a and c show the analyses of the same, very regular pattern, 
starting with a front of three identical up vectors and five identical down vectors. b and d analyze the same, more irregular pattern, 
with fluctuations in the initial front vectors (visible by their wiggling). We used a computer program to draw the Voronoї cells as-
sociated to the disk centers (polygons in thin, blue). They approximate the generalized Voronoї cells that would more neatly enclose 
the disks of varying size – but without change of topology. a,b Ontogenetic analysis of the patterns. Main parastichies are colored 
according to whether they connect a primordium (disk) to a left or right parent. Transitions in the graph take the form of triangular, 
or pentagonal faces instead of the more common rhomboidal ones. When this happens, one of the main parastichies is replaced 
by the secondary one, and vice versa. These transitions appear around the hexagonal stacking region. In the irregular case (b), one 
can see a larger spread of the transition zone. Surprisingly, some parastichies present no bifurcations. Note also the occurrence of 
adjacent pentagon-triangle pairs in that case. c,d Crystallographic analysis of the same patterns as in a and b. Centers of Voronoї cells 
which are in contact with one another are connected by a line segment. As the average number of contacts is 6, three parastichies 
usually cross at each point. The parastichies segments are colored according to their orientation. New secondary parastichies start 
and old ones stop at Voronoї cells that are close to squares, as contacts appear and disappear there. This is also where the ontogenetic 
graph presents rhomboid that are closest to square, and thus farthest away from the transitions in the ontogenetic graph. As one goes 
up the regular pattern, the more horizontal secondary parastichies (in blue) terminate and the more vertical one (in red) start. In 
the irregular pattern, there can also be switchbacks, with the more vertical parastichy stopping after a short segment, and the more 
horizontal one starting anew, also for a short segment. The starting point of a red (more vertical) secondary parastichy is colored in 
red if it does not belong to the blue secondary parastichy. The Voronoї cell is then a pentagon. If the starting point is inside the blue 
(more horizontal) secondary parastichy, it is colored blue. The Voronoї cell is a heptagon in this case. If the starting point of a red 
secondary parastichy is also the endpoint of a blue one, it is colored white. At such a point, the Voronoї cell is a hexagon, but with 
its short sides not opposite. The switchback points of the irregular pattern, where the blue (more horizontal) secondary parastichy 
starts again are colored gray if a red parastichy ends there (hexagonal Voronoї cell), and dark blue/dark red otherwise (pentagonal/
heptagonal Voronoї cell). Note the alignment of these gray and dark points along a main parastichy.
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Pattern transitions and the graphs

The ontogenetic graph is directly tied to the dynamics of the pattern formation, as 
modeled in Part I [1]. We described these transitions in terms of front, the latest layer 
of primordia formed in the peripheral zone of the meristem at a given time. From a 
vertex in the ontogenetic graph, one can build a front by connecting the vertex to its 
right parent, and then proceeding to the right through local parastichies, trying at 
each step to stay as high as possible without going higher than the original vertex. 
The process stops when, having gone around the cylinder, one reaches the original 
vertex. When the pattern is regular, its parastichy numbers can be read off as the 
numbers of up and down vectors in the zigzagging front. When a new primordium 
is added on top of the front, there is no change of parastichy numbers as long as its 
parents are separated by exactly one other vertex in the front: to obtain the new front, 
a pair of down and up vectors were changed into a new pair of up and down vectors, 
keeping the front parastichy numbers the same. Changes occur when the parents are 
adjacent in the front (triangular transition) – in which case their is a net increase of 
1 in one of the parastichy numbers, or if the parents are separated by two other front 
vertices (pentagonal transition) – in which case there is a decrease of one of the para-
stichy numbers by 1. Higher polygon transitions can also occur, but are much rarer. 
Triangular transitions happen when the front vectors are close to 120°. In terms of 
disk-packing, this corresponds to the region of a pattern where the packing is close to 
hexagonal, and the Voronoї cells are close to being regular hexagons.

Transitions in the crystallographic graph take a different form, and interestingly 
are located in different regions of the pattern. They correspond to a change in the 
number and kind of contacts, i.e., in the number of sides of the (generalized) Voronoї 
cells, as well as the orientation of the cells in contact. They happen in regions where 
two sides of the Voronoї cells are small and the faces of the ontogenetic graph are 
close to being square. In other words, as far away as possible from the transitions in 
the ontogenetic graph. The Voronoї cell at a transition is usually either a pentagon or 
a heptagon, or a hexagon with its short sides not opposite.

In terms of parastichies, transitions in the ontogenetic graph occur when the sec-
ondary parastichy and one of the main ones exchange roles. In terms of the main 
parastichies, one stops when there is a pentagon transition, one is created when there 
is a triangle one. In a crystallographic graph transition, a secondary parastichy termi-
nates and/or another one begins.

Detecting irregularity. An important aspect of this work is the study of the role of 
irregularity in the creation of Fibonacci-like or quasi-symmetric patterns. In Part I 
[1], we measured irregularity by combining the deviations from their means of the 
up and down vectors of fronts. The front of the (same) pattern shown in Fig. 1a,c has 
irregularity 0: its three up vectors are the same, and the five down vectors are the same, 
and thus their is no deviation from the mean. Fig. 1b,d show a pattern that is more 
irregular: the up vectors are not all the same, and neither are the down vectors. Their 
deviation from the mean, and thus the irregularity of the front, is not 0. As shown in 
these simulations, irregularities propagate along the pattern. To use this kind of front-
based measure of irregularity in botanical samples, one has to first carefully correct 
the deformations due to the data collection method, and the non-uniformity of the 
overall geometry of the sample.

But, Fig. 1 gives some keys for visualizing irregularity without measuring it on 
fronts. In the figure, the irregular pattern show more scattered transition sites, both in 
the ontogenetic and crystallographic graphs. More importantly, the crystallographic 
analysis shows types of transitions (switchbacks) in the irregular patterns that regular 
patterns do not have. These can be seen as topological markers of irregularity based 
on contacts which therefore (given our assumptions) reflect the irregularity of the 
pattern at its birth.

Comparing ontogenetic and crystallographic analyses of botanical samples. While 
the ontogenetic graph gives the most commonly sought features of a pattern, namely, 
its main parastichies and their numbers, it is difficult to pinpoint exactly and objec-
tively the locus of transitions in a pattern. Indeed, since transitions occur when a 
secondary parastichy becomes primary and vice versa, they can only be objectively 
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located by detecting equal sides in the Voronoї cell. In an adult pattern, where dis-
tances have been deformed this is clearly full of uncertainty. One could deform back 
the pattern till it fits better a disk-stacking pattern. But the expansion of the stem, 
which needs to be reversed, is often non homogeneous. The pairs of pentagon/triangle 
transitions are also often hard to distinguish from pairs of quadrilateral transitions. 
However, in practice, the fluctuation in the location of the transitions due to these 
uncertainty is relatively small, and the qualitative, topological information remains 
roughly unchanged.

The crystallographic transitions are more objectively detected, as they often occur 
in generalized Voronoї cells where a change in the number of adjacent cells is not 6. 
“No contact” being easier to detect than “equal contact”, these transitions are easier to 
pinpoint precisely and objectively. Moreover, in more irregular patterns, the transi-
tions are more spread out and certain transitions (switchbacks) only appear in ir-
regular patterns. This is a real advantage when one wants to get a qualitative sense of 
the irregularity of the pattern. On the other hand these transitions are not where the 
ontogenetic graph is changing, with the associated changes in parastichy numbers. In 
regular patterns, this is also where the divergence angle, which changes monotoni-
cally while the parastichy pair of numbers is constant, is switching from increasing 
to decreasing, or vice versa [14–17]. The two analyses thus highlight transition places 
that are dual from each other (see Fig. 1). However, since quadrilateral transitions 
propagates geometric features of the pattern along the parastichies, the imperfections 
present after an ontogenetic transition near an hexagonal state can propagate and be 
also visible in the crystallographic analysis around the square state. In this way they 
are not only complementary but also correlated.

In our graphical analyses, we color coded parastichy segments. Passing through 
a cell, one has to decide which pairs of local parastichies are in the same direction, 
and must be colored the same way. Similarly to grouping street segments between 
two crossings into large scale streets [18], one can look at the angles formed by the 
connection lines at the center of a cell, and group them in pairs by closest orientation. 
This can be a little tricky on very irregular patterns, such as Fig. 6 and even more 
Fig. 7. In the ontogenetic graph, we highlighted triangular and pentagon transitions 
with little iconic triangles and pentagons within those faces. In the crystallographic 
graphs, we marked the point where a parastichy starts or stops with the color of the 
parastichy. When both events happen at the same point, we marked it in white. In a 
pattern with decreasing primordia size, the set of secondary contact parastichies are 
globally replaced by a more vertical set. In more irregular patterns, the transitions 
can happen with switchbacks, where such transitions can be temporarily undone by 
reverse transitions (see Fig. 1). These switchbacks can then serve as objective markers 
of irregularity.

Botanical observations

The main question in Phyllotaxis is to determine the origin of the pattern observed. 
Since the early observation of Hofmeister [19], it is clear that the phyllotactic pattern 
is built step by step at the border of the apical meristem. To understand the evolution 
of a pattern one thus needs to retrace its successive modifications from a simple start-
ing initial condition (as we have done in the model of Part I).

The first example we present is of the leaves around a cabbage stem, showing indeed 
the occurrence of increasing Fibonacci numbers of parastichies through a sequence 
of Fibonacci transitions starting from a (1, 1)-front as described in Part I. Strangely 
enough, while such transitions are widely assumed to be prevalent, explicit examples 
are rarely shown.

Patterns with decreasing Fibonacci numbers are more easily observed in Astera-
ceae inflorescence, with large parastichy numbers, or in pinecones, for smaller ones. 
We analyze a juvenile artichoke meristem [2], where the microscopic pattern has un-
dergone very limited secondary growth and is thus only very slightly disturbed, and 
where the disk accretion model can be directly tested.
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For another quantitative comparison of the disks accretion model with a real bo-
tanical pattern, we present the case of a birch catkin, where the elements and their con-
tact is still visible and where the secondary growth effect can be easily reversed. This 
yield a rhombic tiling, as commonly encountered in the disk-stacking model.

Later we show examples of pinecones of the same species (Pinus nigra) but with 
widely varying regularity and patterns.

Finally we present the case of a Cedrus libani male cone, where we observe the 
convergence from an irregular Fibonacci pattern toward a quasi-symmetric one, and 
a peteh inflorescence stem, directly quasi-symmetric after a very short transient, as 
predicted by the model.

Increasing Fibonacci: the example of decorative cabbage stem

In Part I, we presented numerical evidence that, in the disk-packing model, if a pat-
tern starts with a (1, 1) front that is not too flat and if the rate of decrease of the radius 
of the disks is slow enough, then the pattern must follow the “monotone golden ratio 
scenario” where only triangle transitions occur, one side at a time, yielding fronts of 
increasing Fibonacci parastichy numbers. The cabbage stem of Fig. 2 with its clearly 
visible leaf scars in compact stacking, presents an iconic example of this phenomenon. 
Yet, one can see that even in this nearly perfect scenario some trace of irregularity at 
the very top, where triangle transitions are not spread quite evenly among parasticies. 
That the scenario can survive, some irregularity is a sign of its robustness.

Decreasing Fibonacci: the example of artichoke composite flower

In the latest stages of morphogenesis, in its inflorescence, the meristem of an Astera-
ceae (e.g., daisy, sunflower, and artichoke here) fills in with primordia, of roughly the 
same size while the inflorescence size, in that time frame, remains close to constant 
(Fig. 3). In the previous study [2], we defined the ontogenetic graph for such patterns 
as the graph whose vertices are the centers of the primordia and edges connect each 
primordium to its parents. In that paper and algorithms used in it, we defined parents 
as the two closest primordia away from the center, and on opposite sides. While this is 
different from the contact-based definition of this paper, the two differ only slightly in 
the case of a regular pattern such as shown in Fig. 3, giving results of the same qualita-
tive nature (the pentagons would be slightly shifted, but in same numbers. There can 
also be some pentagon/triangle pairs in one case that are not in the other).

Fronts were defined in that context as zigzagging curves going in one direction that 
try to be as close as possible to the center without being closer than the starting point 
– thought of as the state of the meristem edge at a given time of the morphogenesis. 
Parallelly, the paper [2] used a disk-stacking model on the disk to model plant inflo-
rescence morphogenesis, where the role played by height in the cylinder is replaced by 
distance to the center of the disk. The ratio b of primordia size over the circumference 
of the shrinking meristem is then increasing, yielding mostly pentagonal transitions 
in the fronts.

Fig. 3 shows a striking example of a reverse golden ratio scenario: instead of fronts 
parastichy numbers increasing, one side at a time, via triangle transitions, they are 
now decreasing, one side at a time, via pentagon transitions. Except for the lonely 
triangle transition at the top, neutralized by an adjacent pentagon. Similarly to the 
cylinder case, red pentagons correspond to front transitions where, as one proceed 
toward the center, two red edges and a green one yield one red edge and a green one, 
and similarly for the green pentagons. One can count 35 red pentagons in the outer 
transition which, with one of them neutralized by the red triangle, yielding a net 34 
pentagon transitions and a decrease of the number of red edges in the front from 55 to 
21. The inner transition shows a clean set of 21 green pentagon transitions, decreasing 
the number of green edges in the front from 34 to 13. The lone triangle transitions 
is the only detail that keeps the pattern from following a (reverse) monotone golden 
ratio scenario.



10 of 21© The Author(s) 2016  Published by Polish Botanical Society  Acta Soc Bot Pol 85(4):3534

Daudy and Golé / Fibonacci or quasi-symmetric phyllotaxis. Part II

Fig. 2  Cabbage stem. a Decorative cabbage Brassica oleracea var. acephala vegetative stem unrolled by video. The green lines 
show a period of the cylindrical patterns. One can clearly see the leaf scars with their axillary buds, touching each other. Although 
cabbage is a dicotyledon, we see an isolated leaf scar at the base of the stem, creating a (1, 1) initial condition. The parastichy 
numbers then increase from (1, 1) to (5, 8). a Ontogenetic analysis. Fronts of increasing Fibonacci numbers are indicated ((2, 1) 
is left out for graphic clarity). Transitions are only triangular, consistent with the “monotone golden ratio scenario” of Part I. The 
last transition shows a hint of irregularity, as the triangles are more aligned along the bifurcating parastichy direction, leaving one 
parastichy untouched, as in Fig. 1b. b Crystallographic analysis. All the transitions fit those of a perfectly regular disk-stacking.

Fig. 3  Decreasing Fibonacci transitions in an artichoke inflorescence. From the electron micrograph of the meristem, positions of 
the center of each primordia were manually collected, as well as that of the meristem. As the primordia have nearly equal size, the 
ontogenetic graph was then built with a computer program using distances and the Delaunay triangulation, removing some edges. Its 
image is superimposed onto the micrograph, and shown again on the right. Another computer program determined the front at any 
chosen point that is reasonably away from the edges of the pattern. Three concentric fronts are shown on the right, with parastichy 
numbers (34, 55), (34, 21), and (13, 21), respectively. They are separated by two zones of pentagon transitions, all red first, then all 
green, according to which parastichy direction is involved. Only the red triangle transition at the top, neutralized by a red pentagon, 
makes this pattern not quite a perfect example of reverse monotone golden ratio scenario.
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While the above analysis of the pattern was performed on the ontogenetic graph 
produced with the data, in [2], we showed that, using the disk accretion model, one 
obtains a pattern that is a good fit to the data, and the corresponding ontogenetic 
graph produces qualitatively the same transition patterns.

Rhombic tilling: the example of birch catkin

In Part I [1] (see also [8]) we introduced the concept of rhombic tiling. These can be 
seen as deformations of rhombic lattices, where the segments of lines of the lattice are 
allowed to deviate from perfect alignment. In the disk-stacking model on the cylinder, 
these patterns form attracting sets: a pattern close to a rhombic tiling converges to a 
close-by rhombic tiling, often in finite time. We claim here that rhombic tilings are a 
better model than lattices for plant patterns that show no transitions. Indeed, they not 
only account for the often visible undulations of parastichies, but also for difficulty to 
perceive shifts in the vertical order of primordia, which yield erratic divergence angles. 
Rhombic tilings, as opposed to lattices, can present some substantial irregularity. This 
irregularity never gets absorbed in subsequent iterations, and in fact stays constant: 
the pattern is periodic and all of its fronts are made of the same vectors.

Fig. 4 presents the analysis of a rolled out a birch catkin, collected at Harvard For-
est, MA. In this regular looking sample, there are shifts of vertical order in the pri-
mordia that induce erratic divergence angle. While the lattice model cannot account 
for this phenomenon, it can be found in seemingly regular botanical patterns.

Regularity and irregularity in one species: the example of Pinus nigra female cones

Pinecones can present very different aspects, from very regular to very irregular [3]. 
Cones in some species, for instance in Pinus pinaster, also present a typical inversion 
of gravitropism, first pointing up and then pointing down, associated with an over 
expansion of one side. This asymmetric expansion is present but reduced in the case 
of Pinus nigra. Here we present the most regular female cone we found as well as two 
irregular non-Fibonacci cones harvested from a tree that had been pruned. This tree 
then presented a larger percentage of non-Fibonacci cones than observed in [3], as we 
will discuss in a future article.
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Fig. 4  Analysis of a birch catkin. a The imprint of a birch catkin rolled on clay. After a vertical compression counterbalanc-
ing anisotropic growth, we used a method of least squares with (nonlinear) constraints to fit lattices and rhombic tiling to 
this pattern. The results of this process are seen in the lattice in b, and the tiling in c. The fit for the rhombic tiling is 14% 
better than for the lattice. More importantly, the divergence angle between subsequent disks is very close to the golden angle 
in b, but it can vary dramatically in c, e.g., between the pairs of disks (5, 6) and (7, 8).
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Despite its regularity, the crystallographic analysis (as well as the ontogenetic one) 
of the regular cone (see Fig. 5) reveals some trace of irregularity. But this irregularity 
is minor in comparison with those revealed by the analyses in the two non-Fibonacci 
cones from the pruned tree (Fig. 6, Fig. 7). The ontogenetic analysis can further give 
the whole sequence of unexpected transitions between patterns when the parastichy 
numbers reduce.

Fig. 5  Very regular Pinus nigra cone. This cone, collected in Parc Montsouris (Paris), presents the most regular pat-
tern we have found. Top: bottom view of the cone, when dried-open. The square scales make the two opposite (13, 8) 
parastichies very visible. Middle: lateral imprint when humid-closed, with its ontogenetic analysis. The green vertical 
lines indicate one period of the cylindrical pattern. One can read a (13, 8) to (5, 8) transition, with the expected five 
pentagons. A hint of irregularity can be seen in their spreading, as there is one pair and a triplet of aligned pentagons, 
which are close to each other, while one would observe three pairs of aligned pentagons with one pair separated by 
isolated pentagons in a perfectly regular case, as in Fig. 1a . In this previous image, the Fibonacci numbers are increas-
ing, so the transitions were triangles, while it is decreasing here, with pentagons. But the regularity – or not – of the 
transition points is identical. Bottom: the crystallographic analysis of the same imprint reveals that it is not perfectly 
regular, as the highest number parastichies (in red, lower portion) is observed on only parts of the circumference. The 
five green parastichies that remains there form stairs running along one direction, as in Fig. 1d.
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Fig. 6  An irregular Pinus nigra cone. One example of non-Fibonacci cone cropped from a pruned Pinus nigra tree 
(43.7824 N, 3.41329 E). Top: bottom view when dried-open. One can read off a (7, 11) (Lucas) pattern. Middle: the 
lateral imprint when humid-closed, with the ontogenetic analysis. One can see the irregularity and that the (7, 11) 
pattern at the bottom, presents an isolated pentagon leading to a (6, 11) pattern. The further very spread transition, 
with seven pentagons along the 11 direction very aligned, and a triangle in the opposite direction, lead to a (7, 4) pat-
tern before an isolated pentagon leads to (6, 4). The first isolated pentagon-triangle could be grouped in a pair (and 
dismissed to yield an approximate reading of a plain (7, 11) to (7, 4) transition), but another sign of irregularity is that 
they are not aligned along the opposite parastichy direction. Bottom: same imprint with crystallographic analysis. The 
contact analysis is not sensitive to the visibly larger expansion on one side, making larger scales and expanding locally 
the pattern. One can see a very irregular system, with two pentagonal connections with exchange of parastichy colors, 
colored in dark blue.
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Fig. 7  A very irregular Pinus nigra cone. Another example of non-Fibonacci cone cropped from the 
same pruned tree of the previous figure. Top: bottom view when dried-open. One can read a (11, 9) 
pattern. Middle: the lateral imprint when humid-closed, with the ontogenetic analysis. One can see 
that the (9, 11) pattern at the bottom, transitions quickly to a (9, 10) pattern with an isolated pentagon. 
It is followed by a spread out series of five pentagon transitions in a direction and an isolated one 
in the other direction, leading to a surprising Fibonacci (8, 5) pattern, before a nearly regular five 
pentagon transition, if they were aligned, leading to the previous pattern in the Fibonacci sequence 
(3, 5). This ending in Fibonacci numbers could be interpreted as what the model predicts, the noisy 
Fibonacci turn quasi-symmetric, but reversed in variation of relative primordia diameter. Apart from 
this happy ending, one can see a very special region of vertically extended scales the lower isolated 
orange pentagon. Bottom: same imprint with crystallographic analysis. A rare connection between 
the scales, of Degree 5, have been surrounded by black circles, without trying to reduce it into Degree 
3 connections. The very large irregularity makes the grouping in colors of the local connections par-
ticularly difficult, for instance between the purple and the green, or between the green and light blue 
even though they are of opposite chirality. This also leads to the presence of many exotic transition 
places, for instance surrounded by dashed circles. But even in this case the presence of higher order 
red parastiches at the bottom propagate regularly along the orange parastiches.
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Drift toward quasi-symmetry in a Cedrus libani male cone

Cedrus libani has regular (3, 5) female cones (see supplementary material). However, 
the male cones, appearing also in the fall, rise to much larger parastichy numbers, 
here (13, 21) in apparently a very short number of primordia, before stabilizing and 
producing a large numbers of elements. While this still leads to a Fibonacci pat-
tern at the base, the fronts at the base are very irregular, and this irregularity with 
a nearly constant relative primordia diameter makes the pattern converge toward a 
quasi-symmetric state, as detected and explained in Part I [1] with the disk-stacking 
model.

A direct quasi-symmetric state in peteh flower stems

The male cone of Cedrus libani shows a drift toward the quasi-symmetric state, even 
while starting from a Fibonacci front, and with little overall change in the ratio b 
of primordia diameter over circumference of the stem. This can be explained by the 
strong irregularity of the starting fronts. This irregularity comes in turn from a very 
quick transition to relatively high parastichy numbers that preceded these fronts. In-
deed, Fig. 5 in Part I [1] shows that for a too rapid a decrease of relative primordia 
size, the pattern tends to quickly become a quasi-symmetric state (see also how that 
happens in Fig. 13 of that paper). Here in the case of the peteh (Parkia speciosa) inflo-
rescence stem (Fig. 9), one can see that from few involucral bracts, the inflorescence 
transits very quickly, apparently instantaneously, to a large number of very small flow-
ers. We then observe a quasi-symmetric state ((21, 22) in this specimen), as predicted 
by the model in Part I.

Discussion

Origin of parastichy numbers

Most of historical phyllotactic observations in the literature are done on mature or-
gans and on these organs only part of the ontogenetic process is visible. More recent 
observations of the meristem is often limited to one or few successive snapshots, and 
never to a full recording of the ontogeny. Only in a few cases, such as the mature 
sunflower stem can one see the trace of the first primordia (in this case a pair of coty-
ledons), and how the pattern emerged from them [20]. Such rare examples are also 
usually limited to small final parastichy numbers, such as (2, 3). For higher numbers, 
for instance on the pinecones, one can barely see the phyllotaxis of the base stem that 
supports it, and even less how the phyllotaxis of this side stem originated. To know 
the origin of parastichy numbers one needs to see their successive transitions.

This makes our example of cabbage precious in that it helps visualize Fibonacci 
transitions from the start to a relatively large (5, 8) structure. It confirms the viability of 
the golden ratio scenario, and helps extrapolate its applicability to other plants.

Assuming such an orderly scenario, with, e.g., Fibonacci-like transitions, for the 
occurrence of the more exotic parastichy numbers is much more problematic. And 
the more distant from Fibonacci parastichy numbers, the quasi-symmetric states for 
instance, the more problematic it becomes to deduce the starting point and past evo-
lution of a pattern, especially if nothing is known of the early part of the pattern.

For instance, the (7, 12) pattern observed on a pine branch (see supplementary ma-
terial), could come from (7, 5) and then previously (2, 5). However, as already noticed 
by Zagórska-Marek [7], such pattern rather appears through a minimal number of 
localized bifurcations from a normal Fibonacci pattern, or already a quasi-symmetric 
one. For instance, it could also come from a (8, 13) Fibonacci pattern, with just one 
pentagon/triangle for each direction.

Such simple transitions, with a logic in their disorder, are precisely what we ob-
served in detail in the male cedar cone (Fig. 8). Whereas reconstructing the finally 
observed (16, 14) pattern assuming pure Fibonacci transitions would impose to 
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originate the pattern from a very strange 2×(1, 7), in other, classical words, the biju-
gate of a very accessory (and improbable) sequence.

In conclusion, many parastichy numbers pairs become possible if one does not tie 
their genesis to the zoo of the classically accepted Fibonacci-like sequences. As seen 
in Part I, quasi-symmetric patterns are those that systematically break the Fibonacci 
addition rule.

Comparison with disk accretion model

The main predictions of the disk-stacking model, namely the golden ratio scenario 
when the pattern is regular enough and the prevalence of quasi-symmetric patterns in 
presence of irregularity, are validated here, at least by a few examples. But the model 
is validated in more subtle ways by the observations. Indeed, when the phyllotactic 

Fig. 8  Cedrus libani male cones (from Parc Montsouris, Paris). Top: side view of a cone. On can see two lines of more verti-
cal vectors propagating in the opposite directions, as often encountered in simulations of the disk-stacking model (see Part I 
Fig. 13b). Bottom: a different Cedrus libani cone, uvideo-unrolled. The ontogenetic analysis reveals that it starts (Level A) from a 
Fibonacci (13, 21) pattern, then quickly changes to (16, 21) with three triangle transitions. Two of these transitions are canceled 
by pentagons aligned with them, then reappear, and are canceled again. This type of fluctuations are typical of irregular patterns 
getting slowly more regular, as an analysis of the disk model reveals (1, 21). Then there is a large transition zone, with three 
triangles and a pentagon in the opposite direction, leading to (17, 20) at Level B. This is a clear convergence toward a quasi-
symmetric state. The triangle close to a pentagon in the opposite direction is typical of this process, as described in Part I. Two 
of the triangles are canceled by two pentagons leading back to (15, 20). Then, three pentagons yield at Level C the numbers (15, 
17). Finally, as the cone reduces its size, one pentagon transition in each direction yields (16, 14) at Level D.
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patterns are observed with precision, and in particular in the details of their irregu-
larities, as we did above, many details appear that are perfectly coherent with the disk-
stacking model.

Irregularity. The very first observation is that entirely regular patterns may not exist. 
Even the most regular pine cone we could find presents some irregularities, as re-
vealed by the crystallographic and ontogenetic analysis (see Fig. 5), and so does the 
cabbage in Fig. 2 with its perfect increase in Fibonacci numbers, or the artichoke and 
its quasi-perfectly monotone decrease in Fibonacci parastichy numbers (Fig. 3). This 
means that the ontogeny of the plant really follows a dynamical process where the new 
primordia position is determined one by one by the position of the previous ones, as 
Hofmeister proposed [19], and that there is no general organization imposed, as a 
target divergence angle, even for a given parastichy number pair. The recurrence of 
these irregularities in plants even disqualify other dynamical systems, with very “soft” 
particles for instance (as were among other simulated in [21]).

Indeed large softness implies involving primordia further away than those in clos-
est contacts in the positioning of the new ones. These models have a tendency to 
regularize the pattern, the softer, the quicker the regularization is. There still could be 
some effective softness in plants, but the persistence of irregularities, even after the 
pattern has converged to a rhombic tiling, shows that this is not a very large one, and 
that the geometry of hard disks stacking seems to be a better approximation.

Propagation of vectors. One detail in favor of the dynamical stacking of hard disks 
is the propagation of vectors of a given direction (up or down) along a parastichy in 
the opposite direction. When one front vector is very different from the other ones in 
the same direction, more vertical or more horizontal, it is visible as a step in the cor-
responding parastichies. Due to the tilling of rhombi, this step (vector) will propagate 
in the other direction, forming a staircase, as in Fig. 13b of Part I. Such propagation, 
already noted in model and specimens in [22], is visible in several of the analyses 
presented here. It is visible even in the most regular pine cone, shown in Fig. 5, thanks 
to the very precise crystallographic analysis. Such propagation around the square 
transition, revealed by the crystallographic analysis, is also visible in the two other 
pinecones (Fig. 6 and Fig. 7), even if they are much more irregular. Such staircases are 
also directly visible on the side view of the Cedrus libani male cone in Fig. 8, or on the 
birch catkin (Fig. 4).

Fig. 9  Peteh (Parkia speciosa ) inflorescence (from Bogor) Left: a side picture. One can see on top the beginning of the 
young pods containing the green bean favored in Indonesian cooking. Right: an unrolled stem. The flattened expanded upper 
part and grown pods leads to strong deformation of the pattern, both in reality and in the video projection. However, a (22, 
21) pattern is clearly visible at the base. Its large irregularity is seen at the irregular alternation of up and down vectors at the 
front and the formation of relatively large groups of them, despite their almost equal total numbers. To better visualize the 
front its elements have been drawn with a large ellipse of the color of the ending vector.
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Triangle–pentagon pairs. The same effect of vector propagation in the opposite di-
rection is also visible in the ontogenetic graph, with the triangle–pentagon pairs. As 
said in Part I, these pairs which change the number of parastichies in one direction 
before changing it back to the original numbers, have for effect to regularize the pat-
tern (through the pentagon transition) (Golé and Douady, unpublished manuscript 
“Convergence in a disk-stacking model on the cylinder”). When the pattern is not too 
disturbed, the pairs can be easily associated, and they are linked along the direction of 
the unchanged parastichies. This is already visible as three connected triangle–penta-
gon pairs in the numerical simulation of a Fibonacci transition with noise, in Fig. 1b. 
One observes such a localized pair in the ontogenetic analysis of the artichoke inflo-
rescence (see the red triangle in Fig. 3, right, on top). In this case, as it is a decreasing 
parastichy number sequence, one observes the reverse pentagon–triangle pair.

The best example of triangle–pentagon pairs is in the analysis of the Cedrus libani 
male cone. In that example, one can observe six nicely aligned pairs. This is consistent 
with the fact that this pattern is more irregular, and triggers regularization mecha-
nisms. This is also shown in the similar numerical simulation of Fig. 10. In this case, 
we observe many regularizing pairs, either triangle–pentagon, in the direction that is 
globally increasing its parastichy number while converging toward a more symmetric 
state, while it is reverse, pentagon–triangle, in the direction that is reducing its parast-
chy number. When the two elements of the pairs are separated, this creates propagat-
ing stairs discussed above, but limited between the two transition points.

Note that in the case of quickly decreasing/increasing relative primordia diameter, 
the pairs are not observed, as there are new transitions happening before the opposite 
transition can take place. This corresponds to Part I Fig. 13a, during the first part of 
diameter reduction. This explains also why such pairs are not observed in the quickly 
decreasing parastichy numbers of the pinecones.

Positions of the transitions. From a crystallographic point of view, the change in 
parastichy numbers is necessarily associated with the corresponding number of dislo-
cations. The main result of Part I, in the sufficiently regular cases, is to explain why we 
have the right Fibonacci number of such dislocations (triangles/pentagons for rising/
decreasing parastichy numbers respectively).

A further prediction of the model is that the transitions of a front become spread 
out to a larger area of the pattern when noise is introduced (as in Fig. 1b, bottom). 
This is what the ontogenetic graphs of the plant patterns shown here confirm. When 
the spread is small one finds the same alignments as for the pairs and square stairs 

Fig. 10  Simulation showing a drift from Fibonacci to quasi-symmetric from a Fibonacci (13, 21) 
pattern, that quickly changes to (14, 18) with one triangle and three pentagons. After two of the first 
pentagons are canceled with triangles. There are also many pentagon–triangle pair in one direction, 
triangle–pentagon pair in the other. But one triangle and one pentagon are left alone. This, thus, lead 
to a globally (15, 19) pattern, with regularizing fluctuations (pairs).
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along the opposite parastichy, as in the upper part of Fig. 1b. In the front of a lattice 
with Fibonacci parastichy numbers, there can be at most two vectors of one kind in a 
row. In a very regular pattern undergoing slow enough transitions, we would expect 
these (more horizontal) vectors in the pairs to fill in with triangles – the transitions 
occurring on all vectors of a type in the same front. This ideal case results in triangles 
either isolated or grouped by pairs, as in Fig. 1a. Seeing three triangles in a row along 
a parastichy is therefore a sign of a moderate spread of the transitions. When there are 
alignments of transitions, one also observes, between groups of transitions, parastich-
ies making sharp turns but with no triangle, or pentagon transitions, as in the first 
transition (bottom) of the simulation of Fig. 1b.

Such an alignment of triangle transitions is visible in Fig. 2a (top), and for the very 
regular pine cone, Fig. 5, where an alignment of three triangles is observed in both 
case. For larger irregularities, the alignments become stronger, as they are very visible 
in the pentagons of the artichoke Fig. 3, where many pentagons align in groups of 
three.

Shift towards quasi-symmetry. The cedar male cone sample is exemplifying the 
model and its result. It shows that in the case of large irregularity, even when starting 
from Fibonacci numbers of parastichies, there is a shift toward a quasi-symmetric 
state. In particular, the occurrence at the same place of a triangular transition in the 
direction of the smaller number of parastichies, and a pentagon in the direction of the 
larger one, shows in a real botanical example the essential mechanism bringing the 
irregular states toward the quasi-symmetric one.

The peteh inflorescence stem also show that in the case of too quick decrease of 
the relative size of the primordia to the circumference, one directly converge toward a 
quasi-symmetric state. In this case, the stem presents four involucral bracts, and then 
very small flowers. However, the transition is not instantaneous and careful inspec-
tion (see supplementary material) shows flower bracts that are first large but reducing 
their size quickly.

Conclusion

In this article, we show, as in Part I [1], that the real complexity of botanical patterns 
can be tackled. Instead of looking at idealized systems, with observations reduced to 
few numbers, or to one sequence of apparently meaninglessly fluctuating numbers 
such as the divergence angles, one can not only describe in simple geometric terms the 
classical Fibonacci phenomenon when the pattern is regular enough but also observe 
and characterize the irregularities and their consequences. In our observations, we 
took care of going back, in as much as possible to the original stacking of the infant 
primordia, either by looking at the juvenile patterns under microscopy, or inverting 
the effect of the secondary growth by consistently keeping track of contacts between 
botanical elements.

From these contacts, one can reconstruct the ontogenetic graph, and study its tran-
sitions. The local transition tiling, with either triangles or pentagons, their positioning 
and especially their spreading along coherent lines in the presence of irregularity, are 
good evidence of an iterative accretion process of hard elements in the formation of 
these botanical patterns.

One can further use the full details of the contact, including the smaller ones, 
to extend the ontogenetic graph to the crystallographic one. Although this method 
is sensitive around the region of square packing of the pattern where transitions in 
secondary parastichies take place, which is not ontogenetically meaningful, it also 
reveals, as in the stacking model, the propagation of irregularities along the opposite 
parastichy direction, similar to the development of “stairs”.

In this second part, we studied several examples of real patterns in detail, and 
showed how these details reveal the underlying process of their formation. In a future 
article, we will make more general observations on families of plants, and will have 
more general discussions about the conditions under which the different cases occur. 
This will show a broad adequacy of the disc accretion model, and in particular its 
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ability to distinguish between two possible broad types of patterns, the golden ratio 
ones and the quasi-symmetric ones, with botanical reality.

Finally, we can say that with these detailed geometric tools, and the ones developed 
in the first part, one can finally dive into the details of the reality of the formation 
of the phyllotactic patterns, and in particular their transitions. This is a big depar-
ture from so many studies where only the mathematical properties of the Fibonacci 
numbers, or of the Fibonacci rule, were used to fantasize about the reasons for their 
occurrence in plants. Here we see that the unavoidable presence of irregularities is 
prevalent. And within this irregular real world, it is the coherence between the local 
transitions that allows the particular patterns to appear.
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Fig. S2–Fig. S4  Supplementary figures on Cedrus, Parkia, and Pinus.

Fig. S5–Fig. S13  Original pictures of the specimens, from both articles (Part I and Part II), 
before being drawn on.

References

1.	 Golé C, Dumais J, Douady S. Fibonacci or quasi-symmetric. Part I: why? Acta Soc Bot 
Pol. 2016;85(4):3533. https://doi.org/10.5586/asbp.3533

2.	 Hotton S, Johnson V, Wilbarger J, Zwieniecki K, Atela P, Golé C, et al. The 
possible and the actual in phyllotaxis: bridging the gap between empirical 
observations and iterative models. J Plant Growth Regul. 2006;25:313–323. 
https://doi.org/10.1007/s00344-006-0067-9

3.	 Fierz V. Phyllotactic patterns in cones of conifers. Acta Soc Bot Pol. 2015;84(2):261–265. 
https://doi.org/10.5586/asbp.2015.025

4.	 Guédon Y, Refahi Y, Besnard F, Godin C, Vernoux, T. Pattern identification and 
characterization reveal permutations of organs as a key genetically controlled 
property of post-meristematic phyllotaxis, J Theor Biol. 2013;338:94–110. 
https://doi.org/10.1016/j.jtbi.2013.07.026

5.	 Hamant, O, Heisler MG, JÖnsson H, Krupinski P, Uyttewaal M, Bokov P, et al. 
Developmental patterning by mechanical signals in Arabidopsis. Science. 2008;322:1650–
1655. https://doi.org/10.1126/science.1165594

6.	 Douady S, Couder Y. Phyllotaxis as a self organizing iterative process, Part III: the 
simulation of the transient regimes of ontogeny. J Theor Biol. 1996;178:295–312. 
https://doi.org/10.1006/jtbi.1996.0026

7.	 Zagórska-Marek B. Phyllotaxis triangular unit; phyllotactic transitions as the 
consequences of the apical wedge disclinations in a crystal-like pattern of the units. Acta 
Soc Bot Pol. 1987;56:229–255. https://doi.org/10.5586/asbp.1987.024

8.	 Atela P, Golé C. Rhombic tilings and primordia fronts of phyllotaxis [Preprint]. 2007 
[cited 2016 Dec 30]. Available from: http://arxiv.org/abs/1701.01361

9.	 Plantefol L. La théorie des hélices foliaires multiples. Paris: Masson; 1948.

10.	 Meicenheimer RD. Role of parenchyma in Linum usitatissimum leaf trace patterns. Am J 
Bot. 1986;73(12):1649–1664. https://doi.org/10.2307/2444231

11.	 Zagórska-Marek B. Phyllotaxic diversity of Magnolia flowers. Acta Soc Bot Pol. 
1994;62(2):117–137. https://doi.org/10.5586/asbp.1994.017

http://pbsociety.org.pl/journals/index.php/asbp/rt/suppFiles/asbp.3534/0
http://pbsociety.org.pl/journals/index.php/asbp/rt/suppFiles/asbp.3534/0
https://doi.org/10.5586/asbp.3533
https://doi.org/10.1007/s00344-006-0067-9
https://doi.org/10.5586/asbp.2015.025
https://doi.org/10.1016/j.jtbi.2013.07.026
https://doi.org/10.1126/science.1165594
https://doi.org/10.1006/jtbi.1996.0026
https://doi.org/10.5586/asbp.1987.024
http://arxiv.org/abs/1701.01361
https://doi.org/10.2307/2444231
https://doi.org/10.5586/asbp.1994.017


21 of 21© The Author(s) 2016  Published by Polish Botanical Society  Acta Soc Bot Pol 85(4):3534

Daudy and Golé / Fibonacci or quasi-symmetric phyllotaxis. Part II

12.	 Sadoc JF, Rivier N, Charvolin J. Phyllotaxis: a non conventional crystalline solution to 
packing efficiency in situations with radial symmetry [Preprint]. 2012 [cited 2016 Dec 
30]. Available from: https://arxiv.org/abs/1201.1432

13.	 Rivier N, Sadoc JF, Charvolin J. Phyllotaxis: a framework for foam topological evolution 
The European Physical Journal E. 2016;39:7. https://doi.org/10.1140/epje/i2016-16007-8

14.	 van Iterson G. Mathematische und mikroskopisch-anatomische Studien über 
Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen. Jena: Gustav 
Fischer Verlag; 1907. https://doi.org/10.5962/bhl.title.8287

15.	 Adler I. A model of contact pressure in phyllotaxis. J Theor Biol. 1974;45:1–79. 
https://doi.org/10.1016/0022-5193(74)90043-5

16.	 Douady S. The selection of phyllotactic patterns. In: Jean RV, Barabé 
D, editors. Symmetry in plants. Singapore: World Scientific; 1998. 
p. 335–358. (Series in Mathematical Biology and Medicine; vol 4). 
https://doi.org/10.1142/9789814261074_0014

17.	 Atela P, Golé C, Hotton S. A dynamical system for plant pattern formation: 
a rigorous analysis. Journal of Nonlinear Science. 2002;12:641–676. 
https://doi.org/10.1007/s00332-002-0513-1

18.	 Lagesse C, Bordin P, Douady S. A spatial multi-scale object to analyze road networks. 
Netw Sci (Camb Univ Press). 2015;3(1):156–181. https://doi.org/10.1017/nws.2015.4

19.	 Hofmeister W. Allgemeine Morphologie der Gewächse. In: du Bary A, Irmisch TH, Sachs 
J, editors. Handbuch der Physiologischen Botanik. Leipzig: Engelman; 1868. p. 405–664.

20.	 Couder Y. Initial transitions, order and disorder in phyllotactic patterns: the 
ontogeny of Helianthus annuus: a case study. Acta Soc Bot Pol. 1998;67(2):129–150. 
https://doi.org/10.5586/asbp.1998.016

21.	 Douady S, Couder Y. Phyllotaxis as a self organizing iterative process, Part II: the 
spontaneous formation of a periodicity and the coexistence of spiral and whorled 
patterns J Theor Biol. 1996;178:275–294. https://doi.org/10.1006/jtbi.1996.0025

22.	 Zagórska-Marek B, Szpak M. Virtual phyllotaxis and real plant model cases. Funct Plant 
Biol. 2008;35:1025–1033. https://doi.org/10.1071/FP08076

https://arxiv.org/abs/1201.1432
https://doi.org/10.1140/epje/i2016-16007-8
https://doi.org/10.5962/bhl.title.8287
https://doi.org/10.1016/0022-5193(74)90043-5
https://doi.org/10.1142/9789814261074_0014
https://doi.org/10.1007/s00332-002-0513-1
https://doi.org/10.1017/nws.2015.4
https://doi.org/10.5586/asbp.1998.016
https://doi.org/10.1006/jtbi.1996.0025
https://doi.org/10.1071/FP08076

	Abstract
	Introduction
	Material and methods
	Material
	Plasticine (or modelling clay) imprinting
	Mechanical unrolling
	Video unrolling

	How to read phyllotactic patterns
	Phyllotaxis patterns, from infancy to maturity
	Crystallographic and ontogenetic graphs
	Pattern transitions and the graphs

	Botanical observations
	Increasing Fibonacci: the example of decorative cabbage stem
	Decreasing Fibonacci: the example of artichoke composite flower
	Rhombic tilling: the example of birch catkin
	Regularity and irregularity in one species: the example of Pinus nigra female cones
	Drift toward quasi-symmetry in a Cedrus libani male cone
	A direct quasi-symmetric state in peteh flower stems

	Discussion
	Origin of parastichy numbers
	Comparison with disk accretion model

	Conclusion
	Acknowledgments
	Supplementary material
	References

		2017-01-14T12:22:41+0000
	Piotr  Otręba




