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Introduction

The results of studies performed in recent years show 
that regulatory protein hydrolysis, catalyzed by proteolytic 
enzymes occurs ubiquitously and is directly or indirectly 
involved in a majority (if not all) cellular processes of living 
organisms. It is widely believed that proteases are involved in 
protein quality control and protein turnover processes. The 
protein quality control comprises a hydrolysis of proteins, 
which have been damaged due to mutations or exposition of 
plants to stressing environmental conditions, synthesized at 
redundant quantity or sorted to incorrect cell compartment. 
Then protein turnover involves a hydrolysis of proteins, 
which become unnecessary in a defined ontogenetical con-
text under comfortable environmental conditions. Aminoac-
ids released during the course of protein turnover are reused 
for protein synthesis as a part of a continuous breakdown/
resynthesis of cellular components. Proteolysis is considered 
to regulate extensively whole-organism maintenance, struc-
ture and functions according to changes of environmental 
conditions and to progression of ontogenetic stages. For some 
proteases ATP binding and hydrolysis is necessary for their 
catalytic activity. All of them possess a conservative AAA+ 
domain which is responsible for ATP binding and hydrolysis, 
necessary to unfold protein substrates so that they can enter 
a catalytical chamber of the proteases molecule through a 
narrow entrance [1]. Nevertheless, some other proteases, 
including the Deg group, function in an ATP-independent 
manner, most probably because the availability of catalytic 

center is less restricted for unfolded substrates than in the 
case of ATP-dependent enzymes [2].

Deg proteases comprise a very important group of pro-
teolytic enzymes occurring in all domains of life, including 
Archaea, Bacteria and Eukarya [3]. Deg proteases were first 
discovered by studying Escherichia coli mutants unable to 
hydrolyze periplasmic proteins damaged under heat shock 
conditions (>37°C) [4,5]. Later it was found that the quality 
of E. coli periplasmic proteins is controlled by three Deg 
proteins namely DegP, DegQ and DegS whose structure 
and function have been precisely solved [6–8]. A unique 
feature of DegP protein is that it switches from protease to 
chaperone activity in a temperature-dependent manner. 
Namely at low temperatures (28°C) protease activity was 
found to be hardly detectable and chaperone activity was 
high; on the other hand at elevated temperatures (>28°C) 
the proteolytic activity rises abruptly whereas the chaperone 
activity is strongly diminished [9,10]. The chaperone activ-
ity of DegP consists in an ability to refold denatured, MalS 
(a native substrate) [10] and to prevent aggregation of a 
lysozyme (an artificial substrate) [9].

According to MEROPS database (9.10 release) count 
of known proteases in the model plant species Arabidop-
sis thaliana is 783, representing about 3% of all proteins 
identified in this taxon. Sixteen genes coding for proteins 
orthologous to DegP, Q and S have been identified in the 
A. thaliana nuclear genome and designated AtDEG1–16 
[11,12]. The genes code for proteins, which are targeted either 
to chloroplasts (AtDEG1, 2, 5, 7 and 8) or mitochondria 
(AtDEG10) or peroxisomes (AtDEG15). The localization 
of nine proteins encoded by remaining AtDEG genes is 
unclear; moreover some of those nine AtDEGs may be 
pseudogenes [13] and two potential AtDeg proteases may 
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be proteolytically inactive [12]. A majority of AtDEG genes 
have their orthologues in other model plant species, as 
Populus trichocarpa, Oryza sativa, Physcomitrella patens and 
Chlamydomonas reinhardtii [12].

AtDeg2 protease is an ATP-independent serine endo-
peptidase containing a trypsin type catalytic domain with 
a catalytic triad (HDS). It belongs to the DegP (E. coli) type 
subfamily (S1C) of the clan PA according to the MEROPS 
nomenclature and may be found in this database as Deg2 
chloroplast peptidase (Arabidopsis thaliana). However, 
MEROPS database gives also the other name – AtDegP2. All 
AtDeg proteases were originally named as AtDegPX ones and 
then renamed just AtDegX [11]. It has been shown recently 
that AtDeg2 exhibits chaperone-like activity in vitro [14] yet 
no data exist with regard to how protease and chaperone 
activities are interlocked within a single AtDeg2 molecule.

This review focuses on current awareness with respect to 
structure and functions of AtDeg2 – a chloroplast protein 
with dual protease/chaperone activity.

AtDEG2 gene

AtDeg2 protease is encoded by nuclear AtDEG2 gene 
(DEGRADATION OF PERIPLASMIC PROTEINS 2) with 
a locus tag AT2G47940 and DDBJ/EMBL/GeneBank ac-
cession No. NC_00307, and exists at a single locus in the 
Arabidopsis genome. AtDEG2 gene comprises 4266 bp 
and is composed of 19 exons. The gene has been identi-
fied between 19617986 bp and 19622251 bp on the edge 
of 2 chromosome of Arabidopsis genome (DDBJ/EMBL/
GeneBank accession No. AC005309) and is “read” in op-
posite direction (19622251→19617986) AtDEG2 gene is 

transcribed onto mRNA (NM_130361) that contains 2278 
bp and encodes a 607 aminoacids long pre-AtDeg2 protein 
(NP_566115.1). NCBI database indicates one more mRNA 
of ATDEG2 gene (NM_001125072.1) composed of 2294 bp, 
which is regarded as a splice variant 2. This mRNA encodes 
a protein (NP_001118544.1) composed of 606 amino acids 
(Fig. 1). The lacking aminoacid residue (K62) is localized 
within an amino terminal stroma-targeting transit peptide, 
which is cleaved off after pre-AtDeg2 import into the plastid 
stoma therefore a single mature AtDeg2 isoform is found 
in the chloroplast.

AtDeg2 protein

Localization and structure
Hydropathy plots demonstrated mature AtDeg2 to be 

mostly a hydrophilic protein with no predicted transmem-
brane α-helices [15]. In fact studies based on immunoblot 
analysis of individual chloroplast subcompartments dem-
onstrated that AtDeg2 is associated peripherally to the 
stromal side of stroma thylakoid membranes (80–90%) and 
non-appressed regions of grana stacks (10–20%) [15], the 
observation supported by the results of LC-MS/MS analyses 
of proteome of subchloroplast fractions [16]. AtDeg2 is 
cytosolically synthesized as a precursor, which is imported 
into the plastid stroma and deprived of its transit peptide 
(positions 1–69). The mature protein (positions 70–607, 
i.e. 538 aminoacid residues in total) is routed to its func-
tional location at the stromal side of thylakoid membrane 
[15]. Its molecular weight was assessed to be 60 kDa [17]. 
According to HHPred platform (http://toolkit.tuebingen.
mpg.de/hhpred/) [18] mature AtDeg2 molecule contains 

Fig. 1	 Alignment of two splice variants of AtDeg2 protein. Sequences were obtained by BLAST search.

http://toolkit.tuebingen.mpg.de/hhpred/
http://toolkit.tuebingen.mpg.de/hhpred/
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protease domain as well PDZ1 and PDZ2 domains (posi-
tions 110–313, 314–422 and 423–577, respectively [14]). 
The protease domain is preceded by and PDZ2 is followed 
by short regions, which are lacking any conserved domains 
(positions 70–109 and 578–607, respectively; Fig. 2). The 
protease domain involves a catalytic H159 D190 S268 triad.

A great progress has been made recently with regard 
to understanding structural organization of AtDeg2 since 
recombinant version of this protein (spanning 110–577 posi-
tions) has been crystallized and the crystal structure solved 
based on X-ray diffraction analysis [14]. When analyzed by 
size exclusion chromatography AtDeg2 in solution forms 
supposedly inactive hexamer (a dimer of trimers) of “sealed 
cage” type, consisting of two trimeric rings stacked upon 
each other in such a way that they form an inner, catalytic 
chamber the entrance to which is restricted to six pores.

The formation of trimer is enabled by interactions be-
tween protease and PDZ1 domains of individual monomers 
(Fig. 3). In the AtDeg2 hexamer the assembly is stabilized 
through multiple interactions involving two interfaces 
formed for each monomer, consisting of the protease domain 
and PDZ2 (interface 1) and PDZ1 and PDZ2 (interface 2) 
[14]. While PDZ1 domain resembles conventional PDZ 
domains of bacterial Deg proteases, PDZ2 domain has a few 
unique features with respect to canonical PDZ domains of 

other Deg proteases. The most interesting feature is pres-
ence of an unusual β-strand (β21) comprising aminoacids 
440–444, which acts as an intramolecular internal PDZ 
ligand. The internal PDZ2 ligand was shown to interact with 
the protease domain of the same monomer by binding its LA 
loop (Fig. 4) thereby fixing the protease domain and making 
AtDeg2 monomer and hexamer rigid molecules. Apart from 
making AtDeg2 monomer and hexamer rigid, internal PDZ2 
ligand may play a crucial role in conversion of the supposedly 
resting hexameric state into the enzymatically active 12-mers 
and 24-mers by dissociating from PDZ2 so that trimeric 
units may be rearranged into higher oligomeric states. The 
oligomerization of AtDeg2 in solution was demonstrated to 
be pH-independent and to increase with the incubation time 
with an artificial substrate (but the hexameric state existed 
predominantly all the time [14]).

Dual protease/chaperone activity (in vitro and in vivo)
Recombinant AtDeg2 catalyzed in vitro hydrolysis of vari-

ous artificial protein substrates as gelatin [15], fluorescence-
labelled casein [19] and β-casein [14] thereby demonstrating 
to be bona fide proteolytic enzyme. AtDeg2 proteolityc 
activity in vitro was found to be regulated in redox- and 
pH-dependent manner [14,19] and it was suggested that 
cysteine residues found in AtDeg2 molecule may trigger 

Fig. 2	 The distribution of conservative domains in a linear structure of the precursor of AtDeg2 protein. The distribution of the domains 
is shown after [14] and the determination of processing site was performed using TARGETP 1.1 Server (http://www.cbs.dtu.dk/services/
TargetP/). aa – aminoacids.

Fig. 3	 Space fill representation of side (a) and top (b) views of structure of AtDeg2 hexamer (MMDB: 103069; PDB ID: 4FLN). Ap-
propriate domains are distinguished by different colours (green – protease domain; cyan – PDZ1 domain; indigo – PDZ2 domain; grey 
– co-crystalized peptide). Monomers are divided by black line and trimers by white line. View in Jmol (Jmol: an open-source Java viewer 
for chemical structures in 3D – http://www.jmol.org/).

http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://www.jmol.org/
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redox-dependent conformational changes of the molecule 
leading to modifications of proteolytic activity observed in 
various redox surroundings [19]. However, extremely little 
is known about the identity of native substrates for AtDeg2 
under stressing or non-stressing conditions in vivo. It was 
revealed in this respect that AtDeg2 might be involved in 
vivo in degradation of photodamaged PsbA protein by 
catalyzing the primary cleavage of stroma-exposed DE loop 
[15]. Yet, the role of this protease in degradation of PsbA 
was questioned since later it was shown that photodamaged 
PsbA protein had been effectively degraded in A. thaliana 
mutant lacking AtDeg2 [20]. The protease has recently been 
demonstrated to take part in protection against photoin-
hibition [17] again indicating possible involvement of this 
protease in removing photodamaged D1 protein in vivo. 
The only more straightforward data concerning identity of 
native substrates for AtDeg2 come from our laboratory – an 
apoprotein Lhcb6 has recently been found to be a target for 
short stress (3 h)-related degradation catalyzed by AtDeg2, 
as judged by an inability of A. thaliana mutants devoid of 
AtDeg2 to cleave Lhcb6 in leaves exposed to various stresses 
(elevated irradiance, heat, high salt and wounding). Most 
probably Lhcb6 apoprotein experiences an oxidative damage 
as result of short stresses in a manner that marks this protein 
for AtDeg2-dependent recognition and hydrolysis [17].

It was thought for several years that in contrast to what is 
observed with respect to DegP, chloroplast-targeted AtDegs 
function uniquely as proteases, i.e. are not able to switch 

reversibly from protease to chaperone and it was only in last 
four years that intriguing observations have been published 
demonstrating that AtDeg2 (and AtDeg1) may function 
as chaperones as well. Namely recombinant AtDeg1 was 
demonstrated to stimulate refolding of unfolded version of 
MalS protein [21] and recombinant AtDeg2 inhibited ag-
gregation of denatured lysozyme in vitro [14]. However, both 
AtDeg1 and AtDeg2 exhibited dual activity in a wide range of 
temperatures in contrast to temperature-dependent shifting 
between protease and chaperone functions demonstrated 
for DegP. It was found that chaperone activity of AtDeg1 is 
confined to catalytic triad of protease domain [21] yet no 
data exist concerning a localization of chaperone activity in 
a linear structure of AtDeg2 molecule [14].

Functional importance
AtDEG2 is expressed almost ubiquitously, practically 

through all ontogenetic stages of the model plant species 
[22,23]. When AthaMap (http://www.athamap.de/) [24] was 
used to search for transcription binding elements within 
AtDEG2 promoter predicted by AGRIS (http://arabidopsis.
med.ohio-state.edu/) [25] eight well known and highly con-
served cis-regulatory elements have been identified, specific 
for ARR-B, GATA, CAMTA, LFY, NAC and AP2/EREBP 
families of transcription factors. Namely, AtDEG2 promoter 
contains two individual ARR-B recognition sequences, 
known as ARR1 and ARR2 and identified as key transcrip-
tion activators in cytokinin downstream signaling pathway 

Fig. 4	 Cartoon representation of structure of AtDeg2 monomer (a), catalytic triad (b) and PDZ2 ligand red colored (c). Appropriate 
domains are distinguished by different colors (green – protease domain; cyan – PDZ1 domain; indigo – PDZ2 domain). The catalytic 
triad and amino acids participating in LA loop binding are shown as a stick model (MMDB ID: 103069; PDB ID: 4FLN). View in Jmol 
(Jmol: an open-source Java viewer for chemical structures in 3D – http://www.jmol.org/).

http://www.athamap.de/
http://arabidopsis.med.ohio-state.edu/
http://arabidopsis.med.ohio-state.edu/
http://www.jmol.org/
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[26]. Two potential targets for GATA transcription factors 
were also detected. One of the motifs designated GATA-1 
was found to be involved in light regulation of nuclear 
genes expression [27] whereas the second one (described 
as ZML2) was identified as playing a crucial role in the 
cryptochrome1-dependent response to excess light [28]. In 
addition, three identical cis-regulatory elements recognizing 
LFY and single cis-regulatory elements specific for CAMTA3 
(CAMTA family), NAP (NAC family) and RAP2.2 (AP2/
EREBP family) transcription factors have been detected. 
LFY transcription factor is thought to play significant role 
in photoperiodic-dependent gene expression regulatory 
pathways [29], CAMTA3 in turn is considered to be in-
volved in responses to biotic stresses [30], cold and freezing 
tolerance [31] as well as in regulation of ethylene-induced 
senescence [32]. NAP plays a key role in leaf senescence by 
participation in regulatory pathway which controls stomatal 
movement and water loss during leaf senescence [33] and 
the RAP2.2 was found to be involved in transactivation of 
two genes coding for enzymes engaged in carotenogenesis 
[34]. It is not easy to imagine how AtDEG2 transactivation, 
exerted by interactions between the above mentioned tran-
scription factors and cis-regulatory motifs within AtDEG2 
promoter may influence growth and development events 
since reliable data regarding the role of AtDeg2 in control-
ling the course of growth and developmental processes at 
the whole plant level are very scarce. It was demonstrated by 
us that under non-stressing conditions AtDeg2 is involved 
in regulation of both morphology and chloroplast life cycle 
of juvenile rosette leaves – at the moment when first flower 
was opened the area of juvenile leaves of mutants devoid of 
AtDeg2 was reduced significantly with respect to those of 
wild type plants (the alteration was found to be photoperiod 
independent). At the same moment chloroplasts of the wild 
plants’ juvenile leaves showed signs of entering a senescence 
phase (e.g. the presence of numerous, large plastoglobules 
and periodic undulations of thylakoids parallel to those of 
the envelope – Fig. 5) which chloroplasts of mutants devoid 
of AtDeg2 appear not to do [17]. AtDEG2 transactivation 
phenomena may mediate regulatory events triggered in 
response to exposure of A. thaliana plants to abiotic stress 
conditions as well, as judged by the fact that AtDeg2 mRNA 
accumulation is remarkably downregulated in response to 
short-term (2 h) exposure of detached mature leaves to a 
variety of abiotic stress conditions including heat, high salt 

or desiccation [15] and upregulated in response to short term 
exposure (2.5 h) to elevated irradiance [35]. On the contrary 
long-term exposure (5 h) to elevated irradiance was found 
to be accompanied by a reduction in AtDeg2 transcript level 
[36]. Usually only a weak correlation exists between the 
accumulation of numerous chloroplast protease transcript 
and their proteins including AtDeg2 [15,37] thereby complex 
AtDeg2 regulatory mechanisms including transcriptional/
translational as well as posttranscriptional phenomena [38] 
have to be triggered in response to the action of exogenous 
stressing factors as well as in response to progression of 
ontogenetic phases.

Fig. 5	 Transmission electron microscopy of chloroplast of juvenile 
leaves of Arabidopsis thaliana wild type plants (WT) and mutants 
devoid of AtDeg2 protease (deg2–3) [17]. Micrographs show chlo-
roplasts of mesophyll cells of plants which reached the moment 
when the first flower opened. [17]. Arrows point to the undulations 
of thylakoids of chloroplast of WT plants; their appearance marks 
the onset of early senescence. Scale bar: 500 nm.
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