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Introduction

Network modularity (community structure) is a well-
studied large-scale connectivity pattern in networks [1,2], 
with several detection algorithms described in the literature 
(for a review, see [2]). A comparative study of module 
assignment accuracy by the different algorithms using 
benchmark networks showed that algorithm performance 
varies according to network size and the level of inter-
module mixing [3]. A comparative evaluation of different 
community detection algorithms using real ecological data 
is however lacking so far. Here we test the applicability of 
network modularity algorithms as a method to classify plant 
species communities.

Community ecologists seek to understand the processes 
underlying organism and environment interaction dynamics 
of diversity, abundance, and composition of species in com-
munities [4]. Vegetation science focuses on the ecology and 

composition of plant communities [5]. A basic task of the 
vegetation ecologist is to characterize, identify and distin-
guish different vegetation units that comprise plant species 
with similar habitat preferences. A common traditional ap-
proach is the making of relevés [6], which comprise a catalog 
of all plant species that occur in a vegetation plot together 
with their respective degree of coverage (i.e., frequency). 
Plant communities are ascertained by sorting the relevés in 
vegetation tables according to the occurrence of diagnostic 
species. Large and complex vegetation tables can however 
become error-prone and do not provide a concise overview 
of the whole data. A potentially more critical limitation is 
that the method demands an a priori knowledge about the 
respective diagnostic species whose identity can be a matter 
of debate. Diagnostic species include those particular species 
whose occurrence in the relevés may serve as an important 
telltale for the plant community classification. These include 
the character species, whose occurrence is typical to specific 
plant communities, and the differential species, whose occur-
rence can be used to distinguish related plant communities, 
but are not limited to a single community. Computer based 
methods including network applications have been used in 
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the classification of plant communities [7–11]. De Cáceres 
et al. [7,8] tested the performance of fuzzy clustering for the 
classification of communities in mesophytic and xerophytic 
pastures of Spanish highlands. Oliver et al. [9] employed a 
different approach including construction of dendrogram 
groups using hierarchical clustering for the classification of 
a broad diversity of communities from New South Wales. 
Classification success rates using those methods range 
between 75 and 80% [7,9].

For the present study, we investigated four different 
modularity functions that do not require a pre-determined 
number of expected modules. These four algorithms are 
based on two main approaches. The modularity maximiza-
tion (ModMax) function by Girvan and Newman [1] is an 
application of a binary recursion algorithm that iteratively 
splits the network into modules. The algorithm seeks to 
maximize the modularity function defined as the ratio of 
edge frequency within modules and edge frequency outside 
modules. In the simulated annealing (SimAnn) algorithm 
the modularity function is calculated similarly to the Mod-
Max algorithm and optimized by a simulated annealing 
approach [12]. The Markov cluster algorithm (MCL) [13] 
applies a flow simulation approach that is equivalent to a 
random walk along the edges in the network and measur-
ing the probability to pass between different nodes. Edges 
that link highly connected nodes comprising a module are 
assumed to be more frequently travelled than edges that 
connect nodes from different modules. The less travelled 
edges are gradually omitted and the remaining connected 
nodes are the resulting modules. The information flow map 
(InfoMap) algorithm [14] applies a similar strategy to that 
of MCL, namely that the path of a random walk along the 
network edges will pass more frequently between nodes in 
the same module. The protocol of InfoMap incorporates 
principles from the field of information theory that are 
used to eliminate uninformative edges from the network. 
All algorithms except SimAnn include an implementation 
of weighted networks. All selected algorithms assign the 
nodes into a single module only.

The utility of the four modularity algorithms for plant 
communities classification was tested using data surveyed 
in the Lower Rhine floodplain vegetation plots. We further 
investigated the effects of several parameters affecting 
network based classification and determine to what extent 
this approach, entailing minimal a priori information, can 
approximate the results of manual classification for the 
same data.

Material and methods

Data collection and syntaxonomy
The ecological data consisted of 282 vegetation plots 

(relevés) that were recorded between 1996 and 2006 in the 
floodplains of the lower Rhine area, Germany [15,16]. The 
sampled plot size ranges between 4 m2 and 100 m2. Species 
communities in the plots were classified according to the 
Braun-Blanquet method considering characteristic and dif-
ferential species yielding 13 different communities [15]. The 
communities span a geographical gradient including sand 

and gravel bank vegetation, communities of moist meadows, 
flood swards, reeds, nitrophyte vegetation, riparian forests 
and communities of semidry to fresh meadows (Fig. 1a). 
Plant species in each plot where identified and ranked by 
their coverage following the scale of Braun-Blanquet [6] 
that ranges between 1 (1–5%) and 5 (75–100%). A total 
of 232 different species were identified during the survey, 
species with coverage <1% were excluded from network 
calculations. The frequency of different species per plot with 
coverage >1% ranges between 1 and 27 with a median of 6. 
Syntaxa were named according to Pott [17] and LANUV 
[18], complemented by Schmitz and Lösch [19].

Vegetation network structure and properties
In the vegetation network, vertices correspond to plots 

in the vegetation table while the edges designate species 
composition similarity between the plots that they connect. 
Edge weights in the network were calculated by two different 
species similarity measures: the Sørensen similarity index 
[20] and the weighted similarity index [21].

The Sørensen similarity index (SSI) is calculated as:

where A and B are the number of species in plots A and B 
respectively, and C is the number of species shared by the 
two plots.

The weighted similarity index (wSI) is calculated from 
the species coverage rankings as:

where MA and MB are the total coverage rankings of species 
that are present only in plot A and B respectively, and MC 
is calculated by the total rankings of all species present in 
both plots.

To estimate the level of connectivity among plots of dif-
ferent communities we used the mixing parameter μt that 
quantifies the proportion of links connecting a certain node 
with nodes outside the community [3]:

The variables ki
out and ki

in designate the number of edges 
connecting node i with nodes outside and within the com-
munity respectively. The weighted mixing parameter μw 
quantifies the inter-community connectivity strength [3]:

The variables wi
out and wi

in designate the sum of edge 
weights for edges connecting node i with nodes from dif-
ferent or the same community respectively. It is commonly 
agreed that in a network where the average proportion 
of edges connecting a given node with nodes outside its 
community is >50% (i.e., μ > 0.5) the modularity structure 
(if it exists) would be difficult to detect using computational 
methods [3]. Network graphs were generated with Cytoscape 
[22] version 2.8.0 using the “force directed” layout with 
default parameters [23].
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Detection of modules within the network
Modularity applications for SimAn, MCL and InfoMap 

were downloaded from their dedicated websites. Module 
detection using ModMax was implemented with a MatLab™ 
script for the modularity maximization function as described 
by Newman [24]. The modularity detection accuracy was 
quantified by the quality of overlap between the modules 
obtained and the species communities as defined by the 
expert ecologists. The quality measures were calculated as 
described by Brohée and van Helden [25]. Standard data 
analysis and statistical tests were performed using MatLab™ 
version R2012a (7.14.0.739).

Results

Results of principal component analysis and multidimensional scaling
To test the level of similarity among plots in the different 

plant communities using traditional methods, we analyzed 
the data using principal component analysis (PCA) where 

plant species comprise the variables and the plots are defined 
as observations. The result does not reveal a clear distinction 
between plots in the different communities, yet their distri-
bution in the PCA largely conforms to the plots ecological 
distribution. Plots of the Phalaridetum arundinaceae (PARU) 
and the Arrhenatheretum elatioris (AEL) tend to group 
together but the rest of the communities appear as inter-
mixed (Fig. 1b). The first two components explain in total 
26.8% of variability in the data. A further analysis of the plot 
composition dissimilarity using a multidimensional scaling 
(MDS) approach results in mixed distribution of the plots 
and no clear distinction between the communities (Fig. 1c). 
The results of the multivariate methods reveal some order 
in the data but they cannot be used in order to classify the 
plant communities.

Edge definition and species community mixing
The definition of edge weight is expected to have a strong 

influence on the network structure and the modularity 
algorithms performance. To investigate the effect of plot 

Fig. 1	 A hierarchical representation of the ecological communities, results of PCA and MDS. a Each colored dot represents one of the 
13 plant communities that have been classified in the vegetation data. The boxes describe relationships between plant communities with 
groups sharing the same syntaxonomy marked by a box. Descriptions next to the boxes provide the threefold gradient present in the 
data, which is independent from the syntaxonomic community classification. b Principal component analysis result. Each dot signifies 
a plot with colors according to the legend above. c Nonmetric multidimensional scaling analysis of the vegetation units based on euclid-
ian distances. AEL – Arrhenatheretum elatioris; CL-RCA – Cuscuto lupuliformis-Rubetum caesii; F-CY – Festuco-Cynosuretum/Luzulo-
Cynosuretum; L-C – Lolio-Cynosuretum; M-AV – Medicagini-Avenetum/Mesobrometum alluviale; P-CHE – Polygono-Chenopodietum; 
P-FE – Potentillo-Festucetum arundinaceae; PARU – Phalaridetum arundinaceae; R-A-G – Ranunculus repens-Alopecurus pratensis 
community; R-AL – Ranunculo repentis-Alopecuretum geniculati; RO-A – Rorippo-Agrostietum stoloniferae; SAL – Salicetum albae; 
S-S-G – Sanguisorba officinalis-Silaum silaus community.
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similarity estimation on the network modularity, we con-
structed networks using six different combinations of edge 
weight assignment and connectivity rules. Those include 
networks in which the edge weight is calculated by SSI or 
wSI measures as well as different edge exclusion regimes 
according to the shared dominant species (the species hav-
ing the highest coverage within the plot; Tab. 1). Network 
construction based on plant composition similarity among 
the plots (Tab. 1: network A, Fig. 2a) results in a highly con-
nected network where each plot is, on average, connected to 
half of the plots in the network (Tab. 1). The average weighted 
mixing parameter of nodes in network A (Tab. 1) is >0.5, 
indicating that species communities in this network will be 
difficult to detect using any modularity function.

Plots of the Arrhenatherum elatioris (AEL) and Phala-
ridetum arundinaceae (PARU) species communities (for 
abbreviations see legend of Fig. 1) are frequently connected 
with plots in the same community. Consequently the mixing 
parameter of these communities is low (PARU μw = 0.52; 
AEL: μw = 0.42; Fig. 2f), suggesting that these species com-
munities are relatively well defined. This result is in agree-
ment with the distinction level of these two communities 
in the PCA result.

In network B the edge weight was calculated by a weighted 
similarity index to include information about the plot cover-
age of each species (Tab. 1). This results in a slight decrease of 
the average μw in the total network. In addition, the average 
mixing parameter of nodes in the Cuscuto lupuliformis-
Rubetum caesii (CL-RCA) species community drops below 
0.5 (Fig. 2f). Furthermore, plots in this community are 
largely indistinguishable in any visible way (Fig. 1b, Fig. 2b).

To reinforce the species community structure within 
the network we adopted a procedure from the ecological 
definition of species communities relying on the dominant 
species for the characterization of plant communities [26]. 
In network C the plots are connected only if the dominant 
species is identical. The resulting network is sparser, with 
73% fewer edges than networks A or B, and the node con-
nectivity is reduced to 36 nearest neighbors per node on 
average (Tab. 1). The grouping of plots from several species 
communities is visible in the network, including M-AV, 
AEL, L-C, PARU, and CL-RCA (Fig. 2c). Accordingly, the 
mean weighted mixing parameter of these five communities 
is <0.5 (Fig. 2f). The overall mean mixing parameter in the 
network is significantly lower in comparison to networks 
A and B with an average of 38% inter-community edges 
per node (Tab. 1). Seven plots do not share their dominant 
species with any of the plots and are disconnected from the 
network main component (Fig. 2c).

In network D the connectivity rule makes use of the 
dominant species coverage information so that only plots 
sharing their dominant species in similar levels of coverage 
are connected. This restriction results in a decrease of 22% 
of the edges in the network (Tab. 1). The mixing parameter 
is reduced as well with an average of 30% inter-community 
links per plot. Nodes in plant community CL-RCA that are 
characterized by Cuscuta lupuliformis (willow dodder) and 
Rubus caesius (European dewberry), form a homogeneous 
cluster that is disconnected from the main network com-
ponent (Fig. 2d). Plots of moist meadow and flood sward 

communities (R-A-G, R-AL, RO-A, P-FE and S-S-G) are 
frequently inter-connected (Fig. 2d). The high mixing 
parameter of plots in these communities (Fig. 2e) indicates 
that their species composition and dominant species are 
similar, hence the success of the computational approach 
to distinguish between species communities in this class is 
low. Plots in the F-CY community have an average μw = 0.77 
and are mixed accordingly with other communities in the 
order Arrhenatheretalia (fertile anthropogenic meadows 
and pastures; Fig. 2d). Indeed, network D does not pres-
ent a complete division between all species communities, 
yet there is a certain distinction between rarely and often 
flooded habitats in which the plots were sampled. The top 
part of the network comprises species communities sampled 
in semidry to fresh meadows and pastures, the waistline 
presents plots sampled in moist habitats, while the bottom 
portraits plots sampled near the Rhine waterside on sand 
and gravel banks (Fig. 2d).

Using the dominant species for the connectivity rule 
resulted in a significant overall decrease in the plot inter-
community mixing level (Fig. 2g). Further increase of the 
network modularity may be achieved by using a different 
edge weight calculation leading to stronger connectivity 
among plots classified into the same species community. 
Networks Cw and Dw are constructed using the same con-
nectivity rules as in networks C and D respectively, but with 
edge weights calculated by the weighted similarity index 
(wSI; Tab. 1). The mixing parameter distribution of nodes 
in the resulting networks does not differ significantly from 
the networks where the SSI was used for the edge weight 
calculation (PCw = 0.58, nCw = 275 and PDw = 0.72, nDw = 272, 
using Kruskal–Wallis test and Tukey posthoc comparisons 
with α = 0.05; Fig. 2g). This counter intuitive result may 
be explained by the similar distributions of SSI and wSI 
in our data. The two similarity measures are significantly 
linearly correlated (SSI = 0.89 × wSI + 0.05; P = 0, n = 3888) 
where changes in SSI explain 84% of the variability in wSI 
(R2 = 0.84).

Modules within the network of plant communities
To test the applicability of network modularity algorithms 

for species community classification we constructed modules 
in the network using four different algorithms. The results 
reveal that indeed module detection accuracy improves 
when the network is constructed using connectivity rules 
yielding lower average mixing (Fig. 3). The modularity 
detection in networks A and B using ModMax, MCL, and 
InfoMap algorithms yielded overall similar results while 
SimAnn was an exception with 94 modules. The 94 modules 
included 3 large modules comprising 67% of the plots and 
91 single-plot modules (Tab. 2). In what follows, we discuss 
the resulting modules in network D, which is characterized 
by the lowest mixing parameter distribution and overall 
higher module detection accuracy. The modularity maximi-
zation based methods ModMax and SimAnn (with default 
starting resolution) resulted in nine and seven modules 
accordingly, while the information flow algorithms MCL 
(with default Inflation parameter) and InfoMap resulted in 
fourteen modules each. The latter two methods resulted in a 
higher positive predictive value (PPV) in comparison to the 
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Network Edge weight Connectivity rule – plots i and j are connected if: No. of edges Mean connectivity2 Mean μt Mean μw

A aij = SSI aij > 0 18.011 127 0.7 0.61

B aij = wSI aij > 0 18.011 127 0.7 0.55

C aij = SSI One or more of the most frequent species1 are 
identical.

4.988 36 0.38 0.34

D aij = SSI One or more of the most frequent species1 are 
identical, and the difference in their plot coverage 
is ±1.

3.888 28 0.31 0.3

Cw aij = wSI As in C. 4.988 36 0.38 0.34

Dw aij = wSI As in D. 3.888 28 0.31 0.29

Tab. 1	 Vegetation plot network definitions and properties.

1 The most frequent species are species having the maximum coverage ranking in the plot. 2 Connectivity (Ci) is calculated as the number 
of nodes connected to node i by a single edge.

Fig. 2	 Plant community networks. a–d Networks A–D calculated according to their definitions in Tab. 1. e Distribution of the node 
mixing parameter, μt, in network D. The nodes are painted by their μt, ranging between 0 and 1 according to the color scale-bar on the 
right. f The distribution of community μw in networks A–D. g Distribution of node μw in the six tested networks (Tab. 1).
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modularity maximization methods, indicating that modules 
by the MCL and InfoMap result in a better prediction of the 
species communities (Tab. 2).

The sensitivity (Sn) measure used to quantify the success 
rate of assigning plots from the same plant community into 
the same module is higher using the ModMax and SimAnn 
functions (Tab. 2). These algorithms yield fewer and larger 
modules that contain whole communities, leading to higher 
sensitivity values. Weighting the PPV and Sn values to as-
sess the algorithm accuracy (Acc) reveals somewhat better 
precision using the flow information methods with a slight 
advantage to InfoMap (Tab. 2). The community separation 
(Sepcom) reveals that MCL yields the best overlap between spe-
cies communities and modules, while the module separation 
(Sepmod) shows that modules in the SimAnn result in higher 
community mixing and somewhat better overall separation 
in comparison to the other methods (Tab. 2). Testing the 
impact of the SimAnn starting resolution parameter and 
the MCL inflation parameter on the performance of these 
two algorithms showed that the best accuracy was achieved 
using their default parameters (Tab. 3).

All modularity methods except SimAnn yield modules 
that overlap well with species communities of the fresh 
meadows and pastures (Fig. 4). From among the modules 
assigned to these communities, the module that specifies 
the A-EL community has the best overlap, followed closely 
by plots of the M-AV community (Tab. 4). Plots in the L-C 
and F-CY species communities are grouped together in all 
methods (Fig. 4). This result supports the view expressed by 
several authors that F-CY should be included in the L-C com-
munity as a nutrient-poor variant of the latter [27,28]. The 
ModMax algorithm resulted in a slightly higher separation 
value of L-C community than the other algorithms because it 
succeeds in identifying a plot that is densely connected with 
39 plots from other communities (the plot is marked by an 
arrow in Fig. 3a; Tab. 4). The multitude of inter-community 
connections of this plot is due to the presence of six equally 
coverage-ranked species in the plot that are all defined as 
dominant using our connectivity rule. These species are 
dominant in multiple species communities and hence the 
high connectivity of this plot.

Fig. 3	 Module detection accuracy.

  ModMax SimAnn MCL InfoMap

Network A
No. modules 3 94 3 3
PPV 0.51 0.73 0.31 0.43
Sn 0.86 0.57 0.96 0.92
Acc 0.66 0.64 0.55 0.63
Sepcom 0.18 0.57 0.15 0.20
Sepmod 0.80 0.08 0.66 0.86
Sep 0.38 0.21 0.32 0.41

Network B
No. modules 5 94 5 5
PPV 0.51 0.73 0.45 0.56
Sn 0.79 0.57 0.90 0.89
Acc 0.64 0.65 0.64 0.70
Sepcom 0.23 0.57 0.22 0.26
Sepmod 0.59 0.08 0.57 0.68
Sep 0.37 0.21 0.36 0.42

Network C
No. modules 8 7 11 13
PPV 0.65 0.65 0.67 0.71
Sn 0.76 0.82 0.82 0.70
Acc 0.71 0.73 0.74 0.71
Sepcom 0.42 0.42 0.50 0.51
Sepmod 0.68 0.78 0.59 0.51
Sep 0.54 0.57 0.54 0.51

Network Cw

No. modules 8 7 14 14
PPV 0.62 0.65 0.68 0.72
Sn 0.80 0.83 0.77 0.69
Acc 0.71 0.73 0.72 0.71
Sepcom 0.39 0.43 0.51 0.52
Sepmod 0.63 0.80 0.47 0.48
Sep 0.49 0.58 0.49 0.50

Network D
No. modules 9 7 14 14
PPV 0.65 0.67 0.75 0.75
Sn 0.82 0.82 0.75 0.76
Acc 0.73 0.74 0.75 0.76
Sepcom 0.43 0.42 0.57 0.55
Sepmod 0.61 0.78 0.53 0.51
Sep 0.51 0.57 0.55 0.53

Network Dw

No. modules 9 7 14 14
PPV 0.65 0.67 0.71 0.75
Sn 0.83 0.82 0.76 0.76
Acc 0.74 0.74 0.74 0.76
Sepcom 0.43 0.42 0.55 0.55
Sepmod 0.63 0.78 0.51 0.51
Sep 0.52 0.57 0.53 0.53

Tab. 2	 Comparison of community detection algorithms.

Abbreviations are explained in the text.
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All modularity functions have 100% success rate in 
specifying the CL-RCA community. Using the dominant 
species and coverage for the connectivity rule disconnected 
the CL-RCA plots from the network and enabled the ac-
curate detection of this plant community (Tab. 4, Fig. 4). 
The next best-identified community is PARU with 94% of 
its plots classified into one module containing a marginal 
frequency (5%) of plots from other communities (Tab. 4). 
Plots of the orders Arrhenatheretalia (fertile anthropogenic 
grasslands) and Potentillo-Polygonetalia (flood swards) are 
classified into two modules or more, but better distinction 
between the communities was unsuccessful. The P-CHE 
community comprising sand and gravel bank vegetation 
is well detected by all algorithms except ModMax (Tab. 4). 
ModMax yielded a low-resolution modularity structure 
where the P-CHE plots are grouped together with R-AL and 
RO-A plots into one module.

Discussion

Various statistical methods such as PCA and MDS have 
been used in the past to analyze and identify species com-
munities. They provide a general overview of the similarity 
distribution across the sampled plots, yet these methods are 
not suited for de novo classification of species communities. 

In the present work, we found that networks can attain an ac-
curacy of 76% relative to manual classification using existing 
modularity algorithms. The network modularity structure, 
even in cases where it is not highly accurate relative to 
manual methods, is helpful in providing a general overview 
over the global distribution of shared plot composition in a 
given dataset. This includes gradients in ecological properties 
of different habitats, such as moisture or temperature, having 
an impact on observed species composition.

None of modularity functions were able to distinguish 
between plots in the L-C (Lolio-Cynosuretum) and F-CY 
(Festuco-Cynosuretum) species communities. These two 
communities were distinguished based on species composi-
tion by many authors [29–33]. However, smooth transitions 
in plant community assembly between both communities 
occur frequently [34]. Consequently, several studies have 
considered the F-CY community as a nutrient-poor form 
of L-C community and included it into the latter [27,28]. 
The modularity structure of our network supports that 
view. Such community continuums pose a challenge to the 
network-based community detection methods and would 
require the addition of either additional ecological/biologi-
cal information or further analysis of network higher-order 
structure. On the other hand, the distinctiveness of the CL-
RCA (Cuscuto lupuliformis-Rubetum caesii), which was first 
described by Schmitz and Lösch [19], is strongly recovered 
in the networks.

Using the a priori information of species communities 
in this study enabled the test of different connectivity rules 
while studying their impact on the network modularity. For 
example, the use of dominant species as the hallmark of 
species communities in the connectivity rule increased the 
network modularity and improved the performance of the 
modularity functions considerably. However, the rigorous 
use of the dominant species may also bias the modularity 
results, especially in plots with more than one dominant 
species of the same coverage. Furthermore, the dominant 
species is not necessarily the character species, which was 
used for the manual ecological classification of species 
communities in our data. Our computational approach is 
hence more similar to the “Uppsala school” (dominant spe-
cies) rather than the “Zurich-Montpelier school” (character 
species) in vegetation studies. This difference between the 
manual and computational classification approaches here 
stems from the difficulty in finding a rigorous definition of 
character species based on their coverage ranking alone. 
From the present study, a critical parameter for the utility 
of networks for classifying species communities are the 
connectivity rule and the function used to identify char-
acteristic species.

The ranking of modularity function performance for 
classification of vegetation plots in our study differs from 
their ranking based on the analysis of benchmark networks. 
A recent comparison of community detection algorithms 
using a simulated (artificial) weighted network in which 
the modules are known revealed that the InfoMap function 
performs much better than MCL or SimAnn algorithms [3]. 
In our networks comprised of real data, MCL and InfoMap 
performed similarly well. Indeed, the present analyses 
embrace the notion that lower mixing parameter leads to 

MCL Inflation parameter Accuracy

5.00 0.693

4.00 0.689

3.00 0.749

2.50 0.745

2.20 0.741

2.00 0.752

1.80 0.741

1.50 0.738

1.20 0.660

SimAnn Resolution Accuracy

0.30 0.680

0.35 0.700

0.40 0.717

0.45 0.738

0.50 0.739

0.55 0.739

0.60 0.737

0.65 0.735

Tab. 3	 Comparison of community detection accuracy in net-
work D by MCL and SimAnn algorithms using different parameters.
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Fig. 4	 Modules detected in network D by the four modularity functions. Nodes having the same color were grouped into the same 
module. a ModMax. b MCL. c Infomap. d SimAnn.

Species 
community No. of plots

No. of classified 
plots  μw (mean ±std)

Sepcom
ModMax SimAnn MCL Infomap

M-AV 16 15 0.26 ±0.35 0.58 0.32 0.8 0.74
AEL 76 72 0.19 ±0.28 0.74 0.79 0.82 0.79
R-A-G 10 10 0.67 ±0.17 0.2 0.18 0.23 0.24
L-C 15 15 0.21 ±0.2 0.78 0.37 0.62 0.77
F-CY 6 6 0.76 ±0.06 0.1 0.17 0.28 0.11
R-AL 26 25 0.48 ±0.24 0.19 0.45 0.53 0.45
RO-A 21 20 0.54 ±0.19 0.3 0.26 0.35 0.27
P-fe 8 8 0.45 ±0.47 0.12 0.11 0.65 0.43
S-S-G 13 13 0.54 ±0.26 0.15 0.18 0.38 0.4
Cl-RCA 10 10 0 1 1 1 1
SAL 6 3 0.82 ±0.15 0.06 0.05 0.08 0.34
PARU 39 39 0.12 ±0.21 0.78 0.87 0.9 0.9
P-Che 36 36 0.18 ±0.25 0.48 0.67 0.74 0.69

Tab. 4	 Quality of community separation using the different algorithms for network D.
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better community detection performance [3]. Variation 
in connectivity rules had a strong impact on community 
detection accuracy. This result stresses the importance of 
edge definition in networks constructed from real data. 
Furthermore, our findings reveal a more heterogeneous view 
of mixing parameter distribution over the network nodes 
in comparison to benchmark networks. Consequently, dif-
ferent communities may vary in their detection accuracy, 
in that several communities detected in high accuracy (e.g., 
PARU) and some that are not identified at all (e.g., SAL). 
Indeed, an estimation of network modularity (community 

mixing) for real data is impossible. Yet, our results show 
that for a network based species communities’ analysis it is 
recommended to eliminate edges connecting plots that do 
not share any species, and in addition to employ information 
regarding diagnostic species in the connectivity rule.

Our results show that network methods can readily 
be used to visualize and analyze vegetation tables for the 
identification and study of plant communities. Modularity 
detection algorithms could also be applied to other biological 
systems, for example the study of microbial species com-
munity structure, which entails even larger datasets [35].

Acknowledgments
Work in the authors’ laboratories is supported by the European Research 
Council (grant No. 232975 to WFM; grant No. 281357 to TD).

Authors’ contributions
The following declarations about authors’ contributions to the research 
have been made: carried out the computational analysis and drafted the 
manuscript: TT; collected the underlying ecological data and drafted parts 
of the manuscript: US; contributed to the computational analysis: GD; 
conceived the study and drafted the manuscript: WFM, TD.

References
1.	 Girvan M, Newman MEJ. Community structure in social and biologi-

cal networks. Proc Natl Acad Sci USA. 2002;99(12):7821–7826. http://
dx.doi.org/10.1073/pnas.122653799

2.	 Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3–
5):75–174. http://dx.doi.org/10.1016/j.physrep.2009.11.002

3.	 Lancichinetti A, Fortunato S. Community detection algorithms: 
a comparative analysis. Phys Rev E Stat Nonlin Soft Matter Phys. 
2009;80(5). http://dx.doi.org/10.1103/PhysRevE.80.056117

4.	 Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 
2010;85(2):183–206.

5.	 Mucina L. Classification of vegetation: past, present and future. J Veg 
Sci. 1997;8(6):751–760. http://dx.doi.org/10.2307/3237019

6.	 Braun-Blanquet J, Fuller GD, Conrad HS. Plant sociology: the study 
of plant communities. New York, NY: Hafner Press; 1965.

7.	 de Cáceres M, Font X, Vicente P, Oliva F. Numerical reproduc-
tion of traditional classifications and automatic vegetation 
identification. J Veg Sci. 2009;20(4):620–628. http://dx.doi.
org/10.1111/j.1654-1103.2009.01081.x

8.	 de Cáceres M, Font X, Oliva F. The management of vegetation 
classifications with fuzzy clustering: fuzzy clustering in vegeta-
tion classifications. J Veg Sci. 2010;21(6):1138–1151. http://dx.doi.
org/10.1111/j.1654-1103.2010.01211.x

9.	 Oliver I, Broese EA, Dillon ML, Sivertsen D, McNellie MJ. Semi-
automated assignment of vegetation survey plots within an classifica-
tion of vegetation types. Methods Ecol Evol. 2013;4(1):73–81. http://
dx.doi.org/10.1111/j.2041-210x.2012.00258.x

10.	 Roleček J, Tichý L, Zelený D, Chytrý M. Modified TWIN-
SPAN classification in which the hierarchy respects cluster 
heterogeneity. J Veg Sci. 2009;20(4):596–602. http://dx.doi.
org/10.1111/j.1654-1103.2009.01062.x

11.	 Tichý L, Chytrý M, Hájek M, Talbot SS, Botta-Dukát Z. OptimClass: 
using species-to-cluster fidelity to determine the optimal partition in 
classification of ecological communities. J Veg Sci. 2010;21(2):287–299. 
http://dx.doi.org/10.1111/j.1654-1103.2009.01143.x

12.	 Guimerà R, Sales-Pardo M, Amaral L. Modularity from fluctua-
tions in random graphs and complex networks. Phys Rev E Stat 
Nonlin Soft Matter Phys. 2004;70(2). http://dx.doi.org/10.1103/
PhysRevE.70.025101

13.	 van Dongen S. Graph clustering by flow simulations [PhD thesis]. 
Utrecht: University of Utrecht; 2000.

14.	 Rosvall M, Bergstrom CT. Maps of random walks on complex 

networks reveal community structure. Proc Natl Acad Sci USA. 
2008;105(4):1118–1123. http://dx.doi.org/10.1073/pnas.0706851105

15.	 Schmitz U, Lösch R. Neophyten und C4-Pflanzen in der Auenvegeta-
tion des Niederrheins. Decheniana. 2005;158:55–77.

16.	 Schmitz U. Increase of alien and C4 plant species in annual river bank 
vegetation of the River Rhine. Phytocoenologia. 2006;36(3):393–402. 
http://dx.doi.org/10.1127/0340-269X/2006/0036-0393

17.	 Pott R. Die Pflanzengesellschaften Deutschlands. 2nd ed. Stuttgart: 
E. Ulmer Verlag; 1995.

18.	 LANUV. Vegetationstypenliste (list of vegetation types and their abbre-
viation) [Internet]. 2014; Available from: http://www.naturschutzinfor-
mationen-nrw.de/methoden/web/babel/media/vegetationstypen.xlsx

19.	 Schmitz U, Lösch R. Vorkommen und Soziologie der Cuscuta-Arten 
in der Ufervegetation des Niederrheins. Tuexenia. 1995;15:373–385.

20.	 Sørensen TJ. A method of establishing groups of equal amplitude in 
plant sociology based on similarity of species content and its applica-
tion to analyses of the vegetation on Danish commons. Copenhagen: 
I kommission hos E. Munksgaard; 1948. (Biologiske Skrifter; vol 5).

21.	 Ellenberg H, Walter H. Einführung in die Phytologie. Stuttgart: 
Ulmer; 1956.

22.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomo-
lecular interaction networks. Genome Res. 2003;13(11):2498–2504. 
http://dx.doi.org/10.1101/gr.1239303

23.	 Fruchterman TMJ, Reingold EM. Graph drawing by force-directed 
placement. Softw Pr Exp. 1991;21(11):1129–1164. http://dx.doi.
org/10.1002/spe.4380211102

24.	 Newman MEJ. Modularity and community structure in networks. 
Proc Natl Acad Sci USA. 2006;103(23):8577–8582. http://dx.doi.
org/10.1073/pnas.0601602103

25.	 Brohée S, van Helden J. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics. 2006;7(1):488. 
http://dx.doi.org/10.1186/1471-2105-7-488

26.	 Whittaker RH. Ordination and classification of communities. The 
Hague: Junk; 1973.

27.	 Dierschke H. Molinio-Arrhenatheretea (E1). Kulturgrasland und 
verwandte Vegetationstypen. Teil 1: Arrhenatheretalia Wiesen und 
Weiden frischer standorte. Synopsis der Pflanzengesellschaften 
Deutschlands. Göttingen: Selbstverlag der Floristisch-soziologischen 
Arbeitsgemeinschaft; 1997.

28.	 Rennwald E. Rote Liste der Pflanzengesellschaften Deutschlands 
mit Anmerkungen zur Gefährdung. Schriftenreihe Für Veg. 
2000;35:393–592.

29.	 Runge F. Die Pflanzengesellschaften Mitteleuropas. Münster: Aschen-
dorff; 1990.

30.	 Wilmanns O. Ökologische Pflanzensoziologie. Heidelberg: Quelle 
& Meyer; 1998.

31.	 Schubert R, Hilbig W, Klotz S. Bestimmungsbuch der Pflanzengesell-
schaften Mittel- und Nordostdeutschlands. Wiesbaden: Spektrum 
Akademischer Verlag; 2001.

http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.2307/3237019
http://dx.doi.org/10.1111/j.1654-1103.2009.01081.x
http://dx.doi.org/10.1111/j.1654-1103.2009.01081.x
http://dx.doi.org/10.1111/j.1654-1103.2010.01211.x
http://dx.doi.org/10.1111/j.1654-1103.2010.01211.x
http://dx.doi.org/10.1111/j.2041-210x.2012.00258.x
http://dx.doi.org/10.1111/j.2041-210x.2012.00258.x
http://dx.doi.org/10.1111/j.1654-1103.2009.01062.x
http://dx.doi.org/10.1111/j.1654-1103.2009.01062.x
http://dx.doi.org/10.1111/j.1654-1103.2009.01143.x
http://dx.doi.org/10.1103/PhysRevE.70.025101
http://dx.doi.org/10.1103/PhysRevE.70.025101
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1127/0340-269X/2006/0036-0393
http://www.naturschutzinformationen-nrw.de/methoden/web/babel/media/vegetationstypen.xlsx
http://www.naturschutzinformationen-nrw.de/methoden/web/babel/media/vegetationstypen.xlsx
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1186/1471-2105-7-488


102© The Author(s) 2014  Published by Polish Botanical Society  Acta Soc Bot Pol 83(2):93–102

Thiergart et al. / Networks approach to community classification

32.	 Foerster E. Pflanzengesellschaften des Grünlandes in Nordrhein-
Westfalen. Münster: Landwirtschaftsverlag; 1983.

33.	 Verbücheln G, Hinterlang D, Pardey A, Pott R, Raabe U, van de Weyer 
K. Rote Liste der Pflanzengesellschaften in Nordrhein-Westfalen. 
Recklinghausen: LÖBF-Schriftenreihe; 1995.

34.	 Ellenberg H. Vegetation Mitteleuropas mit den Alpen in ökologischer, 
dynamischer und historischer Sicht. Stuttgart: Eugen Ulmer; 1996.

35.	 Gonzalez A, Clemente JC, Shade A, Metcalf JL, Song S, Prithiviraj 
B, et al. Our microbial selves: what ecology can teach us. EMBO 
Rep. 2011;12(8):775–784. http://dx.doi.org/10.1038/embor.2011.137

http://dx.doi.org/10.1038/embor.2011.137

	Abstract 
	Introduction
	Material and methods
	Data collection and syntaxonomy
	Vegetation network structure and properties
	Detection of modules within the network

	Results
	Results of principal component analysis and multidimensional scaling
	Edge definition and species community mixing
	Modules within the network of plant communities

	Discussion
	Acknowledgments
	Authors’ contributions
	References

		2014-08-19T14:19:50+0200
	Polish Botanical Society




