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Abstract. Simulations of tunnel excavations have to take into account the natural occurrence of
joints and faults in the surrounding rock mass, which dominantly control its mechanical response. In
this paper, we present work in progress toward 3D finite element analysis of excavation using equivalent
rock-mass properties derived from stochastically generated discrete fracture networks (DFNs). The
equivalent stiffness is determined by volume averaging. Presently, we solve the problem linearly for
an incremental change of the stress state. The fracture’s stiffness is assumed to depend on the initial
normal stress acting in direction normal to it. However, within the solved incremental step, we assume
the fracture’s stiffness to be constant. This assumption is acceptable for small stress changes. Since the
fractures represented in the DFN model have preferred directions, the equivalent stiffness is anisotropic.

Keywords: Fractured rock mass, discrete fracture network (DFN), finite element method (FEM),
averaging procedure.

1. Introduction
According to the current state of art in the field of
rock mechanics, brittle structures (or fractures, in-
cluding faults and joints) have the dominant effect on
the overall mechanical response of the rock mass [1].
Underground structures, such as tunnels, are often
situated in rock masses with naturally existing frac-
tures. Since it is necessary to take into account the
fractures’ influence on the deformation due to the
changes in the stress field during excavation, estimat-
ing mechanical properties of the rock mass is funda-
mental for efficient and safe design of tunnel struc-
tures. The finite element method (FEM) is a tool
commonly used for simulating tunnel excavation. In
the case of a highly fractured rock mass, it would
not be effective and feasible to explicitly represent
each distinct fracture in the finite element mesh. It
is admissible to include only a few largest fractures
or localized deformation zones using e.g. interface
elements, while the rest of the fracture network is
represented by so-called equivalent continuum. The
overall effective properties can be determined by aver-
aging or homogenization procedure [2]. In this paper,
we use the averaging procedure proposed by Oda
et al. [3] to determine the effective stress-strain re-
lation. As the overall properties of fractured rock
mass depend on the size of the simulated area, it
is suitable to include the concept of representative
volume element (RVE) or statistical volume element
(SVE) [4].

The discrete fracture network (DFN) method is
one of possible ways to describe the fractures’ geom-
etry while taking into account data obtained from
structural-geological survey, e.g. [5–8]. One of the
most used approaches are the stochastically generated

DFNs, which extrapolate the in-situ data by means
of statistical probability distributions.

In this paper, we present work in progress toward
developing and implementing in computer code an ap-
proach that connects averaging procedure performed
on 3D stochastic DFN with finite element analysis of
tunnel excavation. At the present stage of develop-
ment, we adopt some simplifying assumptions:

(A) We assume that the rock mass in the whole do-
main of the finite element (FE) model has uniform
equivalent effective mechanical properties.

(B) The effective properties are derived by averag-
ing [3] over a representative volume element (RVE)
of the rock mass, in which shapes, sizes, and ori-
entations of individual fractures are modeled by
means of stochastic DFN. The RVE size is based
on a previous study [9] and corresponds with the
size of the FE model.

(C) Individual fractures are treated by means of the
“parallel plate model” [3], which means that the
deformation response of a fracture to normal and
shear stress is represented by two parameters ac-
counting for the fracture’s roughness, friction angle
etc. as well as its size and normal stress acting on
it.

(D) The FE analysis is performed linearly for an in-
cremental change of the stress state. The fracture’s
stiffness is assumed to depend on the initial normal
stress acting in direction normal to it. However,
within the solved incremental step, we assume the
stiffness to be constant.

We are aware that some of the assumptions may be
limiting the validity of the procedure. For example,
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Parameter Value

Volumetric density P30 [1/m3] 2.0
Power law exponent α [-] 3.4
Power law minimum fracture size amin [m] 0.3
Fisher distribution concentration factor κ [-] 106

Fisher distribution mean vector [-] variable
Volume of the DFN model [m3] 100 × 100 × 100
RVE volume [m3] 15 × 15 × 15

Table 1. Parameters of DFNs.

the size of RVE (B) should be chosen not only based
on the scatter of the overall properties [9], but also
with respect to the gradient of the stress field in the
FE model. Or, the linear solution (D) is acceptable
only for small stress changes. These limitations will
be resolved in a follow-up work.

2. DFN model – description of
fractures’ geometry

Quantitative information about fracturing of rock
mass is often acquired by structural-geological map-
ping of fracture traces on “observation windows”, such
as rock outcrops or tunnel walls. Typically, the mini-
mum recorded trace length is on the order of 10−1 m.
Due to the enormous number of corresponding frac-
tures in the rock volume, on the one hand, and the
limited information available on the observation win-
dows, on the other hand, the geometry of the frac-
ture network is described by stochastically generated
DFN. In this approach, the size and orientation of
the fractures are assumed to follow certain probabilis-
tic distributions, whose parameters are identified so
as to match (in a statistical sense) the traces’ sizes,
directions and density within the observation win-
dows. A DFN is then generated as a set of spatially
distributed polygons, whose sizes and orientations
respect the calibrated probabilistic distributions [8].
Since each fracture is explicitly described in the DFN
model, the network cannot be efficiently discretized
by a 3D FE mesh. However, it provides a suitable
basis for the use of an averaging procedure.

The fracture network models used in this study
were generated by the DFraM software [8]. Fractures’
centers are positioned in the model volume by us-
ing Poisson random generation process. Fractures’
sizes are controlled by power law distribution with
parameters amin, which is the minimum fracture size
(location parameter), and α, which is the law’s ex-
ponent (shape parameter). Size of the fracture a is
defined as the radius of the circle circumscribed to the
fracture, while the fractures are modelled as squares.
The orientation of fractures is determined by Fisher
distribution, with parameters µ, which is the mean
unit normal vector of fractures, and κ, which is the
concentration parameter.

As the purpose of this study is to demonstrate
the solution methodology, we adopt some simplifica-
tions while modelling the fracture networks. We use
DFNs consisting of one geological set of fractures. Val-
ues of the power law distribution parameters are the
same for all models and they are based on a previous
study [9]. We consider that all fractures are nearly
parallel, which is achieved by setting the concentra-
tion parameter of Fisher distribution κ to a high value
of 106. We will, however, consider fracture sets with
different orientations, for which different mean nor-
mal vectors µ will be used (see Subsection 6.1). The
volumetric fractures density P30, which controls the
total number of fractures in the model, was approxi-
mately set based on report [10]. Parameters used in
this study are listed in Table 1.

3. Overall stiffness of the
fractured rock mass evaluated
by averaging procedure

The calculation of overall effective parameters of frac-
tured rock mass is based on the volume averaging
relation proposed by Oda et al. [3]:

εij = 1
E

[
(1 + ν)δikδjl − νδijδkl +

(
1

kn
− 1

ks

)
Fijkl

+ 1
4ks

(δikFjl + δjkFil + δilFjk + δjlFik)
]
σkl

=Cijklσkl, (1)

where E and ν are Young’s modulus and Poisson’s
ratio of the intact rock, respectively, kn and ks are
nondimensional parameters related to the fracture’s
normal and tangent stiffness, respectively, δij is Kro-
necker’s delta, and Fij and Fijkl are so-called second
and fourth rank crack tensors, respectively:
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Here V is the volume of the domain over which
averaging is performed, S(p) is the area of p-th fracture
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Figure 1. Normal-stress vs. fracture-closure dia-
gram [12] and schematic indication of the tangent
stiffness evaluation.

inside the sampling volume, L(p) is a typical size of the
fracture equal to a diameter of a circle with the same
area and n

(p)
i are the components of a unit vector

normal to the fracture. Note that the typical size L is
assumed as a property of the fracture independent on
the size of the sampling volume and it is calculated
using the original area of the fracture generated in
stochastic DFN.

The calculation procedure of parameters kn and ks

is described in detail in our previous work [11]. In
brief, the parameters are expressed as:

kn = 3π

8 + κn · L

E
, (4)

ks = 3π

8 + κs · L

E
, (5)

where κn and κs are the normal and shear stiffness
(stress/relative displacement) of a fracture and L is
the fracture’s size.

The normal stiffness parameter κn is to be obtained
experimentally. It depends on whether the fracture
undergoes loading or unloading and it also varies with
pressure acting on it. For the sake of simplicity we
determined κn as tangent stiffness by piece-wise linear
approximation of the unloading path of the exper-
imental normal-stress vs. fracture-closure diagram
(Figure 1), which was presented in [12]. The inter-
vals of normal stress σn and corresponding tangent
stiffness parameters κn and kn are listed in Table 2.
Compressive stress is in this study considered with a
negative sign.

The shear stiffness of fractures is determined using
the formula presented in [13] with parameters listed
in Table 3:

κs = 100
L

· |σn| · tan
(

JRC · log10

(
JCS

|σn|

)
+ ϕr

)
, (6)

where JRC is joint roughness coefficient, JCS is joint
wall compressive strength and ϕr is residual friction
angle.

Normal stress |σn| κn kn

[MPa] [ MPa
m ] [-]

0.0–2.5 75 472 1.308
2.5–5.0 210 526 1.540
5.0–7.5 277 778 1.656
7.5–10.0 625 000 2.253
10.0–12.5 781 250 2.522
12.5–15.0 892 857 2.714
15.0–20.0 1 250 000 3.328
20.0–25.0 1 250 000 3.328
25.0–30.0 1 315 789 3.442
30.0–33.0 2 790 698 5.979

Table 2. Fracture’s tangent stiffness (in direction
normal to the fracture).

Parameter Value

Joint roughness coefficient JRC [-] 6.55
Joint wall compressive strength JCS [MPa] 90.0
Residual friction angle ϕr [deg] 20.0

Table 3. Fracture’s shear stiffness parameters.

The described constitutive model has been imple-
mented by means of Python API as user-defined ma-
terial in the open-source FE code OOFEM [14]. It is
noted that Equation (3) represents a compliance rela-
tion, while in FEM, the stiffness tensor is necessary.
Thus, the compliance tensor is first calculated using
Equation (3) and then it is numerically inverted to
obtain stiffness.

4. Representative volume element
As we discussed in the previous section, the overall
mechanical properties of the jointed rock mass are
evaluated by volume averaging of the fracture net-
work. The size of the DFN sub-domain, over which
the averaging is performed (V in Equations (2) and
(3)), should be chosen large enough to guarantee that
the evaluated overall properties are the same for any
stochastic realization of the DFN. Then, the sub-
domain can be called a representative volume element.
Based on a previous study [9], we use RVEs with di-
mensions of 15×15×15 m. For this size the coefficient
of variation (COV) of apparent moduli evaluated for
10 realizations of DFN (with similar parameters as
here) was less than 20 %. Furthermore, it was shown
in [9], that further increasing the sampling volume
size did not lead to any significant reduction of the
moduli COV. To eliminate potential border effects,
the RVEs are obtained by cropping much larger DFN,
which is generated in the volume of 100 × 100×100 m.
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(a). State prior to excavation. (b). State after tunnel excavation.

Figure 2. Finite element model.

5. 3D FE modelling of tunnel
excavation

To demonstrate the use of the DFN-based constitutive
model, we numerically simulate by FEM the excava-
tion of a fictitious tunnel in rock at the depth of 550 m.
The tunnel has a circular cross-section with the di-
ameter of 3.0 m. The tunnel is modelled in a cubic
body, representing the surrounding rock, with side
size of 15 m (Figure 2). Thus, the distance between
the tunnel and the boundary of the model is at least
twice the diameter of the construction.

The coordinate system is introduced with the ver-
tical axis z oriented upwards. The edges of model
are parallel with the coordinate axes and the tunnel
is parallel with the y-axis. The finite element mesh
consists of 3D hexahedrons and it was created with
Salome software [15].

The simulation is performed in two steps. The first
step (time t = 0) represents the initial state prior
to excavation – Figure 2a. The displacement of the
rock body is constrained by statically determinate
supports and surface tractions, corresponding to the
initial geostatic pressure, are applied on all sides of the
body. The initial stress state is idealized as uniform
within the modeled domain. The initial stress tensor
is based on field measurements from Rožná mine [16].
Using data from vertical boreholes it was found that
the directions of the principal stresses are vertical and
horizontal. The vertical principal stress is calculated
by Equation (7):

Sv = −ρ · g · h, (7)
where ρ is volumetric weight, g is gravity accelera-
tion and h is depth beneath the ground level. The
parameters for calculation of the vertical principal
stress (Table 4) are adopted from [17]. As the major
and minor horizontal principal stresses, SH and Sh,
respectively, we use the average of the values mea-
sured on different levels of the mine. The values of the

Parameter Value

Major horizontal principal stress
SH [MPa] −22.8

Minor horizontal principal stress
Sh [MPa] −14.6

Volumetric weight ρ [ kg3

m ] 28 000
Depth of the mine beneath the
ground level [m] 550

Vertical principal stress Sv [MPa] −15.4

Table 4. The initial stress state.

initial stress are listed in Table 4. Orientation of the
model is set so, that the tunnel axis is parallel with the
minor horizontal principal stress, which means that
the direction of Sh corresponds to the global axis y.

It should be noted that, even though the stress field
is uniform throughout the analyzed domain in the first
step, the normal traction σn acting on each fracture
in the DFN is generally different due its different
direction. This traction, in turn, affects the fractures’
normal and shear stiffness, as seen in Equation (6)
and Table 2, which must be taken into account in the
averaging process.

In the second calculational step (time t = 1), the
excavation of the tunnel is simulated by removing the
finite elements inside the tunnel space while keeping
the boundary conditions on the outer surface of the
rock body unchanged. This creates a new traction-
free boundary on the tunnel walls, which results in
deformation and change of stress state in the rock.

We should remark that, at the present stage of
progress, the problem is solved as incrementally linear.
That is, the second step is solved with constant tangent
stiffnesses of the fractures, which correspond to the
initial stress state.
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Figure 3. Horizontal convergence ∆ux calculated for different DFN models.

Figure 4. Vertical convergence ∆uz calculated for different DFN models.

6. Case examples
6.1. Fracture network models
To demonstrate the proposed simulation procedure
of 3D underground structure excavation, we use sev-
eral simple examples. In all of the examples, the
fracture network consists of a set of nearly parallel
fractures with the same DFN parameters, except the
mean normal vector. In particular, the simulations
are performed on four types of DFN models, in which
fractures are: perpendicular to axis x/y/z and at
an angle of 45 degrees between negative x axis and
positive z axis, see Table 1.

Even though the size of the RVE for averaging of
the rock properties was rationally selected, 3 different
stochastic realizations of DFN models with different
random seed value were generated for verification.
Thus, in total we work with 12 DFN models.

6.2. Results and discussion
6.2.1. Displacements
Figure 3 and Figure 4 present the calculated values
of the horizontal and vertical convergence for each
DFN case. The tunnel convergence is evaluated as the
relative displacement between points on the tunnel
walls caused by the tunnel excavation (that is, the
incremental displacement between the final displace-
ment at time t = 1 and the initial displacement at
t = 0). Positive values of the convergence correspond
to the closing of the tunnel walls. The points at which

Figure 5. Location of reference points and lines used
to report results.

the displacement was recorded are pictured in Fig-
ure 5. Figure 6 through Figure 9 show the incremental
displacement of the model boundaries including the
excavated tunnel.

Considering that the initial vertical pressure Sv is
about 2⁄3 of the major horizontal pressure SH and
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that SH acts perpendicularly to the tunnel axis, the
displacements of the tunnel walls qualitatively corre-
spond with expectations:

• For a fracture set perpendicular to tunnel axis, i.e.
perpendicular to the axis y, the effect of the frac-
tures on the convergence is rather small and the
convergence is the least among all the analyzed
cases (the second group of bars in Figure 3 and Fig-
ure 4). Consistently with the initial stress state, the
vertical convergence is smaller than the horizontal
one, which is also obvious from the deformed shape
of the tunnel cross-section (Figure 6).

• Referring to the cases with vertical and horizontal
fractures parallel with the tunnel axis (i.e. per-
pendicular to axis x and perpendicular to axis z,
respectively), it is seen in Figure 3 and Figure 4
that the convergence in the direction normal to the
fractures significantly increases in comparison with
the previous case. The convergence as well as the
shape of the cross-sectional distortion reflect the
fractures-induced anisotropy. In the rock mass with
vertical fractures, the higher initial horizontal stress
results in horizontal convergence, which is signifi-
cantly larger than the vertical one (Figure 7). On
the other hand, when the fractures are horizontal,
the resulting horizontal and vertical convergences
are close to each other (Figure 8).

• Finally, when the fractures are inclined at 45 de-
grees, the horizontal and vertical convergences fall
between those observed with the vertical and hor-
izontal sets. The axes of the distorted shape of
the tunnel (Figure 9) are close to, but do not align
with the fractures, which can be attributed to the
difference of the initial horizonal and vertical stress
and normal and tangential displacement occurring
on the fractures.

Figure 3 and Figure 4 also indicate that the larger
components of convergence, which are strongly af-
fected by the fractures, exhibit notable variation
among the different stochastic realizations of the DFN.
This finding suggests that the employed sampling vol-
ume was still not large enough to meet the criteria as
an RVE.

6.2.2. Stress
Figure 10 and Figure 11 show the distribution of nor-
mal stresses along the horizontal and vertical lines
indicated in Figure 5. The results are reported for one
realization of the DFN model with fractures at the an-
gle of 45 degrees. Both plots show the uniform initial
stress state at time t = 0 and the stress distribution
after excavation at t = 1. The difference between
the lines corresponds to the incremental change of
stress due to excavation. The plots show that, as the
tunnel is excavated and a new traction-free boundary
is introduced at the tunnel wall, the radial pressure
correctly decreases from the initial uniform state and
tends to zero at the tunnel wall. On the other hand,

(a). Vertical section through
the DFN.

(b). Deformed shape of the
tunnel (red).

Figure 6. Model with fractures perpendicular to
y axis.

(a). Vertical section through
the DFN.

(b). Deformed shape of the
tunnel (red).

Figure 7. Model with fractures perpendicular to
x axis.

(a). Vertical section through
the DFN.

(b). Deformed shape of the
tunnel (red).

Figure 8. Model with fractures perpendicular to
z axis.

(a). Vertical section through
the DFN.

(b). Deformed shape of the
tunnel (red).

Figure 9. Model with fractures at the angle of 45 de-
grees between negative x axis and positive z axis.
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Figure 10. Model with fractures at the angle of
45 degrees: distribution of normal stresses σx and σz

along horizontal line A-A’ (Figure 5).

the pressure in the circumferential direction increases,
which is also to be expected. Note that fractures are
distributed at an angle around the tunnel, so some
experience an increase of pressure (loading) while pres-
sure on others decreases (they unload). The stress
increment on fractures in the close vicinity of the
tunnel may be also quite large. Therefore, for some
fractures, using the constant tangent stiffness esti-
mated from the unloading path of the stress-closure
diagram (see Section 3 and Figure 1) might have not
been accurate.

7. Conclusions
The 3D FEM simulation of tunnel excavation with
rock mass parameters evaluated by averaging proce-
dure based on DFN has been examined. This paper
has been focused on the demonstration of the solu-
tion methodology. The results allow us to draw the
following conclusions:

• Deformed shapes calculated by FE simulations are
consistent with the orientation of fractures in DFNs
and the initial stress state. Largest tunnel conver-
gence is observed in the directions close to the least
overall stiffnesses of the fractured rock mass.

• Some difference in the displacements calculated with
different stochastic realizations of the DFNs was
observed. The appropriate size of the sampling
volume should be further investigated and if RVE
cannot be found, the concept of SVE might be
adopted.

• The largest changes in the stress state after the
tunnel excavation were observed close to tunnel,

Figure 11. Model with fractures at the angle of
45 degrees: distribution of normal stresses σx and σz

along vertical line B-B’ (Figure 5).

which is in agreement with the expectations. On
the other hand, on the outer boundaries of the
models, the stresses after excavation were slightly
different from the initial state, which indicates that
a larger domain of the model is required to eliminate
the boundary effect.

• Considering the observed stress variations after the
tunnel excavation, an incremental nonlinear calcu-
lation with fractures’ stiffness updated according to
the actual stress state and loading-unloading may
be necessary for a more accurate prediction of the
tunnel convergence.

• Although it was not elaborated in the present work,
the demonstrated analysis method provides infor-
mation about the changes of the pressure acting
on the fractures, which affect their hydrogeological
properties. The proposed methodology, therefore,
may provide valuable inputs for hydrogeological
simulations of ground water flow and contaminants’
transport.

Acknowledgements
This paper was financially supported by Czech
Technical University in Prague under SGS project
no. SGS22/030/OHK1/1T/11.

References
[1] L. Jing. A review of techniques, advances and

outstanding issues in numerical modelling for rock
mechanics and rock engineering. International Journal
of Rock Mechanics and Mining Sciences 40(3):283–353,
2003.
https://doi.org/10.1016/S1365-1609(03)00013-3

67

https://doi.org/10.1016/S1365-1609(03)00013-3


Martin Lebeda, Petr Kabele Acta Polytechnica CTU Proceedings

[2] M. Hori, S. Nemat-Nasser. On two micromechanics
theories for determining micro–macro relations in
heterogeneous solids. Mechanics of Materials
31(10):667–682, 1999.
https://doi.org/10.1016/S0167-6636(99)00020-4

[3] M. Oda, T. Yanabe, Y. Ishizuka, et al. Elastic stress
and strain in jointed rock masses by means of crack tensor
analysis. Rock Mechanics and Rock Engineering 26(2):89–
112, 1993. https://doi.org/10.1007/BF01023618

[4] X. Yin, W. Chen, A. To, et al. Statistical volume
element method for predicting
microstructure–constitutive property relations.
Computer Methods in Applied Mechanics and
Engineering 197(43-44):3516–3529, 2008.
https://doi.org/10.1016/j.cma.2008.01.008

[5] W. S. Dershowitz, P. Wallmann, S. Kindred. Discrete
fracture modelling for the Stripa site characterization
and validation drift inflow predictions,
STRIPA-TR-91-16, 1991. SKB Stockholm.
https://www.researchgate.net/profile/William_
Dershowitz/publication/266334817_Discrete_
Fracture_Modelling_for_the_Stripa_Site_
Characterization_and_Validation_Drift_Inflow_
Predictions/links/563bb3ea08ae34e98c47cfaf.pdf

[6] R. Munier. Statistical analysis of fracture data, adapted
for modelling Discrete Fracture Networks-Version 2, SKB
R-04-66, 2004. SKB - SvenskKärnbränslehantering AB
Swedish Nuclear Fuel and Waste Management Co. http:
//skb.se/upload/publications/pdf/R-04-66.pdf

[7] C. Darcel, P. Davy, O. Bour, J.-R. D. Dreuzyr. Discrete
fracture network for the Forsmark site, SKB Rapport
R-06-79, 2006. SKB - SvenskKärnbränslehantering AB
Swedish Nuclear Fuel and Waste Management Co.
http://www.iaea.org/inis/collection/
NCLCollectionStore/_Public/38/013/38013872.pdf

[8] P. Kabele, et al. Mathematical Modeling of Brittle
Fractures in Rock Mass by Means of the DFN Method –

Final report SÚRAO TZ 286/2018/ENG, 2017.
SÚRAO - Radioactive Waste Repository Authority.

[9] M. Lebeda, P. Kabele. The effect of sampling volume
size on the apparent stiffness of jointed rock mass. APP
34:38–42, 2022.
https://doi.org/10.14311/APP.2022.34.0038

[10] L. Gvoždík, et al. Transport of radionuclides from deep
geological repository/Testing of conceptual and numeric
models – Final report SÚRAO TZ 463/2020/ENG, 2020.
SÚRAO - Radioactive Waste Repository Authority.

[11] M. Lebeda. Určení tuhosti porušeného horninového
masivu s využítím DFN modelů. Master’s thesis, Czech
Technical University in Prague, Faculty of Civil
Engineering, Department of Mechanics, 2020.

[12] S. C. Bandis, A. C. Lumsden, N. R. Barton.
Fundamentals of rock joint deformation. International
Journal of Rock Mechanics and Mining Sciences &
Geomechanics Abstracts 20(6):249–268, 1983.
https://doi.org/10.1016/0148-9062(83)90595-8

[13] N. Barton, V. Choubey. The shear strength of rock
joints in theory and practice. Rock Mechanics 10(1-2):1–
54, 1977. https://doi.org/10.1007/BF01261801

[14] B. Patzák. OOFEM project home page, 2000.
[2022-10-13]. http://www.oofem.org

[15] EDF, CEA. Salome, 2001. [2022-10-17].
https://www.salome-platform.org/

[16] Z. Bukovská, a kol. Získání dat z hlubokých
horizontů dolu Rožná, TZ 464/2020, 2020. SÚRAO -
Správa úložišť radioaktivních odpadů.

[17] K. Souček, M. Vavro, L. Staš, et al. Komplexní
geologická charakterizace prostorů PVP Bukov – část II
geotechnická charakterizace, Závěrečná zpráva SÚRAO
ZZ 221/2018, 2017. SÚRAO - Správa úložišť
radioaktivních odpadů.

68

https://doi.org/10.1016/S0167-6636(99)00020-4
https://doi.org/10.1007/BF01023618
https://doi.org/10.1016/j.cma.2008.01.008
https://www.researchgate.net/profile/William_Dershowitz/publication/266334817_Discrete_Fracture_Modelling_for_the_Stripa_Site_Characterization_and_Validation_Drift_Inflow_Predictions/links/563bb3ea08ae34e98c47cfaf.pdf
https://www.researchgate.net/profile/William_Dershowitz/publication/266334817_Discrete_Fracture_Modelling_for_the_Stripa_Site_Characterization_and_Validation_Drift_Inflow_Predictions/links/563bb3ea08ae34e98c47cfaf.pdf
https://www.researchgate.net/profile/William_Dershowitz/publication/266334817_Discrete_Fracture_Modelling_for_the_Stripa_Site_Characterization_and_Validation_Drift_Inflow_Predictions/links/563bb3ea08ae34e98c47cfaf.pdf
https://www.researchgate.net/profile/William_Dershowitz/publication/266334817_Discrete_Fracture_Modelling_for_the_Stripa_Site_Characterization_and_Validation_Drift_Inflow_Predictions/links/563bb3ea08ae34e98c47cfaf.pdf
https://www.researchgate.net/profile/William_Dershowitz/publication/266334817_Discrete_Fracture_Modelling_for_the_Stripa_Site_Characterization_and_Validation_Drift_Inflow_Predictions/links/563bb3ea08ae34e98c47cfaf.pdf
http://skb.se/upload/publications/pdf/R-04-66.pdf
http://skb.se/upload/publications/pdf/R-04-66.pdf
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/013/38013872.pdf
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/013/38013872.pdf
https://doi.org/10.14311/APP.2022.34.0038
https://doi.org/10.1016/0148-9062(83)90595-8
https://doi.org/10.1007/BF01261801
http://www.oofem.org
https://www.salome-platform.org/

	Acta Polytechnica CTU Proceedings 40:61–68, 2023
	1 Introduction
	2 DFN model – description of fractures' geometry
	3 Overall stiffness of the fractured rock mass evaluated by averaging procedure
	4 Representative volume element
	5 3D FE modelling of tunnel excavation
	6 Case examples
	6.1 Fracture network models
	6.2 Results and discussion
	6.2.1 Displacements
	6.2.2 Stress


	7 Conclusions
	Acknowledgements
	References

